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a  b  s  t  r  a  c  t

A  novel  generalized  random  walks  model  based  algorithm  for image  smoothing  is presented.  Unlike  pre-
vious  image  smoothing  methods,  the  proposed  method  performs  image  smoothing  in  a  global  weighted
way  based  on  graph  notation,  which  can  preserve  important  features  and edges  as much  as  possible.  Based
on  the new  random  walks  model,  input  image  information  and  user  defined  smoothing  scale  informa-
tion  are  projected  to  a graph,  our  method  calculates  the probability  that  a random  walker  starting  at  each
pixel  node  position  will  first  reach  one  of the  pre-defined  terminal  node  to achieve  image  smoothing,
eywords:
dge detection
mage decomposition
mage enhancement
mage smoothing

which  goes  to solving  a  system  of  linear  equations,  the  system  can  be solved  efficiently  by lots  of meth-
ods.  Theoretical  analysis  and  experimental  results  are  reported  to illustrate  the  usefulness  and  potential
applicability  of our  algorithm  on various  computer  vision  fields,  including  image  enhancement,  edge
detection,  image  decomposition,  high  dynamic  range  (HDR)  image  tone  mapping  and  other  applications.

© 2016  Published  by  Elsevier  B.V.
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andom walks

. Introduction

Image smoothing is one of the most fundamental and widely studied problem in
omputer vision. Image smoothing, also called image blurring. Traditional smooth-
ng  methods not only dissolve the noise, but also blur the important edges. To avoid
his,  edge preserving smoothing is proposed. Edge preserving smoothing method

ay  be viewed as a compromise between smoothing and edge preserving. It wipes
ut tiny details and noise, and at the same time, preserves salient important edges. In
he past few years, it has been successfully applied in the field of image processing
uch as edge detection, image restoration, image enhancement, and many other
igh-level image processing tasks. As an integral step of many computer vision prob-

ems, the results of image smoothing influence the performance of the whole vision
ystem.

Our  work is partially inspired by the well-known graph cut model [1], in this
aper we  propose a novel approach to edge preserving image smoothing with a
imilar graph structure. However, theoretical foundation of our work is based on
andom walks algorithm [2,3], the random walks algorithm is used for image seg-
entation by Grady, it solves this problem as following: given a random walker

tarting at each pixel position, what is the probability that it first reaches each of
he  pre-labeled nodes. A generalized random walks model for image smoothing is
roposed. The smoothing problem is formulated on a carefully designed graph. First
n  image model is constructed, an input image is treated as a graph with a fixed
umber of vertices and edges. Each edge is assigned a positive value weight corre-
ponding to image gradient. It indicates the likelihood that a random walker will
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

ross that edge, which is the same as traditional random walks algorithm. Besides,
wo  auxiliary nodes are added to the model and each pixel node is connected with
he  two nodes. Edges between the two nodes and pixel nodes are also assigned a
eight to indicate that random walker will reach a terminal node from pixel node. By

∗ Corresponding author. Tel.: +86 9318912786.
E-mail address: zhaobin wang@foxmail.com (Z. Wang).

ttp://dx.doi.org/10.1016/j.asoc.2016.01.003
568-4946/© 2016 Published by Elsevier B.V.

69

70
calculating the probability that the random walker first reaches one of the terminal
nodes from each pixel node position, the smoothing result can be obtained.

The main contribution of the paper is to propose a new strategy that can
project information of image structure and smoothing willing to a graph model.
Our approach gives a new understanding of how edge preserving smoothing can
be  realized, which can fully explain the reason why image smoothing problem can
be  solved by random walks algorithm; Algorithmically, we propose a system of lin-
ear equations in an optimization framework for image smoothing and apply it to
some interesting applications; The relationship between our method and general-
ized  random walk with restart [4,5], anisotropic diffusion [6] and WLS  [7] is also
discussed.

The rest of the paper is organized as follows. Section 2 reviews previous methods.
Differences between our algorithm and some existing image smoothing methods are
also discussed. Section 3 provides implementation details of our method and the-
oretical connections with previous related work. Section 4 discusses experimental
results and performance, along with comparisons with other smoothing methods.
Finally, Section 5 gives the conclusions.

2. Prior work

Our work benefits from the rich body of work on image smooth-
ing and random walk based applications. Some related work is
reviewed in this section.

2.1. Prior image smoothing methods
ng with generalized random walks: Algorithm and applications,
003

Anisotropic diffusion model introduced by Perona and Malik
is widely used in practice and extensively studied in theory [6], it
is modeled using partial differential equations and implemented
as an iterative process, it uses an edge-stopping function of local

71

72

73

74

dx.doi.org/10.1016/j.asoc.2016.01.003
dx.doi.org/10.1016/j.asoc.2016.01.003
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:zhaobin_wang@foxmail.com
dx.doi.org/10.1016/j.asoc.2016.01.003


 ING Model
A

2 oft Co

g
r
a
p
o
t
e
i
i
b
d
s
i
i
o
a

i
s
p
w
s
r
t
l
i
i
a
s
m
m
e
b
a
o

t
t
s
c
p

2

1
r
a
t
t
m
m
t
T
i
e

t
d
i
a
s
i
e
w
s

wij = e−ˇ(Ii−Ij)
2
, (1)

where Ii and Ij indicate the image intensity at pixel i and j, and ˇ
is a free parameter. A big weight value means a close relationship.

Fig. 1. Traditional random walk model (left) and the proposed model (right) for
image smoothing (3 × 3 image). On the traditional graph model, each pixel is con-
nected with its four neighbors (if it has). We added some other vertex and edges in
our proposed graph model for image smoothing. Terminal nodes W and B are added
and  further connected with each pixel node. Random walkers starting from each
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radient to make smoothing take place only in the interior of
egions without crossing edges. It has been demonstrated to be
ble to achieve a good trade-off between noise removal and edge
reservation. There has been a large number of works aimed at
ptimizing and extending the idea [8,9]. Rudin et al. proposed
o regularize total variation, which utilizes the gradient sparsity
nforced by an L1 penalty term to do edge preserving smooth-
ng [10]. It has been successful in denoising problems. It is the
nspiration source of much work. By now, the algorithm has also
een used for other restoration tasks such as deblurring, blind
econvolution and inpainting [11]. The bilateral filter computes a
moothed output with a weighted average of neighboring pixels
ntensities, it takes into account spatial and color distances [12]. It
s an extension of typical Gaussian smoothing. There exist a number
f methods to boost the algorithm [12,13]. Because of its simplicity
nd effectiveness, it is one of the most popular smoothing methods.

In recent years, many exciting new techniques have been
nvented to solve this problem. All the methods have demon-
trated satisfying results with good performance. Farbman et al.
roposed to perform the edge preserving smoothing using the
eighted least square (WLS) framework [7,14], edge preserving

moothing is viewed as a compromise between data term and
egularization term. By minimizing the proposed energy func-
ional, image smoothing result can be obtained by solving a large
inear system. Xu et al. presented L0 gradient minimization for
mage smoothing, it minimizes a specific objective function [15],
t can remove low-amplitude structures and globally preserve
nd enhance salient edges. Subr et al. considered edge preserving
moothing as interpolation between local signal extremes [16]. The
ethod defines detail as oscillations between local minima and
axima. It smoothes high contrast texture while preserving salient

dges. Guided image filter assumes there is a local linear model
etween the guidance image and the filtering output, and they seek

 solution that minimizes the difference between filtering input and
utput while maintaining the linear model [17].

Among different smoothing schemes, our proposed graph
heory based method has several good features in practical applica-
ions. It explicitly organizes the image elements into mathematical
tructures, requires no discretization and therefore incurs no dis-
retization errors or ambiguities, and makes the formulation of the
roblem more flexible and the computation more efficient [3].

.2. Random walks

The term random walk was first proposed by Karl Pearson in
905 [19]. In his letter to nature, Pearson proposed the problem of
andom walk. At each step, a man  started from a point and moved

 fixed length, with a randomly chosen angle. He wanted to know
he distribution of the man  after many steps had been taken. In
he same year, Albert Einstein published his paper on Brownian

otion which he modeled as a random walk [20]. It had an enor-
ous impact, and it gave strong evidence for discrete particles at a

ime when most scientists believed that matter was a continuum.
he concept of random walk has been used in many fields, and it
s nearly ubiquitous in science and engineering, including ecology,
conomics, physics, chemistry, and biology [20,22,23].

Various properties of random walks can be used to define
he specified algorithm. The average first-passage time which is
efined as the average number of steps a random walker starting

n a state will take to enter another state for the first time; the
verage commute time which is defined as the average number of
teps a random walker starting in a state will take before enter-
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

ng another state for the first time and go back to starting state; the
scape probability which is defined as the probability that a random
alk starting at a state will reach another state before returning to

tarting state, they are applied in many applications [23–27].
 PRESS
mputing xxx (2016) xxx–xxx

Random walks proposed by Grady are an improvement to tra-
ditional random walks on graph by highlighting the diversity and
centrality simultaneously [3]. It obtains the affinities between each
node and labeled nodes by measuring probability that a random
walker will first reach a labeled node before other labeled nodes.
The probability problem shares the same solution as the harmonic
functions with given boundary conditions. The harmonic function
defined on graph can be easily solved by minimizing a combina-
torial formulation of the Dirichlet integral, and through certain
mathematical transformations, the final question goes to solving
a system of linear equations. Now the algorithm has been suc-
cessfully applied in many fields of image processing, e.g. image
segmentation, image fusion, image annotation and classification,
2D–3D conversion and other applications [2,29,30].

3. Proposed smoothing method

3.1. Problem formulation

Unlike most previous image smoothing methods, we  consider
image smoothing as a problem: given a random walker starting at
each pixel node position, what is the probability that he first reaches
one of the two terminal nodes? As illustrated in Fig. 1, a walker
starting from an image pixel node position, he may  go directly to
the terminal nodes or he may  wander around his starting position
before he reaches terminal nodes. At last, he will reach one of the
terminal nodes before another. Our method calculates the probabil-
ity that he will end up with reaching each terminal nodes, and takes
each probability starting from each pixel positions as smoothed
pixels intensities. The process is explained in detail below.

Suppose an input image I with n pixels is scaled to [01], image I
can be written in a vector form [I1, I2, . . .,  In]T. Image pixel lattices
are represented in the form of a weighted undirected graph G = (V, E,
W), where V is a set of vertices {1, 2, . . .,  n}, represents image pixels
with intensities {I1, . . .,  In}, E is a set of edges {eij} connecting two
neighboring pixels Ii and Ij, W is a weighted adjacency matrix of
input image, whose elements {wij} are assigned to each edge eij.
In this work, we  use the typical Gaussian weighting function to
calculate the weight given by
ng with generalized random walks: Algorithm and applications,
.003

pixel node position can walk to its surrounding pixel node position through the edge,
in the long term walking process, he will wander among the pixels nodes before
reaching terminal nodes. By calculating the probability walkers will first arrive ter-
minal node W before B, we get our image smoothing result. Section 3 gives detailed
instructions.

dx.doi.org/10.1016/j.asoc.2016.01.003


ARTICLE ING Model
ASOC 3406 1–13

Z. Wang, H. Wang / Applied Soft Co

Fig. 2. Weight assignment. Take central blue pixel as an example. First, it has four
edges connecting itself with its four neighboring pixels, the weight is calculated
using Eq. (1); second, it has two edges connecting itself with terminal node W and
B
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,  the weight is defined as Eq. (3). Note that the main difference between our method
ith traditional random walks algorithm is the existence of edges between terminal
odes and pixel nodes, which adapts traditional random walks to more applications.

egree di of vertex i is defined as the sum of the weights of the
dges, that connect i with its neighboring pixel node,

i =
∑
eij ∈ E

wij. (2)

By inspecting edge weights of traditional graph model, it can be
gured out that the model only contains intensity gradient infor-
ation, while intensity information is ignored. In our proposed
odel, two auxiliary nodes are added and connected to pixel nodes,

y properly setting the weights of the edges connecting terminal
odes to pixel nodes, we can map  the intensity information to the
raph model.

Fig. 1 shows the traditional graph model and the proposed
odel, terminal nodes W and B are added. Each pixel nodes is

onnected with terminal nodes, with weights

iW = �Iidi, wiB = �(1 − Ii)di (3)

ssigning to edges connecting image pixel node i to W and B, respec-
ively. Fig. 2 shows weight assignment of the blue node, it has four
dges connected to its four neighbors, which is assigned with wi1,
i2, wi3 and wi4, the weight is calculated using above mentioned
aussian weighting function equation (1), it is proportional to the
robability that a random walker may  cross the edge. Besides, it
as two edges connected to terminal node, which is assigned with
eights wiW and wiB.

The probabilities of each edges that will be crossed by a random
alker are directly proportional to the weights assigned to them.

o at each step, random walker has a probability pn to go to his
eighbouring node, and pt to go to terminal nodes, where pt + pn = 1.

pn =
∑4

i=1wni∑4
i=1wni + �Idn + �(1 − I)dn

= dn

(1 + �)dn

1

(4)
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

=
1 + �

t = 1 − pn = �

1 + �
(5)
 PRESS
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So we can imagine that if � is infinite, then Pn will be zero, ran-
dom walker starting from each pixel position has two  ways to go,
he can either go the way  to W or B. As weight of one edge con-
nected to terminal node W is �Iidi, and the other edges connected
to terminal node B have a weight �(1 − Ii)di, so the probability that
a random walker first reach terminal node W will be Ii, which is the
same as its starting pixel intensity. This leads to an unsmoothed
result.

However, if � is not infinite, then the random walker starting
from each pixel position has six paths to go, he can go the direction
of terminal node W and B with probability Pt, or he can go to his
neighboring pixels with probability Pn. It means in this situation,
a random walker has a big probability to take more steps at wan-
dering around his starting points before he reaches either terminal
nodes. When goes to his neighbors, he has a different probability
to first reach terminal node W.  This means the probability that he
first reaches terminal node W can be affected by his neighboring
pixels. So in this situation we can obtain a smoothed result. As ran-
dom walker always tends to go to his neighboring node which has
a similar pixel intensity to his starting pixel, so our method has an
edge preserving property.

Next, we will give a mathematical solution to the probability
and a more detail theoretical analysis of the process.

3.2. Implementation

In a similar logic as traditional random walks algorithm, we
consider W and B as two marked pixels, it is desired to find the prob-
ability that random walk starting from each pixel position reaches
terminal node W before B. One possible solution is that we can start
many random walkers at each pixel position and find the average
number. This method is known as a Monte Carlo method [31]. It is
a colorful way  to solve the problem, but quite inefficient [32]. It is
difficult to directly implement the idea, as the computation will be
too expensive to afford. Luckily the combinatorial Dirichlet prob-
lem has the same solution as the desired random walker probability
[33], so the probability can be efficiently solved by minimizing the
combinatorial Dirichlet integral.

In this section, a combinatorial formulation of the Dirichlet inte-
gral is given, and steps of minimize the integral are reviewed and
our method is deduced.

First, some used matrices are defined. The weighted adjacency
matrix of the graph model is defined by:

(6)

where wiW = �Iidi, wiB = �(1 − Ii)di. Define Dsmooth as diagonal
matrix with degree of each node along the diagonal.
ng with generalized random walks: Algorithm and applications,
003

(7) 250

dx.doi.org/10.1016/j.asoc.2016.01.003
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So the combinatorial Laplacian matrix [34,35] of the proposed
raph model can be described as

(8)

here D is a diagonal matrix with pixel node degree {di, . . .,
n}along the diagonal, and W is a weighted adjacency matrix of
nput image. The element wij of W is edge weight of pixel grid, it is
alculated using Gaussian function as defined above, and

 =
[

−w1W · · · −wnW

−w1B · · · −wnB

]
. (9)

Then, a combinatorial formulation of Dirichlet integral can be
ormulated as:

RW = 1
2

gT Lsmoothg. (10)

Last, above energy functional is minimized, Eq. (10) can be
ecomposed into block form for analysis:

(11)

here const means a constant number which is independent of f,
ter and f represent intensities of two terminal nodes and n image
ixels. fter is the intensities of two terminal nodes, which is 1 and 0
espectively. It is the initial state. So ERW can be further simplified
s

ERW = f T

⎡
⎢⎢⎢⎣

−w1W

...

−wnW

−w1B

...

−wnB

⎤
⎥⎥⎥⎦

[
1

0

]
+1

2
f T ((1+�)D − W)f  +const

= f T

⎡
⎢⎢⎢⎣

−w1W

...

⎤
⎥⎥⎥⎦ + 1

2
f T ((1 + �)D − W)f  + const
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

−wnW

= −�f T DI + 1
2

f T ((1 + �)D − W)f + const

(12)
 PRESS
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where f is the smoothed pixel intensity. In fact, f is the only critical
point that minimizes the ERW, so it can be obtained by differentiat-
ing ERW to f and the final question goes to solve the equation:

−�DI + ((1 + �)D − W)f = 0. (13)

3.3. Computation complexity analysis

Eq. (14) can be solved using matrix inversion in principle by
solving following equation,

f = �[(1 + �)E − D−1W]
−1

I (14)

However, it costs O(n3) operations, where n is the number of
pixels. And applying the inverse matrix requires O(n2) operations
[7]. Solving the sparse linear equation system equation (15) is more
computational efficient. Above equations is a system of linear equa-
tions with n unknowns.
1
�

[(1 + �)E − D−1W]f = I (15)

The resulting linear system is a form of Ax = b, and the above
equation is nonsingular [36]. It is easy to be solved using mod-
ern numerical linear algebra. The basic steps of our algorithm are
summarized in Algorithm 1.

Algorithm 1. Basic steps of the proposed smoothing algorithm
1: Input I, ˇ, �.
2: Calculate weights wij of each edges according to Eq. (1).
3:  Construct the weighted adjacency matrix W of input image I.
4:  Construct the diagonal matrix D with degree of each node along the diagonal.
5:  Solve Eq. (13).
6: Output smoothed image f.

Besides, to some extents, we  have to say that the solution of
above equations for image smoothing sometimes is predictable.
As the smoothed image is always near the initial image, especially
when the smoothing scale is small. So this equation is suggested
to be solved by iterative solvers. These solvers have the advan-
tage of a small memory requirement and the ability to represent
the matrix vector multiplication as a function. When we  set the
image to be smoothed as the initial value, the computation speed
can be further improved. Many good methods exist on the solu-
tion to large, sparse, symmetric, linear systems of equations. An
appropriate preconditioner or a multi-grid solver requires only O(n)
operations.

Random walk problem has a close connection with electrical cir-
cuits [32,37]. Specifically, in our proposed model. If we replace edge
weight of the proposed model with the same value conductor, and
add a voltage source between terminal nodes, the voltage of each
pixel position will be the same as our smoothing pixel intensity.
Fig. 3 shows the corresponding relationship. The direct correspon-
dence between our proposed method and analog electric circuits
make a hardware (e.g., VLSI) implementation possible [3].

3.4. Parameter setting

In this part, we briefly discuss parameter setting in our model.
As pointed out in Eq. (15), our smoothing result can be expressed
as applying the operator �[(1 + �)E − D−1W]−1 to the input image
vector. Each row of the operator matrix may  be thought as a kernel
that determines the weight value of the corresponding pixel, out-
put smoothing result can be thought as a weighted combination
of other pixels in the input image. Fig. 6 gives weight distribution
of our smoothing method. Reasonable parameter setting is vital
important for the method working at its best situation.
ng with generalized random walks: Algorithm and applications,
.003

First, we would like to talk about the 4 neighbors system of
our model. A pixel node is connected to his four neighbors, in our
experiments, it is computational efficiency and the results are sat-
isfactory. Of course, we  can apply 8 neighbors or more neighbors

324

325
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Fig. 3. Model used in the paper (2 × 2 image) and its corresponding electric circuits.
Resistors represent the inverse of the corresponding edge weights. Fix the potential
of terminal node W to unity (1 V) and set to zero (ground) the remaining terminal
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ode B. the electric potentials calculated represent the probability that a random
alker starting from each pixel node first reaches terminal node W.

ystem, but computational burden increases much while the results
o not improve that much. All the experimental results in this paper
re acquired using 4 neighbors system [14].

In this paper, we use a typical Gaussian function for edge weight
alculation. However, it is more appropriate to modify the function
o texture information, filter coefficients of other image features
hen applying our methods to other specific problems [3]. Fig. 4

hows the plot of Gaussian function with different ˇ. When  ̌ is
mall, for example 0.1, edge weights connecting to four neighbors
ave a similar value, which can be seen from Fig. 4, all the weights
f edges are between 0.9 and 1, the intensity differences between
eighboring pixels are ignored. The walker has almost the same
robability to go to his four neighbors. In this situation, our method
erforms similar to a Gaussian filter. Fig. 5 shows the situation,
hen � takes different values, our method acts like a Gaussian fil-

er with different radius. With the increasement of ˇ, our method
radually performs as an edge preserving filter. When  ̌ is appro-
riately big, the random walker will avoid crossing sharp intensity
radients. This makes our algorithm have a strong ability to pre-
erve salient edges. Fig. 6 shows the situation. Smoothing kernel
s calculated for each labeled pixel position. When  ̌ equals 0.1,
t is similar to a Gaussian filter; When  ̌ equals 100, our smooth-
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

ng method is edge aware; When  ̌ equals 50, it has a combined
ffects of 0.1 and 100. Fig. 7 shows a more detailed effect of varying
arameters.

ig. 5. Gaussian filter effect. Set  ̌ = 0.1, the left free parameter � in weighting function co
sing  Gaussian weighting function are basically equal. Random walkers walk on such a gra
roperty.
Fig. 4. Gaussian weighting function Eq. (1) with different ˇ.

Let us consider a situation, if terminal node in our graph model
is a kind of special node, whenever a random walker reaches it,
the walker would be absorbed, he never walks again. For a walker
walks on such a graph model, when he first reaches terminal nodes,
he is absorbed. So the probability the walker first reaches W is the
same as the probability the walker is absorbed by W,  they share the
same solution.

In our model, the walker has a solid possibility to be absorbed
by terminal node in each step, and the probability is pt = �/(1 + �)
as computed in Eq. (5). So no matter where random walker starting
from, the mean step number he will take before he is absorbed by
terminal node is determined by �. When � is big enough, there
is almost no smoothing effect. As random walker tends to directly
go the way of terminal node direction. He is absorbed at the very
first step. When � decreases, the random walker starting from each
pixel position tends to wander in a larger radius, random walker can
take more steps before he is absorbed, the smoothing scale gradu-
ally improves. When � tends to zero, the random walker starting
from each pixel position tends to wander in the whole image lattice
before he is absorbed, finally the probability that the walker first
reaches terminal node W will no longer depend on his starting pixel
position, it is a weighted result of all image pixels, the smoothing
output will be a constant image.

4. Algorithm analysis
ng with generalized random walks: Algorithm and applications,
003

In this section, different properties of our algorithm are ana-
lyzed. This part will begin with establishing relationships with
anisotropic diffusion [6] and discusses the relationship of our graph

ntrols smoothing scale. In this situation, when  ̌ is small, all edge weights calculate
ph have no biased direction, in which case, proposed method has no edge preserving
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Fig. 6. Smoothing kernel of the proposed method with different ˇ.  ̌ = 0.1, 50, 100 are computed for the labeled pixel in the Parrot image. � = 1E−3. When  ̌ equals 0.1, it
is  similar to a Gaussian filter; when  ̌ equals 100, the random walker will avoid to cross sharp intensity gradients, it has a strong ability to preserve salient edges; When ˇ
equals  50, it has a combined effects of  ̌ = 0.1 and  ̌ = 100.
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Fig. 7. Effect of varying parameters. � controls the e

moothing algorithm to generalized random walk with restart
GRWR) and WLS  [4,7].

.1. Relationship to anisotropic diffusion

In fact, solving a system of equation (14) using Jacobi iteration
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

an be thought as a kind of anisotropic diffusion.

(k + 1) = 1
1 + �

D−1WI(k) + �

1 + �
I(0), (16)
 of smoothing;  ̌ controls edge preserving property.

where I(0) is the initial state of iteration process (i.e. input image).
An iterative solver of the proposed algorithm can be summarized
as Algorithm 2. For each pixel

In(k + 1) = 1
1 + �

4∑
i=1

wni

dn
Ini(k) + �

1 + �
In(0)

1
4∑ �

(17)
ng with generalized random walks: Algorithm and applications,
.003

=
1 + �

i=1

pniIni(k) +
1 + �

In(0)

where Ini(k) is the ith neighboring pixel of In(k). While anisotropic
diffusion can be discretized in a similar way:

390
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Second, from the random walk view of our proposed random
walk framework, WLS  can be seen as calculating the probability
of random walker starting from each pixel on a structure shown in
Fig. 8(b). Where wnW = �In, wnB = �(1 − In), which means the weight
of edge connecting pixel node n with terminal node is changed.

We can validate our thoughts by calculating the probability that
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In(k + 1) = In(k) + �

4∑
i=1

{wni[Ini(k) − In(k)]}

= In(k) − �

4∑
i=1

[wniIn(k)] + �dn

4∑
i=1

[
wni

dn
Ini(k)

]

= (1 − �dn)In(k) + �dn

4∑
i=1

[
wni

dn
Ini(k)

]

= (1 − �dn)In(k) + �dn

4∑
i=1

[pniIni(k)]

(18)

Note that, both of above methods find their smoothing result in
n iterative way, but there are some minor differences. First, our
ethod obtains pixel information from the initial image in each

teration. Second, our method converges to a pre-defined solution,
ather than to a constant image.

lgorithm 2. An iterative solver of the proposed algorithm
: Input I, ˇ, �.
: Calculate weights wij of each edges according to Eq. (1).
: Calculate degree of each node.
: Do

In(k + 1) = In(0) + 1
(1+�)dn

4∑
i=1

wni(Ini(k) − In(0))

(similar as anisotropic diffusion)
R:

I(k + 1) = 1
1+� PI(k) + �

1+� I(0)
(similar as RWR)

Until I(k) converges.
:  Output smoothed image I(k).

.2. Relationship to random walk with restart (RWR)

The solution to our optimization problem can be viewed as
 solution to the combinatorial Laplace equation (with Dirichlet
oundary conditions), it must satisfy two properties: (1) 0 ≤ Fn ≤ 1,

 n (maximum/minimum principle) where n is pixel index. (2) The
robability of each node assumes the weighted average of its neigh-
oring nodes (the mean-value theorem)[3].

n = 1

(1 + �)
∑4

i=1wni

4∑
i=1

wnifni + �In
∑4

i=1wni

(1 + �)
∑4

i=1wni

× 1 + �(1 − In)
∑4

i=1wni

(1 + �)
∑4

i=1wni

× 0 (19)

It is written in a matrix form

 = 1
1 + �

Pf + �

1 + �
I, (20)

here P = D−1W,  I is the input image, f is the smoothed output
mage. An iterative solver of the proposed algorithm similar as RWR
an be summarized as Algorithm 2.

Note that above equation has a strong connection with ran-
om walk with restart. Random walk with restart (RWR) is used to
evelop a general method that can spot correlations across media
38]. After that, it has also been applied to interactive image seg-

entation, colorization [39,40]. The difference between RWR  and
W is that, the random walker iteratively transmits to its neighbor-
ood with the probability that is proportional to the edge weight
etween them in RW model, while the random walker has an addi-
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

ional restarting probability in RWR  model [39].
Ham et al. [4] proposed generalized random walk with restart

GRWR) for depth up-sampling and interactive segmentation. Their
roposed energy functional unifying the RW and RWR  models is
 PRESS
mputing xxx (2016) xxx–xxx 7

quite similar to us. Steady state solution via Gaussian-Jacobi itera-
tion of GRWR can be formulated as follows:

f (k + 1) = (1 − c)Pf (k) + cI. (21)

where f(k) and f(k + 1) are the steady state probability of k and
k + 1 iteration, I is the initial state. Liu et al. [5] proposed a similar
equation for image denoising from a perspective of regularization
functions. All of our solution is exactly the same, but our starting
point and application area is quite different.

4.3. Relationship to WLS

WLS  achieves the goal of edge preserving smoothing through a
compromise between data term (minimize the distance between
input and output images) and regularization term (smoothing out-
put in a spatially varying manner) [7]. Our method can also be seen
as working in a similar way from the perspective of energy func-
tional. There is a little difference, WLS  regularizes the difference of
input and output images as a whole, while our method regularizes
the difference between each individual pixels. Next we  will talk
about details below.

First, WLS  can be seen as seeking an f that minimize the following
energy functional:

EWLS = (f − I)T (f − I) + �f T Lf

= (f T f − 2IT f ) + �f T Lf + const
(22)

where f and I denote smoothed image and original image, and �
is a free parameter. From the last equality of Eq. (12), our pro-
posed method can be considered as seeking an f that minimize the
following energy functional:

ERW = −�f T DI + 1
2

f T ((1 + �)D − W)f  + const

= 1
2

f T Lf +
(

�

2
f T Df − �f T DI

)
+ const

(23)

Our method is closely connected with WLS, WLS  was  considered
as a tradeoff between data term (fTf − 2ITf) and regularization term
(fTLf). Our method has the same regularization term (fTLf)  with WLS,
while our method has a regularization term (fTDf − 2ITDf)  taking the
degree of each pixel node into consideration.

Furthermore, we  explore the following energy functional to
make our idea more clear.

ERW = (f − I)T D(f − I) + �f T Lf

= (f T Df − 2IT Df ) + �f T Lf + const
(24)

As it turned out, it has the same data term and regularization
term with our method, minimizing Eq. (24) will have the same
effect as our algorithm. The only difference between Eq. (24) and
Eq. (22) is that Eq. (24) takes each pixel into consideration.
ng with generalized random walks: Algorithm and applications,
003

random walker starting from each pixel node position will first
reach terminal node W on graph model Fig. 8(b). Similar to Eq. (12),
in this situation, the probability can be calculated by minimizing
following energy functional.
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Fig. 8. Difference among our model, WLS  [7] and a more generalized model. Take
central blue pixel as an example to show graph weight assignment. WLS  and some
more generalized equation can be formulated as random walker walks on graph
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odel (b) and (c), respectively. The difference between all these models is the
eights assigned to edges connecting pixel nodes and terminal nodes. It gives a

andom walks view of these algorithms and applications.

EWLS = f T

⎡
⎢⎢⎢⎣

−w1W

...

−wnW

−w1B

...

−wnB

⎤
⎥⎥⎥⎦

[
1

0

]
+ 1

2
f T (L + �E)f + const

= f T

⎡
⎢⎣

−�I1

...

−�In

⎤
⎥⎦ + 1

2
f T (L + �E)f + const

=
(

−�f T I + �

2
f T f

)
+ 1

2
f T Lf + const

(25)

Above equation has the same data term and regularization term
s original energy functional equation (22), which means that the
olution to the WLS  optimization problem shares the same result as
he proposed random walk problem on the graph model Fig. 8(b).

.4. Relationship to a more generalized model

If we replace D of Eq. (24) with a more general diagonal matrix
 which is encoded with the weights of other constraints. Let us

ssume � is a diagonal matrix, with element {�1, �2, . . .,  �n} along
he diagonal.

Egeneralized = (f − I)T �(f  − I) + f T Lf

= (f T �f  − 2IT �f  ) + f T Lf + const
(26)

The energy functional can be found in guided image smoothing,
uper resolution, image matting, image dehazing and many other
pplications [17,42–44]. Next we will calculate the probability that
andom walker first reaches terminal node W on a graph model as
hown in Fig. 8(c).

Egeneralized = f T

⎡
⎢⎢⎢⎣

−w1W

...

−wnW

−w1B

...

−wnB

⎤
⎥⎥⎥⎦

[
1

0

]
+1

2
f T (�+L)f +const

= f T

⎡
⎢⎣

−w1W

...

−wnW

⎤
⎥⎦ + 1

2
f T (� + L)f + const

1

(27)
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

= −f T �I  +
2

f T (� + L)f + const

=
(

1
2

f T �f  − IT �f
)

+ 1
2

f T Lf + const
 PRESS
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The result shows that when we calculate the probability of ran-
dom walk problem on the graph model Fig. 8(c), we are actually
minimizing Eq. (26). These applications are highly related to our
proposed framework. It opens the possibility for a hardware (e.g.
VLSI) implementation of all these applications.

5. Applications and results

To validate our algorithm, we have tested our method on
hundreds of related images, from most-used images in the area
to all kinds of image libraries. Most of our experiments are con-
ducted on Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500). The dataset consists of 500 different natural images.
However, we would like to stress that next experiments do not aim
to give state-of-the-art results, and instead concentrate on demon-
strating how the proposed algorithm can be harnessed directly to
a variety of applications.

As edge preserving image smoothing is one of the most funda-
mental work in image processing area, it finds lots of interesting
applications in the field of computer vision. For some problems,
such as image enhancement, edge detection, image denoising
and HDR tone mapping, our method helps to make a satisfactory
result. We show in this section how flattening, edge detection and
other applications can be effectively addressed using the proposed
method. Different tasks are characterized by small variations in
term of task complexity. We  briefly describe these tools and show
some results in this section.

5.1. Flattening

5.1.1. Skin smoothing
For skin smoothing, it is desired to smooth out freckles

while important contours are preserved. Skin smoothing is an
application which requires the algorithm should be able to gen-
erate a high precise result. We  applied our smoothing method
to smooth skin texture and compared with four other algo-
rithms.

Fig. 9 shows our result. Some image smoothing works in some
particular situation, for example, local extreme due to its number 

of smoothing scale is limited, so it can hardly have a good result
in such situation. Over-sharpening often happens in L0 algorithm
when remove details. Our smoothing method together with WLS
and guided filter are suitable for this application, above algorithm
analysis has shown that our method has a similar principle foun-
dation. Experimental results show that our method gives the lady
a beautiful face. Notice how fine details in the lady’s face are pre-
served (e.g., the pupil, the hair), while the skin texture is effectively
smoothed.

5.1.2. Compression artifacts removal
Image compressed at low bit rates using current popular image

standard will bring the annoying visual artifact. As the compression
artifacts are always near the edges, they are strongly correlated
with edges, general denoising approaches are not suitable in this
application. Our method is compared with L0 regularization, which
defeats many state-of-art algorithms in PSNR and SSIM comparison
[15].

Fig. 10 shows our result. As we have seen, L0 regularization can
remove most artifacts of (a) as shown in (b), it achieves quite good
ng with generalized random walks: Algorithm and applications,
.003

result. However, when take a careful look at the close-up images,
there still exist some annoying artifacts. (c) Gives our result, our
method creates a cleaner contour line and gives a cleaner recon-
struction.
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Fig. 9. Skin smoothing. (a) Input image. (b) Guided filter [17]. (c) The L0 regularized method [15]. (d) Local extreme [16]. (e) WLS  [7]. (f) The proposed RW method. We adjust
parameters of each algorithm to present the best result of each algorithm. (f) The result of our proposed RW method, the skin texture is effectively smoothed, while pupil
and  hair are preserved.
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ig. 10. Clip-art JPEG compression artifact remove result. (a) Input image. (b) The
mages in 1st row. The artifact remove effect of (b) is quite similar to the one in (c)
ther  parts, such as the artifacts near important contours.
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

.1.3. Edge detection
Our method is able to suppress low-amplitude details, while

reserving salient edges. In the example shown in Fig. 11(a), the
op image has many waves, and the bottom one has many hairline
gularized method [15]. (c) Proposed RW.  The last three rows are the close-ups of
ced by our proposed algorithm on parts of the image but much less noticeable on
ng with generalized random walks: Algorithm and applications,
003

cracks, directly applying the Canny edge detector to the original
image produces a problematic result as shown in Fig. 11(b). Many
unwanted detail edges appear in the final result which greatly
affects visual pleasure. Our smoothing method can remove tiny
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ig. 11. Smoothing for edge detection. (b) Results by directly applying the Canny ed
y  the same edge detector.

etails of the original image as shown in (c) which gives people
 visual esthetic feeling. The edges in (d) computed by the same
dge detector are much better.

.2. Image decomposition

Image is often decomposed into a piecewise smooth base layer
nd one or more detail layers in computational photography [7]. For
xample, detail enhancement can be done by combining together
oosted base layer and base layer [45]; combining a compressed
ase layer and the detail layer can be used for HDR tone mapping;

mage stylization discards details layer while the base layer is fur-
her processed to achieve a stylized look [46]. Our method may
e also used in place of the BLF, WLS, L0 regularization and other
moothing methods based decomposition applications.

.2.1. Detail enhancement
Given the input image, using our decomposition method, we

ompute the detail magnification results by only magnify the detail
ayer. Fig. 12 shows the magnification results of L0 regularization,
ocal extreme [16] and our method. (a) A widely used flower image
or image enhancement, (b)–(d) show similar results of the three

ethods. Fig. 13 gives a comparison with a close examination. As
hown in (b)–(c), results obtained from L0 regularization and local
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

xtreme may  suffer from artifacts along some of the edges. In con-
rast, edges in our result appear much better.

As our edge preserving smoothing method is able to smooth
he image at arbitrary scales, it can create multi-scale smoothing

Fig. 12. Detail exaggeration using our tool. The detail enhanced results (3×). Param
tector; (c) the smoothed image using the proposed method; (d) the edge computed

results, so an image can also be decomposed into several layers and
then manipulate image information on multiple layer similar as [7].

5.2.2. Stylization
Stylization aims to produce digital imagery with a wide vari-

ety of effects not focused on photorealism [47]. In this application,
the base layer is further processed to achieve a stylized abstract
look. We  adopt the framework of Ref. [46]. The framework is pro-
posed for stylization for efficient visual communication. The basic
workflow of the framework, readers can refer to their paper. Our
smoothing method is perfect for this application. Fig. 14 illustrates
an example of our smoothing result and bilateral filtering [48] to
produce abstracted results.

5.2.3. HDR tone mapping
HDR tone mapping is another popular application. There exist

many different tone mapping methods [49–52]. Most of the recent
operators are capable of effectively mapping HDR radiance maps
into a displayable low dynamic range image. Our method avoids
haloing and other artifacts that may  happen in other methods.
According to the standard tone mapping strategy of compressing
base layer while preserving the detail layer proposed by Durand
and Dorsey [53], edge preserving image smoothing method is used
to decompose an image into base layer and detail layer. We  use our
RW based smoothing framework to replace the bilateral filter in
ng with generalized random walks: Algorithm and applications,
.003

their original work. Farbman et al.’s implementation is used in our
experiments [41].

Fig. 15 compares the result of a tone mapping operator imple-
mented using our RW based method and other popular methods.

eters: L0 (� = 3E−2), local extreme (17), and proposed RW (� = 0.005,  ̌ = 9).
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Fig. 13. Detail enhancement. L0 and local extreme based detail layer results in halos (b) and artifacts (c) along the high-contrast edges, while our proposed RW (d) suffers
from  no this problem.

mage. (b) Results of BLF [48]. (c) Proposed RW.
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Table 1
Comparison with different algorithms (image size: 200 × 300, time unit: second).

Test images L0 WLS  Proposed RW Local extrema

Tulips 0.29 0.43 0.44 29.63
Rock 0.29 0.43 0.44 29.67
Flower 0.29 0.43 0.44 29.14
Statue 0.29 0.43 0.44 29.59

Table 2
Runtime of Tulips under different image resolution (time unit: second).

Image size L0 WLS  Proposed RW Local extrema

100 × 150 0.13 0.10 0.10 7.37
200  × 300 0.29 0.43 0.44 29.63
400 × 600 1.49 2.05 2.21 120.89
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Fig. 14. Abstraction examples. (a) Input i

ur results show that the proposed method is able to generate a
ompetitive tone mapping result.

.3. Test for computation complexity

In Section 3, we analyze the time complexity of the algorithm
heoretically. The runtime of different methods is tested in this
ection. The methods for comparison consist of L0 method, WLS
ethod, the proposed RW method, and local extrema method. All

he algorithms run on the same platform (CPU: Intel i5-3470, Mem-
ry: 10 GB, and Software: Windows 10 + Matlab2015a). Images in
ig. 16 are employed to test the runtime of algorithm.

The experimental results of image smoothing are listed in Tables
 and 2. From the Table 1, we can see that although test image
ith the same size (200 × 300) have different textures, the run-

ime of each method keeps almost unchanged. It is thus clear that
mage content is not the major factor that affects the running time
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

f algorithms.
If its size (image resolution) is changed for the same image,

he runtime of each method will change accordingly. For example,
able 2 shows the runtime of Tulips image under different image
ng with generalized random walks: Algorithm and applications,
003

800 × 1200 6.53 10.26 10.50 508.47

dx.doi.org/10.1016/j.asoc.2016.01.003
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Fig. 15. Comparison with other methods. (a) Ward Larson et al. [5
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Fig. 16. Images for run-time test.

esolution. Obviously, this is the main factor slowing down the algo-
ithm running because large image (high resolution) usually has
ore data, which will cost more time.
For the speed of algorithms in Table 2, L0 method is the fastest,

nd local extrema method is the slowest. WLS  and the proposed RW
ave almost equivalent speed, accurately speaking, WLS  is slightly

aster than the proposed RW.  Most of the time (about 70%) of the
roposed algorithm are spent in the process of solving the equa-
ion system. In fact, image smoothing does not require a precision
esult of the equation system. A faster speed can be obtained using
terative solver. This is our future work.

. Conclusion

In this work, we proposed a novel algorithm for edge preserving
mage smoothing. Unlike previous methods, our method has a
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01

lear physical meaning, which turned image smoothing to a
andom walk problem. A generalized random walks framework
as proposed to solve the image smoothing problem in this paper,
hich provides a new perspective for the problem. Furthermore,
4]. (b) BLF [53]. (c) LCIS [49]. (d) Reinhard [51]. (e) WLS  [7].

the proposed framework has many equivalences with electric
circuits, and some image processing techniques are showed to
be highly related to our method, which opens the possibility
for a hardware (e.g., VLSI) implementation of these algorithms.
Finally, comparison with some other techniques, experiments
demonstrate that our algorithm generates high quality results at
low computational cost and does not suffer from some drawbacks
of other previous approaches. Our future work will improve the
speed of our method further and apply it into more applications.

Uncited references 

[18,21,28].

Acknowledgments

Authors would like to thank L. Grady and Z. Farbman et al. for
providing the source code of their algorithms. The authors would
also like to thank the reviewers for their valuable comments. This
work was jointly supported by National Natural Science Foundation 

of China (Grant No. 61201421), China Postdoctoral Science Founda-
tion (Grant No. 2013M532097), and Fundamental Research Funds
for the Central Universities (lzujbky-2014-52).

References 

[1] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph
cuts, IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239, http://dx.doi.
ng with generalized random walks: Algorithm and applications,
.003

[2] L. Grady, G. Funka-Lea, Multi-label image segmentation for medical applica-
tions based on graph-theoretic electrical potentials, in: Computer Vision and
Mathematical Methods in Medical and Biomedical Image Analysis, 2004, pp.
230–245, http://dx.doi.org/10.1007/978-3-540-27816-0 20.

668

669

670

671

dx.doi.org/10.1016/j.asoc.2016.01.003
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1109/34.969114
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20
dx.doi.org/10.1007/978-3-540-27816-0_20


 ING Model
A

oft Co

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807
ARTICLESOC 3406 1–13

Z. Wang, H. Wang / Applied S

[3] L. Grady, Random walks for image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell. 28 (2006) 1768–1783, http://dx.doi.org/10.1109/TPAMI.2006.233.

[4]  B. Ham, D. Min, K. Sohn, A generalized random walk with restart and its
application in depth up-sampling and interactive segmentation, IEEE Trans.
Image Process. 22 (2013) 2574–2588, http://dx.doi.org/10.1109/TIP.2013.
2253479.

[5] G. Liu, X. Zeng, Y. Liu, Image denoising by random walk with restart Kernel and
non-subsampled contourlet transform, IET Signal Process. 6 (2012) 148, http://
dx.doi.org/10.1049/iet-spr.2010.0265.

[6]  P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion,
IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 629–639, http://dx.doi.org/10.
1109/34.56205.

[7] Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-preserving decompositions
for multi-scale tone and detail manipulation, ACM Trans. Graph. 27 (2008) 1,
http://dx.doi.org/10.1145/1399504.1360666.

[8] M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion,
IEEE Trans. Image Process. 7 (1998) 421–432, http://dx.doi.org/10.1109/83.
661192.

[9] C. Lopez-Molina, M. Galar, H. Bustince, B. De Baets, On the impact of anisotropic
diffusion on edge detection, Pattern Recognit. 47 (2014) 270–281, http://dx.doi.
org/10.1016/j.patcog.2013.07.009.

10] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D: Nonlinear Phenom. 60 (1992) 259–268, http://dx.doi.
org/10.1016/0167-2789(92)90242-F.

11] T. Chan, S. Esedoglu, F. Park, et al., Recent developments in total variation
image restoration, in: Mathematical Models of Computer Vision, 2005, p. 17,
doi:10.1.1.101.2342.

12] M.  Elad, On the origin of the bilateral filter and ways to improve it, IEEE
Trans. Image Process. 11 (2002) 1141–1151, http://dx.doi.org/10.1109/TIP.
2002.801126.

13] S. Srisuk, Bilateral filtering as a tool for image smoothing with edge preserving
properties, in: Electrical Engineering Congress (iEECON), IEEE, 2014, pp. 1–4,
http://dx.doi.org/10.1109/iEECON.2014.6925940.

14] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, M.  Do, Fast global image smoothing based
on weighted least squares, IEEE Trans. Image Process. 7149 (2014) 1–15, http://
dx.doi.org/10.1109/TIP.2014.2366600.

15] L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L 0 gradient minimization, Proc.
2011 SIGGRAPH Asia Conf. – SA ’11 30 (2011) 1, http://dx.doi.org/10.1145/
2024156.2024208.

16] M.I.T. Csail, Edge-preserving multiscale image decomposition based on local
extrema, ACM SIGGRAPH Asia (2009) 1–9, http://dx.doi.org/10.1145/1618452.
1618493.

17] K. He, J. Sun, X. Tang, Guided image filtering, IEEE Trans. Pattern Anal. Mach.
Intell. 35 (2013) 1397–1409, http://dx.doi.org/10.1109/TPAMI.2012.213.

18]  H. Tabout, Y. Chahir, A. Souissi, A. Sbihi, Random walks based segmentation
approach for image retrieval, in: 2008 Third Int. Conf. Pervasive Comput. Appl.,
2008, pp. 593–597, http://dx.doi.org/10.1109/ICPCA.2008.4783681.

19] G.F. Lawler, V. Limic, Random Walk: A Modern Introduction, Cambridge Uni-
versity Press, 2010, http://dx.doi.org/10.1017/CBO9780511750854.

20]  S.T. Gries, Particle movement: a cognitive and functional approach, Cogn. Lin-
guist. 10 (1999), http://dx.doi.org/10.1515/cogl.1999.005.

21]  E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology, J. R. Soc.
Interface 5 (2008) 813–834, http://dx.doi.org/10.1098/rsif.2008.0014.

22] R. Ratcliff, Diffusion and random walk processes, Int. Encycl. Soc. Behav. Sci. 6
(2001) 3668–3673.

23] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M.  Verleysen, M.  Saerens, Clustering
using a random walk based distance measure, in: Proc. 13th Symp. Artif. Neural
Networks ESANN 2005, 2005, pp. 27–29, doi:10.1.1.59.9581.

24] J. Cui, H. Liu, J. He, P. Li, X. Du, P. Wang, TagClus: a random walk-based method
for tag clustering, Knowl. Inf. Syst. 27 (2011) 193–225, http://dx.doi.org/10.
1007/s10115-010-0307-y.

25] M.  Chen, J. Liu, X. Tang, Clustering via random walk hitting time on directed
graphs, in: AAAI ’08 Proceedings of the 23rd National Conference on Artificial
Intelligence, 2008, pp. 616–621.

26] H. Qui, E.R. Hancock, Clustering and embedding using commute times, IEEE
Trans. Pattern Anal. Mach. Intell. 29 (2007) 1873–1890, http://dx.doi.org/10.
Please cite this article in press as: Z. Wang, H. Wang, Image smoothi
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.

1109/TPAMI.2007.1103.
27] D. Dolgopyat, G. Keller, C. Liverani, Random walk in Markovian environment,

Ann.  Probab. 36 (2008) 1676–1710, http://dx.doi.org/10.1214/07-AOP369.
28] D. Jin, B. Yang, C. Baquero, D. Liu, D. He, J. Liu, A Markov random walk under

constraint for discovering overlapping communities in complex networks, J.

[

 PRESS
mputing xxx (2016) xxx–xxx 13

Stat. Mech. Theory Exp. (2011) P05031, http://dx.doi.org/10.1088/1742-5468/
2011/05/P05031.

29] L. Grady, T. Schiwietz, S. Aharon, Random walks for interactive alpha matting,
in: VIIP 2005, 2005, doi:10.1.1.220.8725.

30] Z. Ji, Y. Su, Y. Pang, X. Qu, Diversifying the image relevance reranking with
absorbing random walks, in: 2011 Sixth Int. Conf. Image Graph., 2011, pp.
981–986, http://dx.doi.org/10.1109/ICIG.2011.113.

31] J.G. Amar, The Monte Carlo method in science and engineering, Comput. Sci.
Eng. 8 (2006), http://dx.doi.org/10.1109/MCSE.2006.34.

32] P.G. Doyle, J.L. Snell, Random Walks and Electric Networks, 2006,
doi:10.1.1.169.8044.

33] F. Harary, Graphs and matrices, SIAM Rev. 9 (1967) 83–90, http://dx.doi.org/
10.1137/1009003.

34] J. Dodziuk, Difference equations, isoperimetric inequality and transience of cer-
tain random walks, Trans. Am. Math. Soc. 284 (1984) 787, http://dx.doi.org/10.
2307/1999107.

35] U. Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (2007) 395–416,
http://dx.doi.org/10.1007/s11222-007-9033-z.

36] N. Biggs, Algebraic potential theory on graphs, Bull. Lond. Math. Soc. 29 (1997)
641–682, http://dx.doi.org/10.1112/S0024609397003305.

37] P. Tetali, Random walks and the effective resistance of networks, J. Theor.
Probab. 4 (1991) 101–109, http://dx.doi.org/10.1007/BF01046996.

38] J.-Y. Pan, H.-J. Yang, C. Faloutsos, P. Duygulu, Automatic multimedia cross-
modal correlation discovery, in: Proc. 2004 ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min. – KDD ’04, 2004, p. 653, http://dx.doi.org/10.1145/1014052.
1014135.

39] T. Kim, K. Lee, S. Lee, Generative image segmentation using random walks with
restart, in: Comput. Vision – ECCV 2008, 2008, pp. 264–275, http://dx.doi.org/
10.1007/978-3-540-88690-7 20.

40] T.H. Kim, K.M. Lee, S.U. Lee, Edge-preserving colorization using data-driven
random walks with restart, in: Proc. – Int. Conf. Image Process (ICIP), 2009, pp.
1661–1664, http://dx.doi.org/10.1109/ICIP. 2009.5413394.

41] http://www.cs.huji.ac.il/∼danix/epd/.
42] A. Zomet, S. Peleg, Multi-sensor super-resolution, in: Sixth IEEE Work. Appl.

Comput. Vision 2002. (WACV 2002). Proceedings, 2002, http://dx.doi.org/10.
1109/ACV.2002.1182150.

43] K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior, IEEE
Trans. Pattern Anal. Mach. Intell. 33 (2011) 2341–2353, http://dx.doi.org/10.
1109/TPAMI.2010.168.

44] A. Levin, D. Lischinski, Y. Weiss, A closed-form solution to natural image mat-
ting, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008) 228–242, http://dx.doi.
org/10.1109/TPAMI.2007.1177.

45] R. Fattal, M.  Agrawala, S. Rusinkiewicz, Multiscale shape and detail enhance-
ment from multi-light image collections, ACM Trans. Graph. 26 (2007) 51,
http://dx.doi.org/10.1145/1276377.1276441.

46] H. Winnemöller, S.C. Olsen, B. Gooch, Real-time video abstraction, ACM Trans.
Graph. 25 (2006) 1221, http://dx.doi.org/10.1145/1141911.1142018.

47] E.S.L. Gastal, M.M. Oliveira, Domain transform for edge-aware image and video
processing, ACM Trans. Graph. 30 (2011) 1, http://dx.doi.org/10.1145/2010324.
1964964.

48] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in: Sixth
Int.  Conf. Comput. Vis. (IEEE Cat. No. 98CH36271), 1998.

49] J. Tumblin, G. Turk, LCIS: a boundary hierarchy for detail-preserving contrast
reduction, in: Proceedings of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques, 1999, pp. 83–90, http://dx.doi.org/10.1145/
311535.311544.
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