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a b s t r a c t

Materials informatics is a growing field in materials science. Materials scientists have begun to use soft
computing techniques to discover novel materials. In order to apply these techniques, the descriptors
(referred to as features in computer science) of a material must be selected, thereby deciding the resulting
performance. As a way of describing a material, the properties of each element in the material are used
directly as the features of the input variable. Depending on the number of elements in the material, the
dimensionality of the input may differ. Hence, it is not possible to apply the same model to materials
with different numbers of elements for tasks such as regression or discrimination. In the present paper,
we present a novel method of uniforming the dimensionality of the input that allows regression or
discriminative tasks to be performed using soft computing techniques. The main contribution of the
proposed method is to provide a solution for uniforming the dimensionality among input vectors of
different size. The proposed method is a variant of the denoising autoencoder Vincent et al. (2008) [1]
using neural networks and gives a latent representation with uniformed dimensionality of the input. In

the experiments of the present study, we consider compounds with ionic conductivity and hydrogen
storage materials. The results of the experiments indicate that the regression tasks can be performed
using the uniformed latent data learned by the proposed method. Moreover, in the clustering task using
these latent data, we observed distance preservation in data space, which is also the case for the denoising
autoencoder. This result may enable the proposed method to be used in a broad range of applications.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

The development of materials informatics has resulted in signifi-
ant progress in the modeling and prediction of material properties,
hereby reducing the costs of real-world experiments, and is
ecoming a promising research field for soft computing (for exam-
le, [2–4]). By using soft computing techniques such as neural
etworks, evolutionary and genetic algorithms, and fuzzy mod-
ling, materials scientists can more effectively search for novel
aterials. These techniques are used alone and in combination with

uantum calculations for materials design. For example, a method
ombining density functional theory and an evolutionary algorithm
as used to predict the crystal structure of LiBeH3 (Hu et al. [5]).

By organizing the data into a material database, researchers
an determine the relationships between material properties (for
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

xample, conductivity, the critical temperature of superconductors,
nd melting temperature) and the properties (for example, atomic
umber, atomic mass, and electron negativity) of the elements

E-mail address: oono-h@mosk.tytlabs.co.jp

ttp://dx.doi.org/10.1016/j.asoc.2016.04.017
568-4946/© 2016 Elsevier B.V. All rights reserved.

54

55
in the material. The properties of elements or their combinations
are referred to as descriptors (or “features” in computer science).
Once the relevant features are obtained, the predictions of proper-
ties and the modeling of materials becomes easier. The literature
[6] describes five descriptor categories: constitutional, topological,
physicochemical, structural, and quantum-chemical. For instance,
Seko et al. [7] adopted the sum and product of the element proper-
ties, such as atomic number, atomic mass, and number of valence
electrons as features involved in the prediction of the melting tem-
perature of single and binary compounds. These are constitutional
descriptors. In addition, the use of sum and product operations is
based on the domain knowledge of the compounds, and is also
found in [8].

From the viewpoint of domain knowledge, we introduce two
categories of materials feature representation: expert and naive.
Expert representation is preferable for a material property that has
a well-known mechanism or theoretical model. As such, many fea-
lity of data with neural networks for materials informatics, Appl.

tures (descriptors) based on the underlying theory would be expert
representations (for example, Table 1 in [3]). In naive representa-
tion, we generate features based on the properties of elements in a
compound, which are represented by a vector that consists of the

56

57

58

59

dx.doi.org/10.1016/j.asoc.2016.04.017
dx.doi.org/10.1016/j.asoc.2016.04.017
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:oono-h@mosk.tytlabs.co.jp
dx.doi.org/10.1016/j.asoc.2016.04.017


 ING Model
A

2 omput

p
i
s
a
t
l
d
w
d
T
i
d

t
r
a
p
K
k
h
b
d
t
t
o
n
t
d
e
i
d
l

B
c
A
i
s
n
t
p
c
i
l
(

v
c
i
s
r
a
d

t
k
m
b
t
u
r
t
m
a
t
t

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156
157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178
179

180
ARTICLESOC 3554 1–9

 H. Ohno / Applied Soft C

roperties of elements. The advantage of the naive representation
s that it is applicable to material properties with poorly under-
tood mechanisms or theoretical models. In addition, it is simple
nd easy to interpret. As such, we herein adopt the naive represen-
ation. While the naive representation has good characteristics, the
ength of the vectors (namely, the dimensionality of the data) differs
epending on the number of elements in the compound. Therefore,
e cannot, for example, use the same model for compounds with
ifferent numbers of elements in modeling and prediction tasks.
hus, we propose a method of uniforming the dimensionality of
nput data that allows us to perform tasks using regression and
iscrimination methods.

Uniforming dimensionality is related to dimensionality reduc-
ion methods. Recently, a number of non-linear dimensionality
eduction methods have been proposed [9,10]. These methods
ddress the limitations of linear (traditional) methods, such as
rinciple component analysis (PCA) and multidimensional scaling.
ernel PCA [11] and the multi-layer autoencoder [12] are well-
nown examples. These linear and non-linear methods cannot,
owever, be adopted as methods of uniforming dimensionality
ecause when these methods are applied to datasets of different
imensionality, the resultant dimensionality of each dataset, even
hough they may  be the same, has a different meaning. In addition,
hese methods focus primarily on the dimensionality reduction
f data. As far as we know, there has been no previous study on
on-linear uniforming of the dimensionality of data. Therefore,
he present study may  be the first attempt to make uniform the
imensionality of data while simultaneously considering both the
xpansion and reduction of the dimensionality of data. Moreover,
f the data size is insufficient for learning, combining this data with
ata of a different dimensionality will allow the overall data to be

earned.
In the neural network literature, the training algorithms of Deep

elief Networks (Hinton et al. [13], Bengio [14]) and stacked autoen-
oders (Vincent et al. [15]) have brought about great progress.
n autoencoder consists of an encoding function, which maps the

nput data into a latent space, and a decoding function, which recon-
tructs the input data from the latent space. In the non-linear case,
eural networks are often used as the encoding and decoding func-
ions. As a regularized autoencoder, Vincent et al. [1,15,16] have
roposed the denoising autoencoder, in which the input data are
orrupted by Gaussian noise, whereas the target data used in learn-
ng are the original (clean) input data. Noisy inputs are used in a
earning neural network to enhance generalization performance
An [17]).

For uniforming the dimensionality of input data, we propose a
ariant of the denoising autoencoder, in which the input data are
orrupted, and an extended part added to make the dimensional-
ty of input uniform is also injected by Gaussian noise. In the latent
pace formed by the encoding function, we obtain a uniformed rep-
esentation with inputs of different dimensionality. Thus, we can
pply the regression or discriminative tasks to the uniformed input
ata.

In the experiment, we first compare the proposed method with
he multi-layer autoencoder, the denoising autoencoder, and the
ernel PCA for synthetic data. Next, we evaluate the proposed
ethod using compounds of four to six elements in ion-conducting

ulk materials and hydrogen storage materials composed of two
o five elements. We  then show that regression can be performed
sing the uniformed input data, as well as the robustness with
espect to data size and number of elements. Moreover, in a clus-
ering task using these data and the k-nearest neighbors (k-nn)
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

ethod, we find distance preservation, i.e., consistency of class
ssignment, in the data space, which also holds for the case using
he denoising autoencoder. We  evaluate the distance preserva-
ion using the difference in class assignments between the latent
 PRESS
ing xxx (2016) xxx–xxx

data in the latent representation and the original data in the input
space.

The remainder of the present paper is organized as follows. In
Section 2, we  present background information and define the prob-
lem formulation. In Section 3, we describe the learning algorithm
of the proposed method in detail. In Section 4, we  conduct exper-
iments involving a regression task on synthetic data and for the
modeling of ion conductivity and hydrogen storage, and, using the
uniformed input data, compare the distance preservation of the
proposed method and the denoising autoencoder. In Section 5, we
discuss the experimental results, related research, and future stud-
ies. Finally, Section 6 concludes the study.

2. Background and problem formulation

Descriptors (features) in materials sciences are crucial for com-
putational materials design. In the case of the underlying theory
and empirically known mechanism of material properties, the fea-
tures are easily identifiable. However, it is necessary to generate
the features derived from the properties of elements (for example,
electron negativity, atomic number, and atomic mass). With regard
to the representation of features, we refer to the former as an expert
representation and the latter as a naive representation. The advan-
tage of the naive representation is that it is applicable to the case
of material properties with poorly known mechanisms or theoret-
ical models. It is necessary to incorporate the (molecule or crystal)
structural features in the representation if two materials with the
same composition have different properties. In the case of isomers,
the melting temperatures of C4H6 are −125.7 ◦C for 1-butyne and
−32 ◦C for 2-butyne, respectively.

In the naive representation, for example, as the features of
compound AB, which is composed of elements A and B, the cor-
responding vector v is composed from the three properties of
elements A and B as follows:

v = (v11 v12 v21 v22 v31 v32)T = (vij), i = 1, 2, 3, j = 1, 2,

where the index i denotes the property of element, and T denotes
transpose.

Index j corresponds to atom A or B. The length of the vector
is the product of the number of elements in the compound and
the properties of the elements. Therefore, the length of the vec-
tor differs depending on the number of elements in the compound.
Thus, for compounds with different numbers of elements, we  can-
not use the input variables vector as a feature of the compound to
perform regression or discriminative tasks. Moreover, as shown in
the experiments described below, for the data on compounds hav-
ing various numbers of elements, regression cannot be conducted
because of a lack of data. The overall data need to be used for the
task. As such, when using the overall data including all number of
elements, the input variables as the features of the compounds have
to be composed for the task. Therefore, it is necessary for the length
of the vector to be made uniform. Note that the physical meaning
of the vector changes according to the element (atomic) permu-
tations in the vector. Thus, we sort the elements of the vector by
atomic number. For example, if the atomic number A (j = 1) is larger
than that of B (j = 2), then the vector v is sorted in ascending order
as follows:

(v11 v12 v21 v22 v31 v32)T → (v12 v11 v22 v21 v32 v31)T .
lity of data with neural networks for materials informatics, Appl.

The problem addressed herein is to make uniform the length
of the input variables vectors corresponding to compounds, as
described below.
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tion, which are the outputs in the second hidden layer of the
neural network, are averaged. This procedure is described in
Algorithm 2.
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efinition 1 (Uniforming the dimensionality of data). The problem
s defined as constructing x*(i) with dimension d from data x(i) with
imension di,

∗(i) ∈ R
d ← x(i) ∈ R

di , i = 1, . . .,  N,

here N is the number of data.

In order to make uniform the length of vectors, we extend the
ength of each vector to the maximum length of the vectors in the
ata. We  refer to this vector as the extended vector, which is defined
s follows:

efinition 2 (Extended vector).  x ∈ R
m is a column vector. x̂ ∈ R

n

s the extended vector corresponding to x(n > m).

ˆ
 = (xT eT )

T
,

here e ∈ R
n−m is a vector.

In other words, the extended vector is the concatenation of x
nd e. Then, we obtain the input data as the data of uniformed
imensionality using the encoding function learned by the denois-

ng autoencoder. During the learning of the denoising autoencoder,
he extended vector is used as the input vector in the denoising
utoencoder, in which elements ei in e are random numbers, as
ollows:

i∼p(0, �2
i ), i = 1, . . .,  n − m,

here p(0, �2
i

) is a probability distribution with mean 0 and vari-
nce �2

i
. Gaussian or uniform distributions can be used as p. In the

resent paper, we consider a Gaussian distribution, which is a nat-
ral choice for practical cases. In the denoising autoencoder, all but
he extended part of the input vector is also corrupted by the Gauss-
an noise with the same variance of p: x̃i = xi + �, �∼N(0, �2

i
). In

he experiments described below, for simplicity, all input data are
escaled, and the same variance �2 is used. Next, let us define the
bjective function [16] of learning for a neural network to realize
niform dimensionality:

 =
N∑

i=1

‖x̂(i) − g(f (x̃(i)))‖2, (1)

here x̃ denotes (x̃T eT )
T
, g(·) denotes the decoding function, and

(·) denotes the encoding function. The decoding and encoding func-
ions are realized using a multi-layer neural network, whereas the
ecoding function in the denoising autoencoder was  realized by a
ingle-layer network [16].

Note that, unlike the denoising autoencoder [1,15,16], the tar-
et data in the objective function (1) include random noise, which
orresponds to the extended part of the input vector. Due to
he extended vector, even with the identity mapping, the pro-
osed method is expected to provide a useful latent representation
or regression and discriminative tasks because information from
nput vectors of different sizes is considered. After the learning of
he functions g and f, the outputs of f yield the uniformed input data,
hich are a latent representation. Then, the problem of learning for

he functions g and f is defined as follows:

efinition 3 (Learning for autoencoder [16]).

�∗, �∗} = argminE = argmin
N∑
‖x̂(i) − g(f (x̃(i); �); �)‖2,
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

�,� �,�
i=1

here � and � are the parameters (weights in the neural network)
f the functions g and f, respectively.
 PRESS
ing xxx (2016) xxx–xxx 3

3. Learning algorithm

In order to realize decoding and encoding functions that have
vector-valued outputs, we use a multi-layer neural network with
three hidden layers, which is formulated as follows (for example,
[18], Section 5):

ok = h

⎛
⎝ l1+1∑

j=1

wH1
kj · h

(
I+1∑
i=1

wI
ji · I(t)

i

)⎞⎠ ,

O(t)
l
=

l1+1∑
j=1

wO
lj · h

(
l2+1∑
k=1

wH2
jk · ok

)
, l = 1, . . ., I, t = 1, . . .,  N,

where ok denotes the kth output of the encoding function f(·), O(t)
l

denotes the lth output of the network for the tth data, I denotes the
number of inputs, I(t)

i
denotes the ith input data for the tth data,

h(·) is the sigmoid function, h(x) = 1/(1 + exp(−x)). Thus, we have
� = ({wO

lj
}, {wH2

jk
}) and � = ({wH1

kj
}, {wI

ji
}). The outputs ok in the sec-

ond layer correspond to the uniformed input data. According to
Definition 3, the objective function (1) is optimized by the stochas-
tic gradient descent [19,15] with the backpropagation algorithm
1.

Next, we present the overall algorithm for uniforming the
dimensionality of data (Algorithm 1). In Algorithm 1, ε is the param-
eter for deciding the termination of learning and �2 controls the
convergence and stability of the algorithm. The larger the value of
�2 becomes, the worse the convergence and stability of the algo-
rithm becomes. Thus, in the experiments, we determine the value
of �2 by trial and error.

Algorithm 1. Learning algorithm for uniforming the dimension-
ality of data.

After the learning of the neural network, we generate data
with uniformed dimensionality through the encoding function f.
After a certain number of iterations, while injecting noise into
the extended part of the data, the outputs of the encoding func-
lity of data with neural networks for materials informatics, Appl.

1 The computational cost was very large for the five-layer neural network used in
the experiments. Thus, we used the stochastic gradient descent and the momentum
term in the backpropagation algorithm because the convergence instability was
small in the pretraining experiments and the algorithm was simple. We  used 0.9 for
the  value of the momentum term throughout the experiments.

dx.doi.org/10.1016/j.asoc.2016.04.017
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lgorithm 2. Generating uniformed data by uniforming the
imensionality of data.

Input: max  iterations S, noise variance �2, data {x(i)}Ni=1.
1: Initialize the parameters (weights) of the encoding function using �*

obtained from Algorithm 1.
2: s = 0
3: for i = 1 to S do
4: Generate a random vector w∼N(0, �2).
5: x̂← x + w
6: s ← s + f (x̂; �∗)
7: end for
8: s ← s/S
9: return s

. Experiments and results

Here, we evaluate the proposed method, which is presented in
lgorithms 1 and 2, using a linear regression task with synthetic
ata. First, we compare the proposed method with the conventional
ethods of the multi-layer autoencoder, the denoising autoen-

oder, and kernel PCA. As a specific application, we then compare
he proposed method with the denoising autoencoder using data
n the ion conductivity of bulk material. In addition, to evaluate the
obustness of the proposed method, we considered the dataset of
he hydrogen storage materials. In this case, the data size was 586
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

nd the number of constituent elements was varied from two  to
ve, while for the ion conductivity of bulk material, the size of the
ataset was 76 and the number of constituent elements was varied
rom four to six.

ig. 1. Results of the linear regression task of trial 5 using (a) the proposed method, (b) th
-axis  denotes the actual output. The Y-axis denotes the estimated output of the linear m
 PRESS
ing xxx (2016) xxx–xxx

4.1. Synthetic data

Data preparation: In order to generate synthetic data, we drew
random samples from a multivariate normal distribution N(0, �),
which consisted of twenty elements. The diagonal elements in
� were set to uniform random numbers ∈ [0, 1], and the non-
diagonal elements were set to uniform random numbers ∈ [0, 0.1].
We collected three hundred 10-dimensional vectors (the first half
of 20-dimensional vectors) and three hundred 20-dimensional vec-
tors, and prepared five datasets of 10- and 20-dimensional vectors.
In order to generate the output data, we  prepared the linear model
as follows. The coefficients of the linear model were set to uniform
random numbers ∈ [0, 1] from the identity distribution. The out-
puts were calculated by multiplying the coefficients by the 10- and
20-dimensional vectors (as the input vector) with injected random
noise N(0, 1).

For the 10- and 20-dimensional vector data, we  separated the
data evenly into training data and test data.

Experimental setup: We  used a five-layer neural network as a
multi-layer neural network. The number of outputs in the first hid-
den layer is equal to that in the third hidden layer, which is denoted
l1. Since the network realizes an autoencoder, the number of out-
puts in the network is equal to the number of inputs in the network
(i.e., the dimensionality of the input data). The number of outputs
in the second hidden layer corresponds to the uniformed dimen-
lity of data with neural networks for materials informatics, Appl.

sionality of the input data (i.e., the length of the input vector in the
linear model), which is denoted l2. All input data were rescaled to
the range [0, 1]. The number of inputs I of the network was 20, and
l1 was  set to 40. The parameter values in Algorithm 1 were set as

e multi-layer autoencoder, (c) the denoising autoencoder, and (d) kernel PCA. The
odel.

311
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Table  1
Comparison of generalization results for the test datasets on the linear regression
task.

Method RMSE Correlation

Proposed method 0.0872 ± 0.0045 0.862 ± 0.0142
Multi-layer autoencoder 0.168 ± 0.0128 0.251 ± 0.146
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Table 2
Dataset of ion conductivity.

No.  Compound  �  (S/cm)

1  Li0.34La0.51TiO2.94  1.00E−03
2  Li0.27La0.59TiO3  6.80E−04
3  Li0.10La0.63TiO3  7.90E−05
4  (Li0.1La0.5)0.9Sr0.1TiO3  1.50E−03
5  Li0.15La0.51Sr0.15TiO3  5.30E−05
6  Li0.25La0.41Sr0.25TiO3  7.60E−05
7  (Li0.1La0.63)(Mg0.5W0.5)O3  1.00E−06
8  Li0.38La0.5Na0.13TiO3  2.00E−05
9  Li0.5(La0.4Nd0.1)TiO3  1.00E−03
10  Li0.245La0.592Ti0.98Mn0.02O3  1.00E−03
11  La0.58Li0.36Ti0.95Mg0.05O3  2.10E−04
12  La0.56Li0.36Ti0.95Al0.05O3  6.40E−04
13  La0.55Li0.36Ti0.95Mn0.05O3  1.90E−04
14  La0.55Li0.36Ti0.95Ge0.05O3  3.60E−04
15  La0.55Li0.36Ti0.95Ru0.05O3  5.20E−05
16  La0.51Li0.36Ti0.95W0.05O3  7.30E−04
17  La0.54Li0.36TiO3  8.90E−04
18  La0.55Li0.36Ti0.995Al0.005O3  1.10E−03
19  Li0.067La0.64TiO2.99  7.90E−05
20  Li0.06La0.66Ti0.93Al0.06O3  1.70E−06
21  Li0.10La0.66Ti0.90Al0.10O3  7.30E−06
22  Li0.15La0.66Ti0.85Al0.15O3  9.60E−06
23  Li0.20La0.66Ti0.80Al0.20O3  4.30E−05
24  Li0.25La0.66Ti0.75Al0.25O3  7.70E−05
25  Li0.30La0.66Ti0.70Al0.30O3  1.70E−05
26  La0.32Li0.03NbO3  4.06E−06
27  La0.31Li0.06NbO3  2.33E−05
28  La0.3Li0.09NbO3  3.52E−05
29  La0.29Li0.12NbO3  4.25E−05
30  La0.28Li0.15NbO3  3.85E−05
31  La0.27Li0.18NbO3  3.82E−05
32  La0.59Na0.12TiO3  1.00E−07
33  La0.53Na0.21TiO3  1.00E−07
34  Li0.25La0.25TaO3  1.40E−03
35  La0.25Na0.2Li0.05NbO3  2.10E−05
36  La0.2Na0.25Li0.15NbO3  5.30E−06
37  La0.15Na0.3Li0.25NbO3  2.90E−07
38  La0.25Ag0.2Li0.05NbO3  3.90E−05
39  La0.2Ag0.25Li0.15NbO3  2.00E−05
40  La0.15Ag0.3Li0.25NbO3  2.90E−07
41  Li0.34Pr0.56TiO3  1.00E−06
42  Sm0.52Li0.34TiO3  1.00E−07
43  Nd0.55Li0.34TiO3  1.00E−07
44  Nd0.25Li0.25TaO3  4.00E−06
45  Sm0.25Li0.25TaO3  3.90E−07
46  Y0.25Li0.25TaO3  5.00E−09
47  Li0.5Sr0.56Fe0.25Ta0.75O3  1.00E−04
48  Li0.5Sr0.56Cr0.25Ta0.75O3  6.00E−05
49  Li0.33Sr0.56Cr0.225Ta0.775O3  1.00E−04
50  Li0.33Sr0.56Co0.225Ta0.775O3  5.10E−06
51  Li0.33Sr0.56Ga0.225Ta0.775O3  7.70E−06
52  Li0.33Ca0.56Fe0.225Ta0.775O3  1.50E−06
53  Li0.33(Ca0.8Sr0.2)0.56Fe0.225Ta0.775O3  5.80E−07
54  Li0.33(Ca0.5Sr0.5)0.56Fe0.225Ta0.775O3  4.10E−05
55  Li0.33(Ca0.2Sr0.8)0.56Fe0.225Ta0.775O3  9.80E−05
56  Li0.33(Ca0.1Sr0.9)0.56Fe0.225Ta0.775O3  1.30E−04
57  Li0.33Sr0.56Fe0.225Ta0.775O3  8.50E−05
58  LiCaTiNbO6  1.00E−07
59  LiSrTiNbO6  1.00E−06
60  LiSrTiTaO6  5.50E−04
61  LiSr2Ti2NbO9  1.00E−06
62  LiBa2Ti2NbO9  1.00E−07
63  LiSr2Ti2TaO9  3.20E−05
64  LiCa1.65Ti1.3Nb1.7O9  1.00E−07
65  LiCa1.65Ti1.3Ta1.7O9  1.00E−07
66  LiSr1.65Ti2.15W0.85O9  1.00E−06
67  LiSr1.65Ti1.3Nb1.7O9  2.00E−05
68  LiSr1.65Ti1.3Ta1.7O9  4.90E−05
69  LiSr1.65Zr1.3Ta1.7O9  1.30E−05
70  Li0.1Sr0.8Ti0.7Nb0.3O3  1.00E−07
71  Li0.3Sr0.6Ti0.5Nb0.5O3  5.40E−06
72  Li0.3Sr0.6Ti0.5Ta0.5O3  1.70E−04
73  Li0.3Sr0.6Ti0.45Fe0.05Ta0.5O3  6.00E−05
74  Li0.3Sr0.6Ti0.40Fe0.10Ta0.5O3  3.60E−05
75  Li0.3Sr0.6Ti0.35Fe0.15Ta0.5O3  2.80E−05
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Denoising autoencoder 0.162 ± 0.0124 0.344 ± 0.120
Kernel PCA 0.148 ± 0.0241 0.476 ± 0.173

ollows: T = 5,000,000, � = 10−5, �2 = 0.01. In the learning with the
raining data, we varied l2 in {5, 10, 15, 20}, and l2 was  20 at the min-
mum root mean squared error (RMSE) for the test data. After the
earning, we generated the uniformed (latent) data using Algorithm
. Here, S was set to 100, and �2 was set to 0.01, which was the
alue used in the learning for the network. Thus, we  obtained the
niformed data for the training and test data, where the length of
he vector was 20.

A multi-layer autoencoder and denoising autoencoder were also
ealized using a five-layer neural network. The parameters were
et to the values used in the proposed method. In kernel PCA, the
aussian radial basis function kernel was used. The kernel width
as set to the median distance between data points [20].

The training data with the 10-dimensional vectors were used for
he learning of the multi-layer autoencoder, the denoising autoen-
oder, and kernel PCA. Then, for the each method, the transformed
0-dimensional vector data were obtained using both the train-

ng data and the test data with 10-dimensional vectors. Note that
hese methods were used as the expansion of the dimensionality
f data.

Next, we applied the linear regression task in order to evalu-
te the generalization performance of the linear model. In order to
ompare the generalization performance of the proposed method
ith that of conventional methods, the test data (300 data points)
ere evaluated using a linear model. In the learning for the linear
odel, we used the uniformed data corresponding to the train-

ng data (300 data points). The test data on the evaluation were
he uniformed data corresponding to the test data. For the con-
entional methods, the training data on the linear regression task
onsisted of the transformed data corresponding to the training
ata with 10-dimensional vectors and the training data with 20-
imensional vectors. The test data were also prepared in the same
anner.
Results: For the test data, we evaluated the generalization

erformance five times in order to remove sampling bias. The
eneralization performance measured by RMSE and the correla-
ion is summarized in Table 5. The RMSE and the correlation were
veraged over five trials. The table entries show the mean and
he standard deviation. The proposed method outperformed the
onventional methods because the expansion and reduction of
he dimensions of data were performed simultaneously under the
earning process of uniforming the dimensionality. In addition, the
esults of the linear regression task of trial 5 are shown in Fig. 1
Table 1).

.2. Ion conductivity data

In order to confirm the usefulness of the proposed method for a
egression task and for comparison with the denoising autoencoder
egarding distance preservation, we used ion conductivity data for
ulk materials from the literature. The dataset of ion conductivity

s shown in Table 2. The number of data was 76. The number of
Please cite this article in press as: H. Ohno, Uniforming the dimensionality of data with neural networks for materials informatics, Appl.
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

ata for each number of elements in the materials is also shown in
able 3.

Data representation: For the naive representation, we  used the
ollowing properties of the elements in the compounds as features

76  Li0.3Sr0.6Ti0.20Fe0.30Ta0.5O3  1.00E−07

(No. 1 ∼ 34 and No. 41 ∼ 76 from Tables 2 and 5 in [21], and No. 35 ∼ 40 from Table
1  in [22].)

dx.doi.org/10.1016/j.asoc.2016.04.017
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Table 3
Number of data for each number of elements in the dataset of ion conductivity.

Number of elements Number of data

4 20
5 48
6 8

Table 4
Evaluation results for validation data of ion conductivity. The root mean squared
error (RMSE) was  averaged over five trials. The minimum RMSE was given by l1 = 120
and l2 = 60.

Combination of values for the parameters RMSE

l1 = 30, l2 = 15 0.04791 ± 0.003416
l1 = 30, l2 = 30 0.04755 ± 0.002844
l1 = 30, l2 = 60 0.04692 ± 0.002667
l1 = 30, l2 = 90 0.04697 ± 0.003382
l1 = 60, l2 = 15 0.04782 ± 0.003336
l1 = 60, l2 = 30 0.04551 ± 0.002903
l1 = 60, l2 = 60 0.04499 ± 0.003266
l1 = 60, l2 = 90 0.04553 ± 0.003039
l1 = 120, l2 = 15 0.04804 ± 0.003185
l1 = 120, l2 = 30 0.04498 ± 0.003510

o
a
p
d
t
r

x

w
m
i
s
a
s
t

a
s
t
a
u
t
s
v
�
A
i

d
T
a
d
w

i
i
t
v
T

the number of elements are larger than those of the ion conductivity
data. The dataset of hydrogen storage materials 2 we prepared had
a size of 586. The number of data for each number of the elements
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l1 = 120, l2 = 60 0.04342 ± 0.003403
l1 = 120, l2 = 90 0.04441 ± 0.004237

f the input data for the linear regression task: electron negativity,
tomic number, first ionization potential, atomic mass, group of the
eriodic table, period of the periodic table, single covalent radius,
ouble covalent radius, electron affinity, and composition ratio of
he compound. Ten features were used. Thus, the input data are
epresented by the vector x, as follows:

 = (x1,1, x1,2, . . .,  x10,1, x10,2, · · ·)T = (xi,j), i = 1, . . .,  10,

j  = 1, . . .,  {4, 5, 6},

here the indices i and j denote the feature number and the ele-
ent number, respectively. In other words, the length of the vector

s varied from 40 to 60. Hence, we cannot apply the linear regres-
ion task for all compounds with different numbers of elements. In
ddition, it is necessary to use the overall data on the linear regres-
ion task because the number of data for each element is smaller
han the number of regressor variables, as shown in Table 3.

Experimental setup: We  used a five-layer neural network as
 multi-layer neural network. The network architecture was the
ame as that used for the synthetic data. The number of inputs I of
he network was 60. In the learning, we varied l1 in {30, 60, 120}
nd l2 in {15, 30, 60, 90}. For deciding these parameter values, we
sed five-fold cross-validation with five trials in order to remove
he random effects of fold assignments because of the small data
ize. All input data were rescaled to the range [0, 1]. The parameter
alues in Algorithm 1 were set as follows: T = 5, 000, 000, � = 10−5,
2 = 0.01. After the learning, we generated the uniformed data using
lgorithm 2. Here, S was set to 100, and �2 was set to 0.01, which

s the value used in the learning.
Results: Table 4 shows the evaluation results for the validation

ata. The first column lists the combination of values for l1 and l2.
he second column lists the root mean square error (RMSE) aver-
ged over five trials (with different random seeds) and its standard
eviation. As shown in the table, we adopted l1 = 120 and l2 = 60,
hich were the combinations of values at the minimum RMSE.

Next, we applied the linear regression task to the ion conductiv-
ty data as the output and the uniformed data as the input variables,
n which the length of the vector was 60. The linear model described
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

he natural logarithm of the ion conductivity in terms of 60 input
ariables. The result of the linear regression task is shown in Fig. 2.
he linear model had an r2 value of 0.918.
Fig. 2. Results of a regression task performed using the uniformed data as the input
for  ion conductivity. The X-axis denotes the actual output, and the Y-axis denotes
the estimated output of the linear model.

In order to compare the quality of the obtained latent rep-
resentation by the proposed method with that of the denoising
autoencoder, the distance preservation was  evaluated. Using the
k-nn method to evaluate the distance preservation, we quantified
the difference of class assignments between the original data on
the input space and the latent data on the latent representation. In
general, each dataset could be assigned a different name (or num-
ber) as a class derived by the k-nn method. Therefore, we needed
to assign the same class name (or number) for two class assign-
ment data. Thus, we used permutation to reassign the data class.
The evaluation value E of the distance preservation with n classes
was defined as follows:

E(Dx, D) = max
� ∈ Sn

1
|D|

|D|∑
i=1

I((� ◦ Dx)i, Di),

where � denotes the permutation in the permutation group Sn of
degree n, n is the number of classes, Di denotes the ith data ele-
ment of D, and I(·) is the indicator function. The operator ◦ means
that the permutation � applies to the data Dx, D and Dx denote the
class assigned datasets of the original dataset and the latent dataset,
respectively, and E denotes the same class assignment ratio (hence-
forth, matching rate) between the original dataset and the latent
dataset.

In the evaluation, we used the data of five elements having the
maximum number of data (see Table 3). The denoising autoencoder
was applied to these data, where the latent data, in which the length
of the vector was equal to that of the proposed method, was derived.
Fig. 3 shows the results of the matching rate E, which was averaged
over five trials. The error bars correspond to one standard deviation.

The figure indicates that the proposed method (solid line) and
the denoising autoencoder (dashed line) do not have remarkably
different performances.

4.3. Hydrogen storage data

In this section, we evaluate the robustness of the proposed
method. Thus, we consider a dataset in which both the data size and
lity of data with neural networks for materials informatics, Appl.

2 The dataset was obtained from http://hydrogenmaterialssearch.govtools.us.

dx.doi.org/10.1016/j.asoc.2016.04.017
http://hydrogenmaterialssearch.govtools.us
http://hydrogenmaterialssearch.govtools.us
http://hydrogenmaterialssearch.govtools.us
http://hydrogenmaterialssearch.govtools.us
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Fig. 3. Results of evaluation of distance preservation for the proposed method (solid)
and the denoising autoencoder (dashed). The matching rate E denotes the same class
assignment ratio between the original dataset and the latent dataset. The X-axis
denotes the number of classes. The error bars show the standard deviation.

Table 5
Number of data for each number of elements in the dataset of hydrogen storage
materials.

Number of elements Number of data

2 245
3 250
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4  65
5 26

n the materials is also shown in Table 5. The output in regression
s the hydrogen weight percentage.

Data representation: We  also used the naive representation. The
umber of the features was ten. Thus, the input data are repre-
ented by the vector x, as follows:

 = (x1,1, x1,2, . . .,  x10,1, x10,2, · · ·)T = (xi,j), i = 1, . . .,  10, j = 1, · ·

here the indices i and j denote the feature number and the element
umber, respectively. The length of the vector was varied from 20
o 50. The number of data for each number of elements is shown in
able 5.

Experimental setup: We  also used a five-layer neural network as
 multi-layer neural network. The number of inputs I of the network
as 50. In the learning, we varied l1 in {25, 50, 100} and l2 in {25,

0, 75, 100}. We  used five-fold cross-validation with five trials. All
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

nput data were rescaled to the range [0, 1]. The parameter values in
lgorithm 1 were set as follows: T = 5, 000, 000, � = 10−5, �2 = 0.01.

n Algorithm 2, S was set to 100, and �2 was set to 0.01.

able 6
valuation results for validation data of hydrogen storage materials. The root mean
quared error (RMSE) was averaged over five trials.

Combination of values for the parameters RMSE

l1 = 25, l2 = 25 0.06256 ± 0.001449
l1 = 25, l2 = 50 0.06130 ± 0.001389
l1 = 25, l2 = 75 0.06126 ± 0.001512
l1 = 25, l2 = 100 0.06001 ± 0.001599
l1 = 50, l2 = 25 0.05818 ± 0.001721
l1 = 50, l2 = 50 0.05641 ± 0.001493
l1 = 50, l2 = 75 0.05583 ± 0.001441
l1 = 50, l2 = 100 0.05590 ± 0.002180
l1 = 100, l2 = 25 0.05436 ± 0.002135
l1 = 100, l2 = 50 0.05255 ± 0.001914
l1 = 100, l2 = 75 0.05196 ± 0.001659
l1 = 100, l2 = 100 0.05195 ± 0.001987
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Fig. 4. Results of a regression task performed using the uniformed data as the input
for  hydrogen storage materials. The X-axis denotes the actual output, and the Y-axis
denotes the estimated output of the linear model.

Results: Table 6 shows the evaluation results for the validation
data. The first column lists the combination of values for l1 and l2.
The second column lists the root mean square error (RMSE) aver-
aged over five trials and it’s standard deviation. As shown in the
table, we adopted l1 = 100 and l2 = 75, which were the combina-
tions of values with the lower RMSE and the smaller network size.
The value of the RMSE was not so large compared to that of the ion
conductivity.

Next, we applied the linear regression task to the hydrogen
weight percentage as the output and the uniformed data as the
input variables, where the length of the vector was 75. The result
of the linear regression task is shown in Fig. 4. The linear model had
an r2 value of 0.838. Thus, a reasonably good result was  obtained,
which was  also the case for the ion conductivity. The proposed
method worked well for the larger data size and the larger range of
the number of elements, demonstrating its robustness.

Based on the experiments on the synthetic data and the mate-
rials data, we  conclude that the proposed method is useful for
uniforming the dimensionality of data.

5. Discussion

In this section, we discuss the experimental results, related
research, including, for example, overload learning [23] and the
denoising autoencoder [1,15,16], and areas for future study.

In the case of the synthetic data, the proposed method out-
performed the conventional methods. This implies the feasibility
of performing the expansion and reduction simultaneously. The
advantage of the proposed method can be exploited by using the
information contained in input vectors of different sizes, whereas
conventional methods use only input vectors of the same size.

In both the materials datasets, i.e., the ion conductivity and
hydrogen storage datasets, we  confirmed the robustness of the pro-
posed method. Regardless of the data size, the difference in RMSE
between the ion conductivity and hydrogen storage datasets was
small (see Tables 4 and 6). Furthermore, in Tables 4 and 6, a slight
increase in the standard deviation was  observed according to the
increase in the network size. However, the learning of the network
was still stable while varying the number of elements in the mate-
rials because there was  no extremely high RMSE with respect to
lity of data with neural networks for materials informatics, Appl.

either the mean or the standard deviation. This could be because of
the regularization induced by noise injection. Although the r2 val-
ues of regression were high, there was  some spread of points and
outliers in the scatter plots, as shown in Figs. 2 and 4. With regard to
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his matter, we propose a method for improving the performance
f regression.

The key point of the proposed method is that the noise is injected
nto the extended part of the vector in the input variables. The
ffect of the injected noise appears to be similar to the overload
ask in learning for a neural network [23]. The overload task is
sed to add an additional unit to the input layer of a neural net-
ork. In the learning, the additional unit is set to a random number.

he injected noise corresponds to the additional task in overload
earning. According to [23], the generalization performance was
mproved as compared to the overload task in learning. Therefore,
he injected noise could lead to the acquisition of an available latent
epresentation. The effectiveness of the overload was shown to
ork well empirically [23]. The theoretical analysis has, however,

een left as an open problem.
Moreover, during learning, noise is added to a part of the vec-

or other than the extended part, as in the denoising autoencoder.
his leads to the regularization avoiding over-fitting [24]. In the
xperiments, when the number of parameters (weights) was  larger
han the number of data, the generalization performance did not
eteriorate remarkably (see Table 4). For the theoretical analysis,
ishop [25] showed that the regularization term in the error func-
ion when learning with noise belongs to the class of generalized
ikhonov regularization. Grandvalet et al. [26] demonstrated that
hen the injected noise is Gaussian, the noise injection can be a

tochastic alternative to regularization of the error function.
Hence, the proposed method has the advantages of both the

verload learning and the denoising autoencoder. However, the
oise injection generates numerous distinguishable training pat-
erns in the learning. Therefore, the proposed method has a low
onvergence speed [27], which is caused by not only the back-
ropagation, but also the noise injection. Thus, in the future, we
ope to investigate an efficient learning algorithm for complicated
etworks, such as a five-layer neural network.

For high-dimensional data, it is important for data analysis to
educe the dimensionality for visualization on the 2- or 3-D map.
his is also important for learning in order to reduce computa-
ional complexity. In the experiments, we used the matching rate
f class assignment using the k-nn method to evaluate the dis-
ance preservation. Then, the matching rate was somewhat low
or both the proposed method and the denoising autoencoder. Dis-
ance preservation is also related to the preservation of topological
nformation of data. Therefore, the matching rate should be even
igher. As pointed out in [28], the main issue for the latent rep-
esentation with dimensionality reduction is to consider how the
ow-dimensionality latent representation preserves the distances
etween the original data. Accordingly, in order to improve the
istance preservation, it would be necessary to introduce a stress
unction that evaluates the quality of the matching between the
istances in the latent representation and the data spaces [28].

One reason why the generalization performance in the linear
egression task was somewhat low is the lack of output directivity
f the latent data. In other words, the latent data are learned regard-
ess of the output data in the linear regression task. Bengio et al.
29] demonstrated that the autoencoder trained to minimize recon-
truction cross-entropy has become a latent representation, which
s useful for the output in discriminative tasks. Snoek et al. [30]
roposed a nonparametrically guided autoencoder using a Gauss-

an process to guide the latent representation. In these studies,
he objective function includes a guided term with respect to the
utput in the data. Therefore, we propose the objective function
onsidering a linear regression task as follows ( cf. [29,31,32]):
Please cite this article in press as: H. Ohno, Uniforming the dimensiona
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.017

 =
N∑

i=1

‖x̂(i) − g(f (x̃(i)))‖2 +
N∑

i=1

(yi − ˇT f (x̃(i)))
2
,
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where  ̌ denotes the regression coefficients that are estimated
simultaneously during learning of the functions g and f, and yi

denotes the ith output data of the data. Here, we refer to the autoen-
coder with this objective function as a linear guided autoencoder,
or LGAE. The latent data in the LGAE provides a suitable represen-
tation with respect to the linear regression task. The latent data
obtained by the proposed method using this objective function
could improve the performance of linear regression tasks.

Finally, the proposed method is application-independent. By
modifying the data representation in the input vector according
to the application, the proposed method can be extended to other
problems.

6. Conclusion

In the present paper, we proposed a uniforming method for the
dimensionality of data using a neural network for materials infor-
matics, in which different numbers of elements in compounds are
often dealt with, in order to predict the properties of materials
or to classify compounds. In addition, we considered the case of
material properties for which the underlying mechanisms or the-
oretical models are poorly understood. Therefore, we introduced
a naive representation for the compound. The length of the vector
in the naive representation was varied depending on the number
of elements. Hence, uniformed dimensionality of the input data
was necessary. Unlike conventional methods, such as the multi-
layer autoencoder, the denoising autoencoder, and kernel PCA, the
proposed method can make uniform the dimensionality of data
while simultaneously considering the expansion and reduction of
the dimensionality.

In the proposed method, uniforming of dimensionality is real-
ized by noise injection into the extended part of the input vector
during learning for the autoencoder, which is a variant of the
denoising autoencoder [1,15,16]. The latent representation in the
neural network becomes a uniformed representation of the input
data.

Experiments on synthetic data, ion conductivity data, and
hydrogen storage materials data revealed that the proposed
method works well for the linear regression task, as compared
to the conventional methods, and exhibits distance preservation
and robustness. The results may  enable us to apply the proposed
method to a broad range of applications.

Further study is necessary in order to investigate the statistical
properties of the uniformed representation of data. Furthermore, in
order to improve the performance of the linear regression task, we
proposed the linear guided autoencoder, which has a linear guided
term in the objective function.

In the future, we  hope to confirm the effectiveness of the linear
guided autoencoder for use in materials informatics.
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