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a b s t r a c t

Incremental learning has been developed for supervised classification, where knowledge is accumulated
incrementally and represented in the learning process. However, labeling sufficient samples in each
data chunk is of high cost, and incremental technologies are seldom discussed in the semi-supervised
paradigm. In this paper we advance an Incremental Semi-Supervised classification approach via Self-
Representative Selection (IS3RS) for data streams classification, by exploring both the labeled and
eywords:
ncremental learning
emi-supervised classification
elf-representative selection

unlabeled dynamic samples. An incremental self-representative data selection strategy is proposed to find
the most representative exemplars from the sequential data chunk. These exemplars are incrementally
labeled to expand the training set, and accumulate knowledge over time to benefit future prediction.
Extensive experimental evaluations on some benchmarks have demonstrated the effectiveness of the
proposed framework.
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. Introduction

Data today is more deeply woven into the fabric of our daily
ives than ever before due to the rapid improvement of digital
echnology of storage and information processing. Very recent few
ears have witnessed an explosive growth of data, where contin-
ously collected data streams accounts for a large and important
art [1,2]. From the perspectives of computation and machine intel-

igence, one should establish a data-driven machine that is capable
f incrementally analyzing large-scale dynamic data stream, and
ccumulating knowledge incrementally over time to benefit future
earning and decision-making process [3–11]. Consequently, a

achine learning paradigm, Incremental Learning (InLe), is devel-
ped where the learning process takes place according to the newly
merged examples [12–21]. Compared with traditional supervised
earning, InLe is capable of learning new information from sequen-
ial examples to facility the decision-making process. It is very
uitable for applications where examples do not always arrive
imultaneously, and the newly arriving data may bring a new per-
pective, may even change the statistical distribution of data. More-
Please cite this article in press as: Z. Feng, et al., Incremental Semi-
selection, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

ver, from the biological viewpoint, InLe is more consistent with
uman learning where human beings already use possessed knowl-
dge along with the experiences for learning and decision making.
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Nowadays many incremental learning architectures [22,23] and
algorithms [12–15,20,21,35] have been developed to deal with data
streams, which can be categorized as Absolute Incremental Learn-
ing (AInLe) and Selective Incremental Learning (SInLe). In AInLe,
new data are analyzed separately, and new features are formed and
combined with the existing ones. In SInLe, the selected training set
based on the proximity and impact of new data and new informa-
tion are retrained in light of new information. Most of available
InLe approaches are SInLe, which do not assume the availability
of a sufficient labeled dataset before the learning, but the train-
ing examples appear over time. However, in real-life scenarios,
new examples are not always labeled timely. In practical, mas-
sive amounts of data are collected dynamically in very rapid mode,
resulting in the difficulty of offering labeled samples over time. For
example, labeling examples from surveillance and mobile sensor
network data streams is infeasible both in time and resource. On
the other hand, preparing a sufficiently large number of labeled
training samples at the very beginning is practically impossible, for
the changing environment where new characteristic of samples or
even new kind of samples are generated over time. Consequently,
it is necessary to automatically update an existing training set in an
incremental fashion to accommodate new information, by adding
newly emerged samples to the training set.
Supervised classification of data streams via self-representative
c.2016.02.023

Although the classification of data streams are characteristics
of scarce labeled examples, enormous number of sequentially
incoming samples are available. Because learning from labeled
as well as unlabeled data is very useful for incremental learning,
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emi-supervised learning technologies can be developed by
xploiting unlabeled data to modify and refine the classifier or
iscriminate criteria to improve classification accuracy [24–26].
ifferent with AInLe and SInLe, Semisupervised Incremental
earning (SSInLe) first builds knowledge base incrementally from
he available labeled data. Then with the unlabeled data, SSInLe
pdates and restructures the knowledge incrementally. Finally

t makes decisions about the new instance on the basis of the
nowledge base and update the training set.

SSInLe is very important from various real-time learning per-
pectives, but few works have done on it. In order to explore both
he labeled and dynamic unlabeled samples for a more accurate
rediction of data streams, in this paper we advance an Incremen-
al Semi-Supervised classification approach via Self-Representative
election (IS3RS), for data streams classification. In the SSInLe, an
mportant issue is to identify relevant unlabeled data that can be
dded to the existing training set. In our method, an incremental
elf-representative data selection strategy is proposed to find the
epresentative exemplars from the sequential data chunk. These
xemplars are incrementally labeled to expand the training set,
o accumulate knowledge over time to benefit future prediction.
nspired by the representation learning theory [27], we aim to find a
ubset of data that efficiently describe the entire data set. It assumes
hat each data in a dataset can be represented as a linear combina-
ion of a limited number of exemplars, which is regarded as a com-
act representation of data set. By adding some initial exemplars
o the labeled set, a new training set can be obtained. Then we  can
cquire the labels of exemplars by co-training technique [28] via
elf-representation of each data chunk. The most confidently recov-
red testing data is added into training set to facilitate the learning.

The remained of this paper is organized as follows: In
ection 2, the incrementally semi-supervised framework and self-
epresentation are detailed. In Section 3, some experiments are
aken on several datasets to validate the efficiency of our proposed

ethod. The configurations, results and discussions of experiments
re given. Conclusions and discusses are presented in Section 4.

. Incremental semi-supervised learning via
elf-Representative Selection (IS3RS)
Please cite this article in press as: Z. Feng, et al., Incremental Semi-
selection, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

The proposed IS3RS approach is illustrated in Fig. 1, which con-
ists of three phases: self-representative selection, co-training, and
nial decision. First each data chunk is self-represented to deter-
ine its exemplars. Under the framework of co-training, labels of

Fig. 1. An illustration of the pr
 PRESS
uting xxx (2016) xxx–xxx

these exemplars are predicted by the K-nearest neighbor (KNN)
classifier. Then the training set is expanded by adding the most
confident exemplars together with their predicted labels. Finally,
the final classification is performed based on the expanded training
set. In the following we  describe each step in detail.

2.1. Self-Representative Selection of exemplars

As described in [27,36], the representative training data plays a
key role in deciding the performance of learning algorithm. There-
fore, learning representative data from vast amount of data is of
great importance when building effective classifier or other predic-
tion for data streams. In the data chunk classification, a key factor
is whether the learning machine can take advantage of the repre-
sentative testing data to construct a compact training set. Among
various kinds of representative selection methods, sparsity inspired
representation learning attracts a lot of interests because of its sim-
ple principle and feasibility. Moreover, it does not need to cast any
distribution prior on data and present convincing performance. In
this paper, we learn exemplars by a self-representation of data,
under the assumption that there exist some exemplars, and each
data in the dataset can be described as a linear combination of those
exemplars. Mathematically, given a data set X ∈ � D×N with some
D-dimensional data xi, where D is the dimensionality of data and
N is the number of samples in the data set. We  would like to select
an informative data subset that can represent the whole dataset.
Selecting exemplars can be reduced to the following optimization
problem,{

min
S

∥∥X − XS
∥∥2

F

s.t.
∥∥S

∥∥
row,0

≤ k
(1)

where S ∈ � N×N is the coefficient matrix and
∥∥S

∥∥
row,0

counts the

number of nonzero rows of S. In other words, we  expect to select
at most k(k � N) samples in X that can best represent X. These
k informative samples are called as exemplars. This is a self-
representation model, where the dictionary is the data set itself.
The property makes the obtained exemplars coincide with the
actual data point which can be well revealed the whole data set.
Supervised classification of data streams via self-representative
c.2016.02.023

By minimizing the reconstruction error of each data point as a
linear combination of the examples in the dataset and enforcing∥∥S

∥∥
0,q

≤ k, (‖•‖0,q norm is defined as
∥∥S

∥∥
0,q

=
∑N

i=1I(
∥∥si

∥∥
q

> 0),

and si is the i - th row of coefficient matrix S and I(•) denotes the

oposed IS3RS approach.
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Table 1
The main procedures of the proposed IS3RS algorithm.

Input: data chunks X = [X1X2 . . . Xi−1XiXi+1 . . . XN . . .]; class number C;
parameter �, �

Output: Classification results;
Initialize the labeled data set L0;
Repeat

Determine the exemplars XRp
i

from Xi via self-representation learning;
Choose the most confident exemplars YRp

i
by performing a co-training on

exemplars XRp
i

and Li−1;
Add YRp to the labeled set Li−1 to form a new training set Ti ,  and let Li = Ti;
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ndicator function, we can determine the indices of nonzero rows
orrespond to the exemplars. Thus the above optimization problem
an be represented as:

min
S

∥∥X − XS
∥∥2

F

s.t.
∥∥S

∥∥
0,q

≤ k
(2)

This is an NP-hard problem as it requires searching over every
ubset greedily. A standard relaxation of this problem is obtained
s:

min
S

∥∥X − XS
∥∥2

F

s.t.
∥∥S

∥∥
1,q

≤ �
(3)

here ‖•‖1,q norm is
∥∥S

∥∥
1,q

=
∑N

i=1

∥∥si
∥∥

q
, which is the sum of

-norm of the each rows in S and � > 0 is a positive threshold param-
ter. In this paper, we experimentally assign q as 2.

Using Lagarange multipliers, we rewrite the above optimization
roblem in (3) as:

in
S

�
∥∥S

∥∥
1,q

+ 1
2

∥∥X − XS
∥∥2

F
(4)

As the method of Multipliers, we introduce an auxiliary equiv-
lent variable J for S, that is J = S, which allows the optimization
roblem to be more easily solved. Thus the augmented Lagarange
orm of Eq. (4) can be formulated as:

min
,J,Y1

�
∥∥J

∥∥
1,q

+ 1
2

∥∥X − XS
∥∥2

F
+ 〈Y1, J − S〉 + �

2

∥∥J − S
∥∥2

F
(5)

here 〈•〉 denotes the trace operator, Y1 denotes the Lagarange mul-
iplier and � is penalty parameter. The added last term in (5) is used
o make the intermediate variable J equal to the variable S, and
he added third term in (5) is an augmented Lagarange regularizer
erm. Then we can use ADMM technique to alternately optimize
hese variables iteratively. The above optimization problem can be
asily implemented in an alternating manner by using Alternating
irecting Method of Multipliers (ADMM)  optimization algorithm

28]. As soon as the sparse coefficients S are obtained, the exemplars
an be determined as to the indices of nonzero row of S. This self-
epresentative selection can select some representative samples to
educe the redundancy of the data set.

.2. Updating training set by co-training exemplars

As mentioned above, the classification performance largely
epends on the training set, when the initial labeled set is limited
nd unlabeled samples are increasing chunk by chunk. In our work,
e aim to construct a representative and informative training set
uring all the learning process. We  attempt to find some infor-
ative samples to enhance the learning results. In this section,

he exemplars are labeled by means of co-training techniques
ntroduced in [29,30]. As discussed in [30], we  simply split the
eatures of each sample into two dependent parts (two views)
andomly and use KNN classifiers to estimate the labels of these
xemplars. The most confident exemplars that are classified into
he same class by different classifiers, are added to the training set.

Specifically, an initial training set L0 is given before the learning.
enote Xj as the j - th data chunk received between time tj−1 and

j, XRp
j

be the preliminary representative exemplars of data chunk

j obtained via self-representation learning, Lj−1 be the labeled set
Rp
Please cite this article in press as: Z. Feng, et al., Incremental Semi-
selection, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

t time tj−1. Then we perform a collaboration co-learning on X
j

nd the training set Tj−1, and add the most confident exemplars
ogether with their labels into Lj−1 to form a new labeled set Lj.

athematically, Li = YRp
i

∪ Li−1.
i
Until data stops
Do classification of the data with KNN classifier.

Note that exemplars that are predicted as belonging to two
or more classes will be excluded from the recovered exemplars.
Finally, the recovered exemplars with their estimated labels are
combined to formulate the representative training set. Based on
this training set, we classify the testing data using KNN classifier.
The objective of IS3RS algorithm is to design an effective training
set by exploiting the useful information from the testing data to
improve the classification accuracy. The main procedure of IS3RS
is summarized in Table 1. By means of co-training technique, the
exemplars that are selected by unsupervised representation learn-
ing, are prone to be confidently labeled to form an informative
and representative training set. Since data come chunk by chunk,
one can accumulate knowledge by a small number of exemplars
with low storage and computation cost. Moreover, the selection
can be extended to a distribution algorithm and taken on a parallel
platform, if a large scale of data need to be processed.

3. Experimental results and discussions

In our experiments, we use Synthetic dataset, USPS digital
dataset and some UCI datasets (http://archive.ics.uci.edu/ml/) to
evaluate the proposed IS3RS method. Some aspects are investigated
in our experiments, including: (1) an investigation on the efficiency
of the proposed self-representative selection strategy; (2) an inves-
tigation on the performance of the proposed ISSC approach; (3) an
investigation on the classification results of IS3RS algorithm, and
a comparison of IS3RS with some related incremental approaches,
including: ADAIN.MLP [5], ADAIN.SVR [5], Learn++ [33] and IMORL
[34]; (4) an investigation on the computational complexity of IS3RS
algorithm. All experimental simulations are performed with MAT-
LAB R2013a on a personal computer with 3.2 GHz  Intel Core i5-3470
CPU and 4.0GB RAM.

3.1. Investigation on the proposed self-representative selection
strategy

In this experiment, we  use two  datasets (one synthetic data set
and one USPS digital data set) to demonstrate the efficiency of the
proposed representative selection strategy.

1) Synthetic dataset: We  first construct 3 independent subspaces
whose bases {Ui}3

i=1 are computed by Ui+1 = TUi, where T is a ran-
dom rotation and U1 is a random orthogonal matrix of dimension
100 × 4. Then we generate 100 × 120 data matrix X = [X1X2X3] by
randomly sample 40 data points from each subspace by Si = UiCi,
1 ≤ i ≤ 3 being a 4 × 40 with Ci being a i . i . d . N(0, 1) matrix.

2) USPS digital dataset: The USPS digital data set contains 10
classes of hand draft characters. Each sample is a digital gray
Supervised classification of data streams via self-representative
c.2016.02.023

scale image with size 16 × 16.

In this test, we first use the self-representation learning to
find the exemplars in the Synthetic data set. Fig. 2 illustrates the
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ig. 2. An illustrative example of self-representation learning. Three colors indica
oints  and their exemplars. (b) Noisy data points with additive noise (zero mean an

xemplars. The samples are represented as points in a 2D feature
pace after a dimensionality reduction operator by Principle Com-
onent Analysis (PCA). Some data points are randomly chosen to
e corrupt, the observed data are formulated by adding Gaussian
oise with zero mean and 0.2 ‖x2‖ variance respectively (‖x‖ most
ange from 0.1 to 0.4 in this experiment).

From Fig. 2, we can find that the self-representation learning
elects the samples near the boundary which can well represent
he corresponding class. Even for the noisy data, the representation
earning can learn the noisy data, which indicated that seriously
orrupted data are often incoherent with clean data, and they prone
o be classified to a new class that does not appear in the pre-
ious training set. Because a sample belongs to a new class can
e regarded as an outlier or serious noisy data, when compared
ith the other samples in the training set, it is expected to be

elected. Consequently, all the classes in the dataset can be found.
ig. 3 shows two USPS digital number exemplars obtained by self-
epresentation, from which we can see that the exemplars are
nformative.

An important question still remains for the proposed algorithm,
.e. to what extent or under what assumption that the proposed

ethod can benefit the finial decision-making process? In this sim-
lation, we discussion it and take an experiment to demonstrate
ow the proposed algorithm generates the representative labeled
et. We  first randomly choose 50 samples from the whole dataset
or each class and then divided them into five chunks with identical
ize of 100 samples per chunk, to form a subset named SubUSPS.
ach chunk is enforced to contain at most four classes of digi-
al characters. The detailed description of each chunk is given in
able 2. The size of the chunk and the class of each chunk can be ran-
Please cite this article in press as: Z. Feng, et al., Incremental Semi-
selection, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

omly initialized. In our simulation, we set the number of samples
n each chunk as 100, and the classes as 3 or 4.

Firstly, self-representation learning is performed for each data
hunk to obtain its exemplars. (The second and third columns in

Fig. 3. The self-representative exemplars of number 2 and 5.

312
ee classes, and the point with black circle is the selected exemplar (a) Clean data
iance 0.2).

Table 3 show the class indexes and the corresponding number of
exemplars in each chunk). For the Chunk 1, we query the labels
of initial exemplars by means of initial labeled set. The remaining
4 exemplars of chunks are sequentially fed to the labeled set to
update the training set. Meanwhile, we  predict the subsequent
exemplars that are selected from the training set until 10 classes
are found.

From the Table 3, we  can find that the query classes and their
corresponding number. (class – #. No.): (0/3/5 – 4/5/7) → (0/3/2/7
– 1/1/2/3) → (2/7/1/4 – 3/2/2/2) → (1/4/6/9 – 2/2/3/2) → (6/9/8 –
3/2/5). The bold class number in the sixth column denotes the
new classes that are selected in the previous active annotation. The
results demonstrate that new patterns are easily chosen as repre-
sentative exemplars since it cannot be classified as the other classes.
Thus a complete training set can be built, and we  can use the learned
labeled set to classify the SubUSPS. Finally a classification accuracy
99.20% can be obtained with SVM classifier.

3.2. Experiments on the proposed incremental algorithm

To validate the performance of the proposed incremen-
tal algorithm, four real-world data sets with varied size
and number of classes from UCI machine learning repository
[http://archive.ics.uci.edu/ml/] are employed for empirical study
in the following test [5]. A detail description of the four data sets
can be found in Table 4. In this simulation, each data set is sliced
into chunks with size between 150 and 300. At each run, one chunk
is selected to be added to the training set according to its arriving
order, and the subsequent chunks are fed to the classifier according
to its arriving order.

In this experiment, we have included some of state-of-art incre-
Supervised classification of data streams via self-representative
c.2016.02.023

mental learning algorithms including: ADAIN.MLP [5], ADAIN.SVR
[5], Learn++ [33] and IMORL [34]. Our major focus here is to demon-
strate that the proposed IS3RS algorithm can learn the informative
and representative training set and labeled set, by predicting the

Table 2
A detail description of SubUSPS chunks.

Chunk Classes # Number

Chunk 1 0; 3; 5 25; 25; 50
Chunk 2 0; 3; 2; 7 25; 25; 25; 25
Chunk 3 2; 7; 1; 4 25; 25; 25; 25
Chunk 4 1; 4; 6; 9 25; 25; 25; 25
Chunk 5 6; 9; 8 25; 25; 50
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Table  3
An example of the labeled set update.Q8

Chunk Exemplars Training set Labeled set

Classes # No. Classes # No. Classes # No.

Chunk 1 0; 3; 5 4; 5; 7 0; 3; 5 4; 5; 7 ∅ ∅
Chunk  2 0; 3; 2; 7 3; 4;4;4 0; 3; 5;2;7 7;9;7;4;4 0; 3; 5 4; 5; 7
Chunk  3 2; 7; 1; 4 6; 3; 2;5 0; 3; 5; 2; 7; 1; 4 5; 6; 7; 8; 6; 2; 5 0; 3; 5; 2; 7 5; 6; 7; 2; 3
Chunk 4 1; 4; 6; 9 2; 5; 4;2 0; 3; 5; 2; 7; 1; 4; 6; 9 5; 6; 7; 5; 5; 4; 7; 4; 2 0; 3; 5; 2; 7; 1; 4 5; 6; 7; 5; 5; 2; 2
Chunk 5 6; 9; 8 5; 4; 7 0; 3; 5; 2; 7; 1; 4; 6; 9; 8 5; 6; 7; 5; 5; 4; 6; 8; 6; 7 0; 3; 5; 2; 7; 1; 4; 6; 9 5; 6; 7; 5; 5; 4; 4; 3; 2
.  . . . . . . . . . . . . . . 0; 3; 5; 2; 7; 1;4; 6; 9; 8 5; 6; 7; 5; 5; 4; 6; 6; 4; 5

Table 4
A detail description of four UCI data sets.

Class name # Features # Samples # Class

Spambase 57 4601 2
Magic 10 19,020 2
Waveform 40 5000 3
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ost informative exemplars. By using the accumulated knowledge
ver time, we can subsequently add the most confident samples
o update the label. For KNN classifier, we use Euclid distance and
1-Norm as a distance measure, and the number of neighbors is set
s 1 and 3 respectively. Table 5 gives the numerical results of these
ata sets, including the Overall Accuracy (OA, the total classifica-
ion accuracy that is defined as the ratio of the number of correctly
lassified examples to total examples), Average Accuracy (AA, the
verage value of classification accuracies for each class) as well as
appa Coefficient (KC, an accuracy assessment that is defined as the
atio of (Po − Pe)  to 1 − Pe,  where Po and Pe are the observed label
greement and expected label agreement respectively). In essence,
or classification tasks, the Kappa Coefficient measures the associ-
tion between the ground truth labels to the labels that acquired
y classifiers and helps to evaluate the predicted labels.

It can be observed from Table 5 that, in most cases, the proposed
lgorithm obtained the best numerical results compared to other
ethods. But in some cases, the classification result is not the best.
Please cite this article in press as: Z. Feng, et al., Incremental Semi-
selection, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

his is perhaps due to the fact that not all the informative exemplars
re included in the labeled set.

able 5
 comparison of the proposed IS3RS algorithm with some state-of-art methods.

Data set Method Classification accuracy

Class 1 Class 2 Class 3 Cl

Spambase ADAIN.MLP [5] 0.8820 0.9352 – – 

ADAIN.SVR [5] 0.8990 0.9205 – – 

Learn++ [33] 0.8532 0.9561 – – 

IMORL [34] 0.9106 0.8929 – – 

IS3RS 0.9072 0.9344 – – 

Magic ADAIN.MLP [5] 0.9315 0.7137 – – 

ADAIN.SVR [5] 0.9319 0.7395 – – 

Learn++ [33] 0.9523 0.6786 – – 

IMORL [34] 0.8404 0.7836 – – 

IS3RS 0.9117 0.7980 – – 

Waveform ADAIN.MLP [5] 0.7843 0.8230 0.8193 – 

ADAIN.SVR [5] 0.7576 0.8198 0.8474 – 

Learn++ [33] 0.7870 0.8360 0.9072 – 

IMORL [34] 0.7575 0.8000 0.8009 – 

IS3RS 0.8776 0.8466 0.8050 – 

Statlog ADAIN.MLP [5] 0.9602 0.9131 0.9169 0.4
ADAIN.SVR [5] 0.9584 0.8889 0.9305 0.5
Learn++ [33] 0.9696 0.8860 0.9327 0.5
IMORL [34] 0.9000 0.8918 0.8566 0.5
IS3RS 0.9708 0.9803 0.8837 0.5
Fig. 4. The running time of our algorithm under different chunk size (Magic dataset).

3.3. Investigation on the computational complexity

In this experiment, we  test the Magic data set to analyze
the computational complexity of the proposed framework, when
different size of chunk is used. The running time of the initial
exemplars selection procedure for all chunks is shown in Fig. 4
Supervised classification of data streams via self-representative
c.2016.02.023

chunks decreases with respect to the increase of the chunks size,
the time is mainly decided by the chunk size not the number of

ass 4 Class 5 Class 6 OA AA KC

– – 0.9142 0.9086 0.8197
– – 0.9120 0.9098 0.8164
– – 0.9143 0.9046 0.8209
– – 0.9000 0.9018 0.7929
– – 0.9237 0.9208 0.8405

– – 0.8459 0.8226 0.6697
– – 0.8644 0.8357 0.6928
– – 0.8547 0.8155 0.6665
– – 0.8205 0.8120 0.6130
– – 0.8717 0.8549 0.7162

– – 0.8132 0.8089 0.7223
– – 0.8077 0.8083 0.7204
– – 0.8547 0.8434 0.7694
– – 0.7814 0.7861 0.6902
– – 0.8384 0.8431 0.7720

837 0.6417 0.8494 0.8387 0.8005 0.8040
180 0.7235 0.8345 0.8471 0.8144 0.8163
651 0.6958 0.8545 0.8558 0.8228 0.8272
653 0.6841 0.7897 0.8079 0.7851 0.7687
217 0.8143 0.7862 0.8519 0.8298 0.8186
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hunks, which can be seen from Fig. 4. The reason lies in the fact
hat the optimization needs to update variables by using a singular
alue decomposition of a matrix, whose computational complexity
elies on the size of chunks. Therefore, if the computational time is
imited, we should limit the chunk size.

As mentioned at the beginning, we are now in the era of big data,
ince the data are large both in the dimensionality and volume.

hen dealing with large scale data, we can extend the proposed
lgorithm to a distributed version and realize it on a parallel
latform. For each data chunk, we can find its representative indi-
idually on a slave machine, and then synthesize the exemplars to

 master machine to update the training set by adding the most
onfident exemplars.

. Conclusion

In this paper, we proposed a new incremental semi-supervised
earning framework via representation learning for stream data
lassification. The key idea of this new algorithm is to improve the
lassification performance based on the information incrementally
earned from the testing data. Representative learning is used to
btain informative exemplars of the stream data, and co-training
echnique is used to label the exemplars. We  investigate the effec-
iveness of the proposed algorithm on some benchmark datasets,
nd compare it with some state-of-the-art results on incremental
earning. The results show that our method can find informa-
ive exemplars to enlarge the training set and gradually find new
lasses. Moreover, our method can achieve higher classification
esults than its counterparts. The proposed algorithm has potential
usiness applications in stock forecasting and other data mining
asks. So it can be embedded into a business forecasting software
o deal with large scale data streams or “big” dataset. Future work
ill be taken on an extension of our method to a distributed version

nd a realization on a parallel computing platform.
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