
A

P

TQ1

M

a

A
R
R
A
A

K
N
T
S
S
A

1

a
u
p
o
l
[
c
a
t
Z
t
c
c
a
gQ2

c
w
m
f
m
i
m

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
ARTICLE IN PRESSG Model
SOC 3592 1–11

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

arametric system identification using neural networks

arek A. Tutunji
echatronics Engineering Department, Philadelphia University, Jordan

 r t i c l e i n f o

rticle history:
eceived 25 November 2013
eceived in revised form 4 March 2016
ccepted 8 May 2016
vailable online xxx

a b s t r a c t

Neural networks are used in many applications such as image recognition, classification, control and
system identification. However, the parameters of the identified system are embedded within the neural
network architecture and are not identified explicitly. In this paper, a mathematical relationship between
the network weights and the transfer function parameters is derived. Furthermore, an easy-to-follow
algorithm that can estimate the transfer function models for multi-layer feedforward neural networks is
eywords:
eural networks
ransfer functions
ystem identification
ystem response

proposed. These estimated models provide an insight into the system dynamics, where information such
as time response, frequency response, and pole/zero locations can be calculated and analyzed. In order to
validate the suitability and accuracy of the proposed algorithm, four different simulation examples are
provided and analyzed for three-layer neural network models.

© 2016 Elsevier B.V. All rights reserved.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
RMA models

. Introduction

Artificial Neural Networks (ANN) are mathematical models that
re used to imitate the biological neurons in the brain. They are
sed as black box models to identify unknown functions by map-
ing input–output data. Many books have been written on the use
f ANN in identification and control applications. Haykin [1], col-

ected and established solid foundations in the theory of ANN. Liu
2] presented various ANN structures and discussed their appli-
ations in nonlinear identification and control systems (adaptive
nd predictive). Norgaard et al. [3] described different approaches
o ANN-based identification and control of dynamic systems.
ilouchin with Jamshidi [4] collected and edited several articles
hat were concerned with the theory and applications of intelligent
ontrollers. Furthermore, Demuth et al. [5] described different ANN
ontrol architectures (model predictive control, NARMA-L2 control,
nd model reference control) that were used in the ANN Toolbox
uide for MATLAB.

Isermann and Munchhof [6] published a well-structured and
omprehensive book entitled Identification of Dynamic systems
here they described and compared many system identification
ethods. In their description of neural networks, they made the

ollowing statement “Their main disadvantage is the fact that for
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

ost neural networks, the net parameters can hardly be interpreted
n a physical sense, making it difficult to understand the results of the

odeling process (Page 19)”. They reiterated the statement again

E-mail addresses: ttutunji@yahoo.com, ttutunji@philadelphia.edu.jo

ttp://dx.doi.org/10.1016/j.asoc.2016.05.012
568-4946/© 2016 Elsevier B.V. All rights reserved.

68

69

70
“The main disadvantage is the fact that the resulting models cannot be
interpreted well as the structure of the neural nets in general does not
allow a physical interpretation (Page 534)”. This paper is concerned
with transforming the ANN model into transfer function model and
therefore providing an insight into the physical system behavior.

Neural networks have been used extensively in identifying
dynamic systems in different publications. Efe and Kaynak [7]
studied and compared different ANN structures used in the identifi-
cation of nonlinear systems. Liu et al. [8] used Volterra polynomial
basis function neural networks for on-line identification of non-
linear systems. Gabrijel and Dobnikar [9] used recurrent neural
networks for on-line identification and reconstruction. These
researchers showed the capability of neural networks to identify
systems.

Sahoo et al. [10] used different neural network model structures
(polynomial and trigonometric expansions) to identify nonlinear
autoregressive models. The functional expansions were used to
capture the delayed input–output data which were then multi-
plied by the network weights and used as inputs to a hyper-tangent
activation function. They proposed a robust H∞ filter learning
algorithm to update the network weights. They used simulated
nonlinear time-varying plants to show that their proposed algo-
rithm provides lower mean-square-error than forgetting factor
recursive least squares algorithm, especially when noise is added.
However, the converged ANN weights were not compared to the
simulated plants’ parameters.
entification using neural networks, Appl. Soft Comput. J. (2016),

Coban [11] proposed a recurrent neural network with added
context layer for dynamic system identification. The proposed net-
work architecture was constructed using a general feedforward
network, but with added ‘special’ hidden layer that interacts exclu-

71

72

73

74

dx.doi.org/10.1016/j.asoc.2016.05.012
dx.doi.org/10.1016/j.asoc.2016.05.012
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ttutunji@yahoo.com
mailto:ttutunji@philadelphia.edu.jo
dx.doi.org/10.1016/j.asoc.2016.05.012

 ING Model
A

2 Comp

s
w
v
i
n
n
l

n
d
w
t
c
r
f

p
l
t
c
E
t
o

r
t
n
t
u
t
t
t
t
w

b
n
i
i
B
p

o
m
o
b
m

w
r
u
w
d
w

n
r
t
f
n
s
t
i
a
f
m

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196
ARTICLESOC 3592 1–11

 T.A. Tutunji / Applied Soft

ively with the ‘original’ hidden layer. Dynamic backpropagation
as used to train the network and update its weights. The work was

alidated using linear and nonlinear simulated plants and exper-
mental DC motor and showed that the results of the proposed
etwork provided better performance than the Elman recurrent
etwork. However, the converged network weights were not ana-

yzed nor were they compared to the original plants’ parameters.
Deng [12] proposed a series-parallel hybrid structure with two

eural networks where one network was used to generate the
esired plants’ outputs that were used for training the second net-
ork. Such hybrid structure can improve the mapping capability of

he networks and tested the proposed model on experimental 3D
rane system to demonstrate the validity of his work. However, the
elationship between the network weights and the crane’s transfer
unction was not studied.

Darus and Al-Khafaji [13] used neural networks for non-
arametric identification of flexible plates. They conducted

aboratory experiments and validated their work by comparing
he model response with the measured data. They also performed
orrelation tests with the multi-layer perceptron neural, adaptive
lman networks, and adaptive neural fuzzy networks. However,
heir interest was concerned with nonparametric identification
nly.

Han et al. [14] investigated an automatic self-organizing neu-
al network that adapted its architecture (number of neurons and
opology) during the training process in order to improve the
etwork performance. They provided the pseudo code of the adap-

ive connecting and pruning algorithm and feedforward computation
sed. They performed simulations of nonlinear models to compare
heir algorithm results with other adaptive networks and showed
hat the proposed algorithm provided better performance in CPU
ime, mean-square-error, and average-percentage error. However,
hey did not elaborate on the relationship between the network
eights and the simulated plant’s parameters.

Xie et al. [15] developed an identification method using ANN
ased on Bouc–Wen differential model to identify memory-type
onlinear hysteretic systems. They conducted laboratory exper-

ments to identify the restoring force of wire cable vibration
solation system. They were able to identify the parameters of the
ouc–Wen model, but they did not relate these parameters to the
lant’s transfer function.

All the previously described publications succeeded in devel-
ping ANN architectures, learning algorithms, and mathematical
odels for system identification applications. However, none

f these researchers provided a clear mathematical relationship
etween the network weights and the identified systems in para-
etric format.

Another closely-related application that researchers worked on
as time-series forecasting. Khashei and Bijari [16] used neu-

al network models for time-series forecasting while Zhang [17]
sed a hybrid Auto-Regressive-Moving-Average and neural net-
ork model for time-series forecasting. Again, these researchers

id not provide the mathematical relationship between the net-
ork weights and the estimated functions.

From the vast amount of research published in the area of neural
etwork identification, only a few investigated the mathematical
elationship between the network weights and the parameters of
he identified systems. Fung et al. [18] derived equations for the
requency response and general transfer functions of multi-layer
etworks in terms of the network weights. They used series expan-
ions and Volterra kernel within the network models to establish
heir equations. However, their work was general, very mathemat-
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

cally involved, and did not provide a clear path to follow. Chon
nd Cohen [19] did impressive work in estimating the parameters
or linear and nonlinear Auto-Regressive Moving-Average (ARMA)

odels using neural network weights. They provided simulation
 PRESS
uting xxx (2016) xxx–xxx

results for several systems and compared the results between the
network identification and least square ARMA identification. How-
ever, their work was restricted to polynomial activation functions
and did not consider the frequency responses of their models. Lopez
and Caicedo [20] used multilayer perceptron for parametric iden-
tification. They showed explicit equations for the linear activation
cases, but they did not provide those equations for the nonlinear
activation functions. Instead, they re-structured the error criteria
and used Bayesian training to deal with the nonlinearities. In all of
the described work, none provided a clear and easy-to-follow algo-
rithm that shows how to relate the network weights to system’s
parameters.

Chen and Chen [21] discussed a neural-network-based system
identification technique to determine the z-transfer function of a
building envelope from experimental data. Neural networks were
used to determine the Markov parameters of the process and Eigen-
system realization algorithm was used to identify a minimal order
state space presentation. However, the neurons were assumed to
operate in the linear range only. Also, the work studied only the
hyperbolic activation function and the simulation results were
applied to the specific case of heat conduction through a wall.

Fei et al. [22] proposed a linear recurrent neural network and
identified transfer function matrix models for multi-variable sys-
tems. Simulation results were provided to show that the proposed
method can deliver the transfer function parameters from the neu-
ral network weights. However, the active functions of the hidden
and output layers were linear and therefore the proposed method
can only be applied in the identification of linear systems. They con-
cluded that investigation is required to establish whether similar
results can be found when nonlinear activation functions are used.

In previous work, Tutunji [23] presented a method to identify
transfer functions for linear models using neural network weights
with single layer only. This paper builds on those results and
expands the work to include multi-layer neural network and non-
linear models.

The main contribution of the paper is the establishment of a
clear relationship between the ANN weights and the transfer func-
tion parameters. Therefore, providing better interpretation (in a
physical sense) where important information, such as frequency
response and pole locations, can be explored. More importantly, a
clear and easy-to-follow algorithm is provided that can transform
the network results into ARMA models and therefore identify the
system’s transfer function.

In Section 2, theoretical background for system identification
and neural network architecture is provided. Section 3 provides the
mathematical derivations for the proposed method and describes
the algorithm used. The simulation results are given in Section 4
and the conclusion is provided in Section 5.

2. Theoretical background

This section provides the background theory that is essential
to the proposed algorithm and is divided into two parts: system
identification and neural network architecture.

2.1. System identification

System identification is the process of using appropriate
mathematical models and learning algorithms in order to map
experimental data by minimizing an error criterion between the
entification using neural networks, Appl. Soft Comput. J. (2016),

system’s desired output and the model output.
Auto-Regressive Moving-Average (ARMA) models are linear

regression models that use difference (or differential) equations
to relate the model output to present inputs, past inputs and past

197

198

199

200

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx 3

o

y

W

y

w
w
c

H

�
[
v
p[
o
p
a
f

(
e
p
u

r
s
d
s
m
H

l

d
t
f
w
f

Input
Outpu t

TDU

TDU
x(k)

Hidden Neurons

Output Neuron

 ynet(k)

Fig. 2. General architecture for a dynamic network.

wou t1

woutH

wout2
ynet(k)

y(k-1)
y(k-2)

…
y(k-n)

x(k)
x(k-1)

…
x(k-m)

z1(k)

z2(k)

zH(k)

vjh

wih

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274
Fig. 1. General system identification block diagram.

utputs. A general discrete-time ARMA model is presented as:

(k) = a1y (k − 1) + . . . + any (k − n) + b0x (k) + . . . + bmx (k − m)

(1)

hich can also be presented as:

(k) =
m∑
i=0

bix(k − i) +
n∑
j=1

ajy(k − j) (2)

here x(k) and y(k) are the model’s input and output at sample k
hile bi and aj are the model’s parameters. The transfer function

an be found by using the z-transform as follows:

(z) = Y (z)
X (z)

= b0 + b1z−1 + . . . + bmz−m

1 − a1z−1 − . . . − anz−n
(3)

Eq. (2) can be put in vector format as y (k) = �T∅ (k) where
T = [a1, . . .an, b0, . . ., bm] is the parameter vector and ∅ (k) =
y (k − 1) , . . .y (k − n) , x (k) , . . ., x (k − m)] is the measurement
ector [6,24]. Parametric system identification approximates the
arameters, aj and bi, to find an estimated parameter vector �̂T =
â1, . . .ân, b̂0, . . ., b̂m

]
which can be used to calculate an estimated

utput ŷ (k) = �T∅ (k). The goal is to find the appropriate estimated
arameters to minimize the error between the desired output y(k)
nd estimated output ŷ (k). Fig. 1 shows the general block diagram
or system identification.

Algorithms, such as Least Square (LS), Recursive Least Squares
RLS), Recursive Prediction Error Method (RPEM) are well-
stablished in literature [6,24] and can be used for such purposes. In
revious work, impulse response data within ARMA models were
sed to identify mechatronic systems [25] with good success.

Many physical systems are nonlinear in nature and therefore
equire nonlinear modeling. However, the many structural pos-
ibilities of non-linear relations between the input and output of
ynamic systems makes it difficult to identify many types of these
ystems with accurate parametric models. Identification of such
odels can involve advanced concepts such as Volterra series and
ammerstein models [26].

Another option is to modify the ARMA model to include non-
inearity terms and create a Nonlinear ARMA model (NARMA) as:

y (k) =
∑m

i=0
bix (k − i) +

∑n

j=1
ajy (k − j) +

∑m

i=0

∑n

j=0
bij

x (k − i) x (k − j) +
∑m

i=1

∑n

j=1
aijy (k − i) y (k − j)

+
∑m

i=0

∑n

j=1
cijx (k − i) y (k − j) (4)

These models add new parameter (aij , bij , and cij) and introduce
ifficulties in predicting the appropriate order for each summation
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

erm. Moreover, these models do not follow the traditional transfer
unction provided in Eq. (3) and therefore are more difficult to deal

ith. These obstacles make neural networks an appropriate choice
or modeling nonlinear systems.

275
Fig. 3. Neural network architecture used.

2.2. Neural network architecture

Neurons are information-processing units and are the basic ele-
ments in neural networks. ANN can be composed of multiple layers
where each layer can be composed of several neurons. For feedfor-
ward networks, the information flows in one direction (i.e. input to
output) while recurrent networks allows for feedback signals. For
the special case where all the neural network’s inputs are composed
of delayed inputs and delayed network’s output, the network can
be referred to as dynamic network.

Fig. 2 shows a dynamic network with one ‘main’ input and one
output, x(k) and ynet(k) respectively, where k is the sample num-
ber. The TDU is a Time Delay Unit, equivalent of Z−n, which results
in delayed samples. Therefore, the network can be used as multi-
inputs where delayed I/O samples are fed to the network as inputs.
The delay will depend on the model order.

Another option is to use the delayed plant’s output (instead
of the delayed network’s output) as the feedback to the network.
Therefore, the network’s output becomes a function of past inputs
and outputs as given in the following equation:

ynet (k) = f (x (k) , x (k − 1) , . . ., y (k − 1) , y (k − 2) , . . .) (5)

This is considered a feedforward network with multi-inputs
y(k−1) . . . y(k−n), x(k), . . ., x(k−m), as shown in Fig. 3. These input
samples are the result of the TDU where each input is multiplied by
its corresponding weight, such that vjh connects input y(k−j) with
hidden neuron h and wih connects input x(k−i) with hidden neuron
h. The hidden nodes have outputs z1(k) . . . zh(k) which are in-turn
multiplied by output weights wout1 . . . woutH to provide the net-
work’s output ynet(k). The network’s output is written as ynet(k)
to differentiate it from the plant’s output y(k) as described in the
previous section.

Bias weights were not used in this network in order to avoid
entification using neural networks, Appl. Soft Comput. J. (2016),

introducing new inputs (i.e. the objective was to limit the network’s
inputs to x(k) and delayed samples of x(k) and y(k) so as to mimic
the I/O in a general discrete-time systems).

276

277

278

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

4 T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx

Table 1
Neuron activation functions with Taylor expansion result.

Function name Math function f(x) Function derivative f′(x) 1st two terms of the Taylor expansion at 0 Approximation result

Hyperbolic tangent with ̨ = 1 1−e−x
1+e−x 0.5

(
1 − f 2 (x)

)
f (0) + 0.5

(
1 − f 2 (0)

)
x 0.5x

Hyperbolic tangent with ̨ = 2 1−e−2x
1 − f 2 (x) f (0) +

(
1 − f 2 (0)

)
x x

y

z

H
n
b

a
n
c

S

b
t
2

N

H
a
i
o
l

c

r
t
c
w

l
n
t
t

3

m
m

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350
1+e−2x

Sigmoid 1
1+e−x f (x) (1 − f (x))

Gaussian e−(x−c)2 −2 (x − c) e−(x−c)2

The network’s mathematical operations are:

net(k) = g

(
H∑
h=1

zh(k)wouth

)
(6)

h(k) = f

⎛
⎝ m∑

i=0

wihx(k − i) +
n∑
j=1

vjhy(k − j)

⎞
⎠ (7)

ere, f and g are the activation functions for the hidden and output
odes respectively. There are several activation functions that can
e used such as the sigmoid and the hyper tangent [1].

The goal is to find the optimal network weights (i.e. vjh, wjh
nd wouth) in order to minimize an error criterion (between the
etwork’s output, ynet(k), and the desired plant output y(k)). One
ommonly used error is the Sum Square Error (SSE),

SE =
∑K

k=1
(e (k))2 =

∑K

k=1
(ynet (k) − y (k))2 (8)

Several algorithms, such as the backpropagation with Leven-
erg–Marquardt training, can be used to train the network (i.e. find
he optimal weights) [6]. The Levenberg-Marquardt approximates
nd derivative (i.e. the Hessian) using 1st order derivatives such as:

ewWeights = OldWeights −
[
JT J + �I

]−1
JT e (9)

ere, e is a vector of network errors (difference between network
nd desired outputs with elements e(k) as described in Eq. (8)), I
s the identity matrix, and J is the Jacobian matrix (first derivatives
f the network errors with respect to the weights). For the output

ayer, the Jacobian elements are calculated from:

∂e
∂wouth

= ∂e
∂ynet

∂ynet

∂wouth
(10)

As for first layer weights (i.e. vjh and wih), the Jacobian matrix
an be computed using standard backpropagation technique:

∂e
∂wih

= ∂e
∂ynet

∂ynet

∂zh

∂zh
∂wih

(11)

∂e
∂vjh

= ∂e
∂ynet

∂ynet

∂zh

∂zh
∂vjh

(12)

This paper is not concerned with the weight convergence, but
ather with using the converged network weights to approximate
he original system’s transfer function. Therefore, no detailed dis-
ussion will be provided for training the network weights. This is
ell-established in the literature [1].

Neural networks have been used successfully in identifying
inear and nonlinear systems. This is due to the fact that neural
etworks have good approximation capabilities and adaptive fea-
ures. However, the final neural network model is rarely related to
he transfer function parameters (i.e. poles and zeros).

. Proposed NN2TF algorithm
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

In the previous sections, mathematical presentations for ARMA
odels and neural network were provided. In this section, a mathe-
atical relationship between the ARMA and ANN models is derived
f (0) + f (0) (1 − f (0)) x 0.5 + 0.25x

e−c
2 + 2ce−c2

x c1 + c2x

and a Neural Network to Transfer Function (NN2TF) algorithm is
provided.

A common activation function used in neural networks is the
hyperbolic tangent that provides smooth output between −1 and
+1 and is easy to differentiate. Therefore, the output of the hidden
node, from Eq. (7), becomes:

zh (k) = 1 − e−∝neth(k)

1 + e−∝neth(k)
(13)

neth (k) =
∑m

i=0
wihx (k − i) +

∑n

j=1
vjhy (k − j) (14)

The following results are derived for the special case where the
activation function at the hidden nodes, f in Eq. (7), is the hyperbolic
tangent (with ̨ = 1) and the activation function at the output node,
g in Eq. (6), is the linear summation.

Taylor expansion can be used to approximate Eq. (13) about
point ‘0’ (i.e. neth(k) = 0). Note that the hyperbolic tangent range
is between −1 and 1 and therefore approximation around the mid-
point (i.e. zero) is reasonable.

zh (k) = 1 − e0

1 + e0
+ 2e0(

1 + e0
)2 (neth (k) − 0)

+
−2e0

(
1 − e0

)
(

1 + e0
)3 (neth (k) − 0)2 + . . . (15)

To avoid the nonlinearities, only the first two terms are used and
Eq. (15) is simplified to:

zh (k) = 0.5
∑m

i=0
wihx (k − i) + 0.5

∑n

j=1
vjhy (k − j) (16)

The output neuron gives:

ynet (k) =
∑H

h=1
(wouthzh (k)) (17)

Substituting Eq. (16) in Eq. (17) results in:

ynet(k) = 0.5
H∑
h=1

⎛
⎝wouth

⎛
⎝ m∑

i=0

wihx(k − i) +
n∑
j=1

vjhy(k − j)

⎞
⎠

⎞
⎠
(18)

By comparing Eq. (18) with Eq. (2), the ARMA parameters can
be estimated as:

âj = 0.5

(
H∑
h=1

(
wouthvjh

))
(19)

b̂i = 0.5

(
H∑
h=1

(wouthwih)

)
(20)
entification using neural networks, Appl. Soft Comput. J. (2016),

These equations establish a mathematical relationship between
the network weights and the ARMA parameters. Therefore, the net-
work information can be used for parametric identification (i.e.
approximate transfer function).

351

352

353

354

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx 5

Table 2
ARMA parameter estimators for different activation functions.

Function âj b̂i Offset

Hyper tangent, ̨ = 1 0.5

H∑
h=1

(
wouthvjh

)
0.5

H∑
h=1

(wouthwih) –

Hyper tangent, ̨ = 2

H∑
h=1

(
wouthvjh

) H∑
h=1

(wouthwih) –

Sigmoid 0.25

H∑
h=1

(
wouthvjh

)
0.25

H∑
h=1

(wouthwih) 0.5

H∑
h=1

(wouth)

H∑() H∑ H∑

f
a
a

r
b

y

y

)

y

t
t
t
d
e
i

I
t
g
a
b
w
w
s
a
m

(
t
i
t
b
S
A

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430
Guassian c2

h=1

wouthvjh

Similar derivations can be carried out when different activation
unctions are used for the hidden layer. Table 1 shows different
ctivation functions with their derivatives, Taylor expansions, and
pproximation results.

Substituting the approximated results displayed in Table 1
esults in Eq. (17) produces the following equations for the hyper-
olic tangent (with ̨ = 2), sigmoid, and Gaussian:

net (k) =
∑H

h=1

(
wouth

(∑m

i=0
wihx (k − i) +

∑n

j=1
vjhy (k − j)

))
(21)

net (k) =
∑H

h=1

(
wouth

(
0.5 + 0.25

∑m

i=0
wihx (k − i) +0.25

n∑
j=1

vjhy (k − j)

))
(22

net (k) =
∑H

h=1

(
wouth

(
c1 + c2

∑m

i=0
wihx (k − i) + c2

∑n

j=1
vjhy (k − j)

))
(23)

Note that the sigmoid and Gaussian functions have an added
erm (first term in Eqs. (22) and (23)) that is not multiplied by either
he inputs or outputs of the system. These terms will not be part of
he transfer function parameters, but rather a DC offset (as will be
emonstrated in Example 2 in the simulation section). Using these
quations, the estimated ARMA results were derived and displayed
n Table 2.

Stability of ANN have been discussed in many publications.
n recent work, Fu et al. [27] presented a robust ANN identifier
hat used Lyapunov function and singularity perturbed methods to
uarantee bounded errors and weights. Gil et al. [28] presented an
ffine three-layer state-space ANN with global stability conditions
ased on Lyapunov stability theory. In general, learning algorithms
ill provide stable ANN models as long as they keep the network
eights bounded within acceptable limits. The discussion of ANN

tability is not within the scope of this work. However, the derived
pproximations in Table 2 do not guarantee stability (i.e. stable ANN
odel can results in unstable ARMA model) as explained next.

The stability of the discrete-time ARMA models, shown in Eq.
2), depend of the value of the aj parameters. These aj parame-
ers determine the pole location of the transfer function shown
n Eq. (3). The system would be unstable if the poles fall outside
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

he unit circle. Therefore, it is possible to find an ANN model with
ounded-weights that transforms into unbounded ARMA model.
uch a model is provided in the simulation section for Example 4.

 simple way to resolve this issue is to move the poles inside the
c2

h=1

(wouthwih) c1

h=1

(wouth)

unit circle by reducing the poles’ magnitude without changing their
angle as follows:

Fig. 4 shows a complete step-by-step description of the pro-
pose algorithm. The algorithm can be divided into two stages: ANN
training and transfer function transformation. The steps shown in
the first stage are for general ANN training which can be imple-
mented using Neural Network Toolbox codes (in MATLAB) or the
researcher’s developed program. The ANN structure should be com-
posed of three layers (input, hidden, and output) with an activation
function (chosen from Table 1) for the hidden layer and linear acti-
vation function for the output layer.

The second stage specify the proposed NN2TF transformation
where Table 2 is used to transform the network weights to ARMA
parameters. Then, the described pseudo code is used to adjust the
model poles and the aj parameters. Finally, the transfer function is
created from the ARMA model (as shown in Eqs. (2) and (3)).

The proposed algorithm described in Fig. 4 shows how to trans-
form an ANN model into an ARMA model. The advantage of this
transformation is the ability to derive a transfer function from the
network weights and therefore provide insight into the system
under consideration.

All models contain errors and there is a tradeoff between model
complexity and computation time. One way to test the models
accuracy is through simulation runs by examining the resulting
errors and overall system performance. Four simulation examples
are provided in the next section in order to validate the proposed
work.

4. Simulation results and discussion

The algorithm described in Section 3 was implemented using
MATLAB. The simulation results are presented in this section and
are divided into two parts: linear models and nonlinear models.

4.1. Linear models
entification using neural networks, Appl. Soft Comput. J. (2016),

Known ARMA models were used to test the proposed algorithm
to validate the accuracy of the estimated model and to compare the
original and estimated transfer functions.

431

432

433

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

6 T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx

Yes

Start

Initialize network weights
randomly

Transform the network weights to
ARMA parameters using equations

displayed in Table 2

Calcul ate the root s of the
ARMA denominato r

End

Obtain input / output data from
desired system

Choose the model order and the
number of hid den nodes

Train the neural network until
conv ergence

Capture the network
weight s

Roots
> 1.0 ?

Adjust roots
to stabilize

model

Adjust aj parameters in the
ARMA model usin g new roots

Calculate the Z- transform to
find the transfer fun ction

No

Stage One Stage Two

ropos

i
H
w
w

p
m
d
A
T

r
i
n
m
u
t
t
d
l

(
A
i

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479
Fig. 4. Flowchart for p

The backpropagation was used to train the network. Other learn-
ng algorithms can be used that might give more accurate results.
owever, the scope of this work is not concerned with the net-
ork training, but rather with the transformation from the network
eights to the system parameters.

A program was used to create random ARMA models where the
arameters were generated from a normal distribution with a zero
ean and a standard deviation of one. The input data was also ran-

omly distributed with zero mean and standard deviation of one.
 total of 60 runs were recorded and the results are displayed in
ables 3 and 4.

Table 3 displays the statistical data for the neural network model
esults where the network architecture and ARMA model were var-
ed. The data sample size was varied between 25 and 100, the
umber of hidden neurons was varied between 3 and 5, and the
odel order was varied between 3, 4, and 5. These variations were

sed in order to test the proposed algorithm under different archi-
ectures and to provide appropriate statistical results. In all cases,
he hypertangent tangent activation function was used in the hid-
en layer and a linear activation function was used in the output

ayer, as shown in Fig. 3.
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

The error criteria displayed in Table 3, SSE as described in Eq.
8), confirmed that the ANN was able to estimate the generated
RMA models with good accuracy as the results show that the SSE

s very small. These results were expected as the success of ANN
ed NN2TF algorithm.

in identification applications is well-established. However, Table 3
was used as benchmark to validate the proposed method result
displayed in Table 4.

The statistical results for the estimated transfer function, gen-
erated by the proposed algorithm described in Fig. 4, are shown
in Table 4. Those are the same runs used in Table 3 (i.e. for each
run, the converged network weights were transformed to the esti-
mated parameters of the transfer function). Comparisons between
Tables 3 and 4 show that the SSE was increased by magnitude of 10.
This increase was expected because the proposed algorithm gen-
erated an approximate transfer functions using the ANN weights.
Still, the proposed algorithm was able to provide estimated transfer
functions that were able to follow the original transfer functions
with small error differences. These results were mainly used to
validate the accuracy of the proposed algorithm.

Because the system parameters and input data were all gener-
ated randomly, there was no need to add noise (i.e. the noise was
already embedded in the system). However, the issue of noise will
be considered in Example 4.

In order to have better insight into the proposed algorithm’s
results, one simulation run was explored in more details. The
entification using neural networks, Appl. Soft Comput. J. (2016),

following example discusses the impulse, unit step, and bode
responses of the estimated model. Other simulation runs displayed
in Table 4 would provide similar accuracies between the original
and identified models.

480

481

482

483

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx 7

Table 3
SSE simulation results for the neural network model.

No. of samples No. of hidden nodes Model order Min Max Average Variance

25 samples H = 3 Order = 3 2.74E − 04 2.10E − 02 6.59E − 03 7.05E − 05
Order = 4 7.17E − 04 9.36E − 02 4.15E − 02 2.08E − 03
Order = 5 5.20E − 04 6.40E − 03 3.62E − 03 5.80E − 06

H = 5 Order = 3 7.98E − 04 2.86E − 02 7.42E − 03 1.42E − 04
Order = 4 2.51E − 04 4.00E − 03 2.16E − 03 3.09E − 06
Order = 5 2.10E − 04 4.58E − 02 1.08E − 02 3.84E − 04

100 samples H = 3 Order = 3 2.50E − 03 1.21E − 01 5.72E − 02 1.83E − 03
Order = 4 1.30E − 02 1.64E − 01 8.14E − 02 4.62E − 03
Order = 5 2.40E − 03 3.97E − 01 1.42E − 01 2.29E − 02

H = 5 Order = 3 1.05E − 04 1.33E − 02 4.43E − 03 3.40E − 05
Order = 4 2.17E − 02 5.12E − 01 2.02E − 01 3.80E − 02
Order = 5 1.50E − 03 1.81E − 01 7.49E − 02 5.47E − 03

Average 3.66E − 03 1.32E − 01 5.29E − 02 6.29E − 03

Table 4
SSE simulation results for the estimated transfer functions.

No. of Samples No. of hidden nodes Model order Min Max Average Variance

25 samples H = 3 Order = 3 0.0011 0.4478 0.1533 0.0394
Order = 4 0.0391 1.5265 0.6263 0.3816
Order = 5 0.0177 2.5634 0.7010 1.1271

H = 5 Order = 3 0.0173 0.1501 0.0657 0.0025
Order = 4 0.0033 0.5537 0.1915 0.0484
Order = 5 0.0026 2.0595 0.5198 0.7539

100 samples H = 3 Order = 3 0.0061 0.4437 0.1548 0.0300
Order = 4 0.0395 0.6880 0.2786 0.0740
Order = 5 0.0058 2.1865 0.7021 0.7515

H = 5 Order = 3 0.0004 0.0373 0.0104 0.0002
Order = 4 0.1232 3.9365 1.5028 2.7400
Order = 5 0.0086 2.2279 0.6111 0.8611

Average 2.21E − 02 1.40E + 00 4.60E − 01 5.67E − 01

0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

sample

in
p
u
t

E
g

H

a

Table 5
Parameter comparisons for 5th order models.

Denominator parameters a1 a2 a3 a4 a5

Original model −0.2969 −0.5506 0.2466 −0.1297 0.0818
Estimated model −0.3349 −0.5858 0.2540 −0.1308 0.0856

Numerator parameters bo b1 b2 b3 b4

Original model 0.2341 0.0215 −1.0039 −0.9471 −0.3744
Estimated model 0.2444 0.0281 −1.0537 −1.0217 −0.4141

Table 6
Pole and zero locations for 5th order system.

Poles Zeros Gain

Original model 0.4361 0 0.2341
−0.4303 ± 0.7306j 2.4467
0.0637 ± 0.5069j −1.5877

−0.4753 ± 0.4311j

Estimated model 0.4369 0 0.2444
−0.4379 ± 0.7499j 2.4526

minimal error. This validates the proposed algorithm capability of

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498
Fig. 5. Input samples used for 5th order system.

xample 1. The following 5th order transfer function model was
enerated to test the proposed algorithm.

(z) = 0.2341z5 + 0.0215z4 − 1.0039z3 − 0.94171z2 − 0.3744z
z5 + 0.2969z4 + 0.5506z3 − 0.2446z2 + 0.1308z − 0.0818

(24)
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

A total of 100 input samples, as shown in Fig. 5, were generated
nd fed to the model and a neural network with three hidden nodes
0.0520 ± 0.5072j −1.5931
−0.4872 ± 0.4430j

was used to identify the system. Once the ANN weights converged,
the estimated ARMA parameters were calculated.

Table 5 displays the aj and bi parameters for the original system
and the identified model while Table 6 shows the pole and zero
locations for both models. It is clear from the tables that the algo-
rithm was able to estimate the original system parameters with
entification using neural networks, Appl. Soft Comput. J. (2016),

using ANN weights to estimate the transfer function parameters
and therefore confirms the algorithm’s ability to perform paramet-
ric identification.

499

500

501

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

8 T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 6. Output samples for linear model example.

a
i
c

p
t
a
m
I
o
s
r

y
w
c
t
p
a
t

Fig. 8. Step response for linear model example.

The bode plots of both systems is shown in Fig. 10 where the two

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536
Fig. 7. Impulse response for linear model example.

The input data, shown in Fig. 5, was used to excite the original
nd estimated models and the results are shown in Fig. 6. The orig-
nal and estimated models provided similar outputs which further
onfirmed the accuracy of the estimated model.

Impulse and step responses are widely used in evaluating the
lants behavior and are also used in designing appropriate con-
rollers to meet the system’s specifications. Therefore, an impulse
nd unit step signals were applied to the original and estimated
odels and their results are displayed in Figs. 7 and 8, respectively.

n both figures, the estimated model’s response was similar to the
riginal model’s response. This similarity in the behavior demon-
trated the algorithm’s effectiveness in duplicating the desired
esponses.

Another important analysis tool that can be used in system anal-
sis is the frequency response. Once the estimated transfer function
as identified, the frequency responses for both systems were cal-

ulated and the bode plots are shown in Fig. 9. The transfer between
he time-domain and frequency-domain was made possible by the
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

roposed algorithm (i.e. it would be difficult to do similar frequency
nalysis without knowing the transfer function). Note that the sys-
em was appropriately identified in the frequency domain where
Fig. 9. Bode plot for linear model example.

the magnitude and phase responses matched the original frequency
response of the system. It can be seen that the studied system has
low pass filter characteristics with resonant peak at 100 rad/s. This
information can be useful in analyzing different systems and it
would have been difficult to capture using the ANN structure.

Example 2. The following model was generated to test the results
for sigmoid activation function.

H (z) = −1.0360z2 + 1.8780z + 0.9407
z3 − 0.4797z2 + 0.1579z − 0.2143

(25)

A two-layer ANN with four hidden nodes was used with sigmoid
activation function at the hidden layer. Once the network weights
converged, they were converted to ARMA model and the following
transfer function was derived:

Ĥ (z) = −0.1235z2 + 0.2140z + 0.0888
z3 − 0.1839z2 + 0.0761z − 0.0815

(26)
entification using neural networks, Appl. Soft Comput. J. (2016),

systems had similar phase responses. Also, the magnitude response
had similar response, but with 20 dB offset. In this case, the net-
work’s output weights converged to wout = [0.6041, 0.1338, 1.0251,

537

538

539

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx 9

Fig. 10. Bode plot for sigmoid activation function example.

Table 7
SSE NARMA simulation results.

Min Max Average Variance

−

0

2
f

4

v
r
t
m
s

g
m
b
s

E
p

s
a
f
c
h
n

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604
Neural network 0.0687 0.1380 0.1500 0.0030
Estimated transfer function 0.2050 1.3400 0.8270 0.7110

0.3488]. Using the offset in Table 2 for sigmoid function (i.e.

.5
H∑
h=1

(wouth)) provides a 0.7071 offset which is equivalent the

0 dB offset shown in Fig. 10. This result shows that the derivations
or the sigmoid functions are correct.

.2. Nonlinear models

In the previous subsection, many simulation runs were pro-
ided to validate the proposed parameter identification algorithm’s
esults for general linear models (i.e. ARMA models). In this section,
he proposed algorithm will be further tested using two nonlinear

odels: Nonlinear Auto-Regressive Moving-Average (NARMA) and
inusoid with exponential term

First, a NARMA model which was used in Ref. [19] is investi-
ated here. NARMA models use structures that are similar to ARMA
odels (i.e. they build models based on past inputs and outputs),

ut they also include multiplications between the input and output
ignals which produces the nonlinear terms.

xample 3. The following NARMA model is used to validate the
roposed algorithm.

y (k) = 0.8x (k) − 0.13x (k − 2) + 0.2y (k − 1) − 0.11y (k − 3)

−0.11x2 (k − 1) + 0.13y2 (k − 2) − 0.18x (k − 1) y (k − 1) (27)

This model includes three nonlinear terms: input square, output
quare, and input–output multiplication. Because the ANN weights
re initialized randomly, the network weights can converge to dif-
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

erent local optima. Therefore, results for 10 simulation runs were
ollected and displayed in Table 7. The data size and the number of
idden nodes were fixed to 100 and 5 respectively while the order
umber was varied between 3, 4, and 5. Displayed results show
Fig. 11. Comparison results for NARMA system.

that the proposed method causes an increase in SSE when com-
pared to the ANN results. This is expected because the estimated
transfer function is based on linear expansion of the converged ANN
weights. Still, this increase is acceptable because the SSE remains
small.

In order to provide a better insight into the results displayed
in Table 7, the response of a 3rd order dynamic network with 5-
hidden neuron were analyzed in the time-domain and compared to
the original model. Random input was applied to the three models:
original model (i.e. target in Eq. (27)), ANN model, and estimated
transfer function (using proposed method). Note that the estimated
model was able to follow the target with minimal error. Fig. 11
shows that the proposed method can provide good estimation of a
linear transfer function for nonlinear models as the response of the
approximated transfer function closely match the response of the
original (i.e. target) transfer function.

The ANN weights were used to generate the following estimated
transfer function:

Ĥ (z) = 0.9457Z2 + 0.5773z − 0.0793
Z3 − 0.1248Z2 + 0.0045Z + 0.3418

(28)

Next, the impulse of the original NARMA and estimated transfer
function are shown in Fig. 12. Although the estimated model has
some oscillations between 5 and 10 s, but it follows the original
model behavior where it starts with above 0.8 amplitude and settles
down around the 15th sample.

The derivation of the transfer function provided the opportunity
to do frequency-domain analysis where the bode plots are shown
in Fig. 13. The bode plot can reveal important information, such as
the resonance frequency, peak gain, gain margin, and phase mar-
gin. This information can help in the system analysis and in the
design of appropriate controllers. These analysis and design issues
are beyond the scope of this paper, but the contribution was to
make such information available when needed. Such figures would
have been difficult to attain from the ANN model.

Example 4. The following nonlinear function with added noise
was used.

y (k) = sin (x (k)) × e−0.005x(k) + n (k) (29)
entification using neural networks, Appl. Soft Comput. J. (2016),

A feedforward neural network with five hidden nodes and three
unit delays was used. The ANN weights converged to the values
shown in Table 8.

605

606

607

dx.doi.org/10.1016/j.asoc.2016.05.012

ARTICLE IN PRESSG Model
ASOC 3592 1–11

10 T.A. Tutunji / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 12. Impulse responses for NARMA and estimated transfer function.

Fig. 13. Bode plots for estimated nonlinear model.

Table 8
ANN weights.

w v wout

−0.4593 −0.9077 −0.5770 0.1060 0.8303 −0.0555 −0.0743
−0.3187 −0.9928 0.8181 0.2377 −0.5629 0.6961 0.2940

0.3395 −0.7273 0.3252 −0.3043 −0.0085 −0.4472 −0.7341

a
p

H

t
w
m
f

H

Table 9
Pole locations for the Models (30) and (31).Q4

Poles

First model (unstable) 1.0295
−0.1813 ± 0.1791j
−0.1813 − 0.1791i

Second model (stable) 0.9265
−0.1813 ± 0.1791j
−0.1813 − 0.1791i

Fig. 14. Impulse response of the estimated transfer function.

Q3

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623
0.8606 −0.8595 0.0539 0.3161 0.4057 −0.3750 1.3177
−0.8796 −0.0460 −0.8290 −0.7434 −0.1140 0.5077 0.0471

The formulas provided in Table 2 (with hyper tangent function
nd ̨ = 2) were used to convert the network weights into the ARMA
arameters and the estimated transfer function was found to be:

ˆ 1 (z) = 0.7837z3 − 0.8253z2 + 0.0767z
z3 − 0.667z2 − 0.3083Z − 0.06683

(30)

This transfer function had one pole outside the unit circle and
herefore resulted in an unstable system. The location of this pole
as adjusted (using the pseudo code provided in Section 3) and
oved within the unit circle and an adjusted transfer function was

ound as:
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

ˆ 2 (z) = 0.7837z3 − 0.8253z2 − 0.0767z
z3 − 0.564z2 − 0.271Z − 0.06015

(31)

624

625
Fig. 15. Nonlinear system output response.

The pole locations of both transfer functions are displayed in
Table 9. Note that only the first pole was adjusted from 1.0295 to
0.9265.

Once the transfer function was identified, the system was fur-
ther analyzed by calculating the impulse response as shown in
Fig. 14. Note that the first estimated model produced an unstable
response as the system’s response increased to infinity while the
adjusted model produced an impulse response that settled around
entification using neural networks, Appl. Soft Comput. J. (2016),

the 4th sample. 626

dx.doi.org/10.1016/j.asoc.2016.05.012

 ING Model
A

 Comp

p
e

u
e

5

t
m
s
t
i
t
s

r
a
f
a
i

t
d
a
i
t
t
f
m
t
o

A

m
T
i

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

Texas and two years as design developer with Seagate in

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740
ARTICLESOC 3592 1–11

T.A. Tutunji / Applied Soft

The network and the estimated transfer function were com-
ared with the original nonlinear function as shown in Fig. 15. The
stimated transfer function followed the target behavior well.

This example showed that the proposed algorithm was able to
se the ANN weights to calculate a stable model (with minimum
rror) that approximated a nonlinear model with added noise.

. Conclusion

Researchers have used neural network models for system iden-
ification applications with good success. However, these network

odels hide the parametric information of the system within their
tructures. In this paper, a clear mathematical relationship between
he network weights and the system parameters was established
n order to calculate estimated transfer functions. Parametric iden-
ification can provide valuable information and insight about the
ystem’s behavior such as the pole/zero locations and bode plots.

In order to make the presented work valuable for other
esearchers, an easy-to-follow algorithm, NN2TF, was derived,
nalyzed, and validated. This algorithm has the capability of trans-
orming the weights of a multi-layer neural network into an
ccurate transfer function and can be used by researchers to capture
mportant information about their identified systems.

Simulation runs for four different models were used to validate
he algorithm’s results. First, two linear models were used to vali-
ate the accuracy of the estimated transfer functions (using NN2TF)
s their time and frequency responses were compared to the orig-
nal and ANN models. Then, a nonlinear model was generated to
est the capability of the proposed algorithm to generate accurate
ransfer functions. All results showed that the estimated transfer
unction was able to mimic the behavior of the original models with

inimum error. Finally, a third nonlinear model was used to show
hat the algorithm was able to adjust its converged parameters in
rder to produce stable models.

cknowledgements

I would like to thank Prof. Victor DeBrunner for introducing
e to system identification during my MS studies, Prof. Theodore

rafalis for introducing me to neural networks during my PhD stud-
es, and Prof. Munther Baker for proof-reading this manuscript.

eferences

[1] S. Haykin, Neural Networks and Learning Machines, 3rd edition, Prentice Hall,
2008.

[2] G.P. Liu, Nonlinear Identification and Control: A Neural Network Approach,
Springer, 2001.

[3] M. Norgaard, O. Ravn, N.K. Poulsen, L.K. Hansen, Neural Networks for
Modelling and Control of Dynamic Systems: A Practitioner’s Handbook,
Springer, 2003.

[4] A. Zilouchian, M. Jamshidi, Intelligent Control Systems Using Soft Computing
Please cite this article in press as: T.A. Tutunji, Parametric system id
http://dx.doi.org/10.1016/j.asoc.2016.05.012

Methedologies, CRC Press, 2001.
[5] H. Demuth, M. Beale, M. Hagan, Neural Network Toolbox 6 User’s Guide

Mathworks, 2009.
[6] R. Isermann, M. Munchhof, Identification of Dynamic Systems: An

Introduction with Applications, Springer, 2011.
 PRESS
uting xxx (2016) xxx–xxx 11

[7] M.O. Efe, K. Kaynak, A comparative study of neural network structures in
identification of nonlinear systems, Mechatronics 9 (1999) 287–300.

[8] G.P. Liu, V. Kadirkamanathan, S.A. Billings, On-line identification of nonlinear
systems using Volterra polynomial basis function neural networks, Neural
Netw. 11 (December (9)) (1998) 1645–1657.

[9] I. Gabrijel, A. Dobnikar, On-line identification and reconstruction of finite
automata with generalized recurrent neural networks, Neural Netw. 16
(2003) 101–120.

10] H.K. Sahoo, P.K. Dash, N.P. Rath, NARX model based nonlinear dynamic
system identification using low complexity neural networks and robust H∞
filter, Appl. Soft Comput. 13 (2013) 3324–3334.

11] R. Coban, A context layered locally recurrent neural network for dynamic
system identification, Eng. Appl. Artif. Intell. 26 (2013) 241–250.

12] J. Deng, Dynamic neural networks with hybrid structures for nonlinear
system identification, Eng. Appl. Artif. Intell. 26 (2013) 281–292.

13] I. Darus, A. Al-Khafaji, Non-parametric modelling of a rectangular flexible
plate structure, Eng. Appl. Artif. Intell. 25 (2012) 94–106.

14] H.G. Han, L.D. Wang, J.F. Qiao, Efficient self-organizing multilayer neural
network for nonlinear system modeling, Neural Netw. 43 (2013) 22–32.

15] S.L. Xie, Y.H. Zhang, C.H. Chen, X.N. Zhang, Identification of nonlinear
hysteretic systems by artificial neural network, Mech. Syst. Signal Process. 34
(2013) 76–87.

16] M. Khashei, M. Bijari, An artificial neural network (p, d, q) model for time
series forecasting, Expert Syst. Appl. 37 (2010) 479–489.

17] G.P. Zhang, Time series forecasting using hybrid ARIMA and neural network
model, Neurocomputing 50 (January) (2003) 159–175.

18] C.F. Fung, F.A. Billings, H. Zhang, Generalised transfer functions of neural
networks, Mech. Syst. Signal Process. 1 (6) (1997) 843–863.

19] K. Chon, R. Cohen, Linear and nonlinear ARMA model parameter estimation
using an artificial neural network, IEEE Trans. Biomed. Eng. 44 (March (3))
(1997).

20] J. Lopez, E. Caicedo, Parametric identification using multilayer perceptron,
International Conference on Industrial Electronics and Control Applications
(2005).

21] Y. Chen, Z. Chen, A neural-network-based experimental technique for
determining z-transfer function coefficients of a building envelope, Build.
Environ. 35 (2000) 181–189.

22] M. Fei, J. Zhang, H. Hu, T. Yang, A novel linear recurrent neural network for
multivariable system identification, Trans. Inst. Meas. Control 28 (3) (2006)
229–242.

23] T.A. Tutunji, Approximating transfer functions using neural network weights,
in: Proceedings for the 4th International IEEE EMBS Conference on Neural
Engineering, Antalya, Turkey, 2009.

24] T.S. Soderstrom, P.G. Stoica, System Identification, Prentice Hall, 1989.
25] T.A. Tutunji, M. Molhem, E. Turki Mechatronic, Systems identification using

an impulse response recursive algorithm, Simul. Model. Pract. Theory 15
(2007) 970–988.

26] G. Franklin, J. Powel, M. Workman, Digital Control of Dynamic Systems, 3rd
edition, Ellis-Kagle Press, 1998.

27] Z.J. Fu, W.F. Xie, W.D. Luo, Robust on-line nonlinear systems identification
using multilayer dynamic neural networks with two-time scales,
Neurocomputing 113 (2013) 16–26.

28] P. Gil, J. Henriques, A. Cardoso, A. Dourado, On affine state-space neural
networks for system identification: global stability conditions and complexity
management, Control Eng. Pract. 21 (2013) 518–529.

Tarek A. Tutunji is currently serving as Dean of Devel-
opment and Quality at Philadelphia University (PU) in
Jordan. He is a founding member of the Mechatronics Engi-
neering Department at PU, served as the Department Chair
for six years, and as the Dean of Scientific Research and
Graduate Studies for two year. He has experience in man-
ufacturing and design development where he worked for
four years as manufacturing engineer with Halliburton in
entification using neural networks, Appl. Soft Comput. J. (2016),

Oklahoma. He has a Ph.D. in industrial engineering and MS
in electrical engineering, both from University of Okla-
homa, USA. His research interests is in the control and
identification of mechatronic systems.

741

742

743

744

dx.doi.org/10.1016/j.asoc.2016.05.012

	Parametric system identification using neural networks
	1 Introduction
	2 Theoretical background
	2.1 System identification
	2.2 Neural network architecture

	3 Proposed NN2TF algorithm
	4 Simulation results and discussion
	4.1 Linear models
	4.2 Nonlinear models

	5 Conclusion
	Acknowledgements
	References

