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Vehicle  heterogeneity  and  backhaul  mixed-load  problems  are  often  studied  separately  in  existing  liter-
ature.  This  paper  aims  to solve  a type  of vehicle  routing  problem  by simultaneously  considering  fleet
heterogeneity,  backhaul  mixed-loads,  and  time  windows.  The  goal  is  to determine  the  vehicle  types,  the
fleet size,  and  the  travel  routes  such  that  the total  service  cost  is  minimized.  We  propose  a multi-attribute
Label-based  Ant Colony  System  (LACS)  algorithm  to  tackle  this  complex  optimization  problem.  The  multi-
attribute  labeling  technique  enables  us  to characterize  the  customer  demand,  the  vehicle  states,  and  the
route  options.  The  features  of  the  ant  colony  system  include  swarm  intelligence  and  searching  robust-
abel matching
eterogeneous vehicle
ixed delivery and pickup
ulti-criteria decision

ness.  A  variety  of benchmark  instances  are  used  to  demonstrate  the  computational  advantage  and  the
global  optimality  of the  LACS  algorithm.  We also  implemented  the  proposed  algorithm  in  a real-world
environment  by solving  an  84-node  postal  shuttle  service  problem  for China  Post  Office  in Guangzhou.
The  results  show  that a heterogeneous  fleet  is preferred  to a  homogenous  fleet  as  it  generates  more  cost
savings  under  variable  customer  demands.

© 2016  Elsevier  B.V.  All  rights  reserved.
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. Introduction

When we address a vehicle routing problem (VRP), apart from
ime windows and vehicle capacity, other operational variables,
uch as vehicle types and backhauls should be taken into account
s well. Backhauls mean a vehicle can carry out pick-up tasks
hile delivering the goods (i.e., linehauls). Vidal et al. [41,42]

reat the vehicle routing problem with multiple constraints as a
ulti-attribute vehicle routing problem. Though more realistic, the

ccommodation of these operation constraints makes the vehi-
le routing problem more complex and difficult to solve. In this
aper, we focus on a type of vehicle routing problem consider-

ng backhauls, mixed-load, and time windows served by a fleet
f heterogeneous vehicles. Our study is motivated by the vehicle
outing problems arising from mail delivery and pick-up service
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

usiness. Postal shuttles usually deliver outbound mails from the
ost offices to the mail processing center and also take inbound
ails back to different delivery stations. Both linehauls and back-
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hauls can be served in a random order. They have their own time
windows, and different types of vehicles are often used in order to
meet the requirements of various customers. 

In general, vehicle routing problems with backhauls (VRPB) can
be classified into three categories [33]: (1) linehauls must be served
before backhauls; (2) linehauls and backhauls can be served in
a random order; and (3) simultaneous pick-up and delivery. The
first category problem is often named as vehicle routing prob-
lem with delivery before pick-up (VRPDBP) because pick-up tasks
cannot be executed prior to the completion of all delivery jobs
[1,40,16,34]. The second category captures the situation that pick-
up tasks can be inserted into the routes constructed by delivery, and
it is also referred to as vehicle routing problem with backhauls and
mixed-load (VRPBM). Some researchers also call it as vehicle rout-
ing problem with mixed pickup and delivery (see Refs. [33,20,8]).
Simultaneous pick-up and delivery means a customer requests
both pick-up and delivery services at the same time. This situation
can be called the vehicle routing problem with simultaneous pick-
up and delivery (VRPSPD) (see Refs. [31,7,21,37,18,29]). In early
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

literature, the first category problems attracted more attention than
the other two categories. This is because the vehicle compartment
at that time can only be loaded from the rear door, making the
“mixed” service too costly to perform. Driven by the market com-
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etition, today’s vehicle compartment can be loaded from multiple
ides. Hence, both the pick-up and the delivery tasks can be carried
ut independently. As such, the stream of research on VRPBM and
RPSPD is growing quickly in recent years. Although VRPBM can
e treated as a special case of VRPSPD [31,15], it still possesses its
wn modeling characteristics and unique solution techniques. Take
he mail service shuttle as an example. The shuttle delivers out-
ound mails to the central processing center, and then brings the

nbound mails back to the post offices. This is a typical VRPBM prob-
em which is quite difficult to solve with the conventional VRPSPD
ramework.

Various optimization algorithms have been proposed to solve
he VRPBM problem. Golden et al. [20] proposed an insertion algo-
ithm with which both the linehaul and the backhaul customers
an be served in an arbitrary order. Casco et al. [6] used the
lark–Wright algorithm to construct a linehaul route, and applied
he insertion technique to generate the entire path. Salhi and Nagy
33] developed a different insert algorithm which is tested on vari-
us data sets consisting of single and multiple depots. They showed
hat their method does not increase additional computational cost
ompared to other insertion techniques. Chen and Wu  [7] proposed

 simulated annealing algorithm to solve a modified vehicle routing
roblem with backhaul services. The algorithm is further verified
n the Solomon benchmark data sets [36], and a lower transporta-
ion cost is claimed to be found. Cheung and Hang [8] formulated
he VRPBM problem under a label matching framework where a
abel contains multiple attributes each representing the vehicle and
he route state. Two heuristic algorithms, i.e., simultaneous assign-

ent and sequential assignment, are used to search for the optimal
outes. They showed that the label matching algorithm yields a
etter solution with a shorter computational time. Later, an adap-
ive labeling algorithm was further proposed by Cheung et al. [9]
o solve a cross-border drayage container transportation problem.
üç ükoğlu and Öztürk [24] constructed a hybrid meta-heuristic
lgorithm that integrates simulated annealing and Tabu search to
btain more effective solutions for the VRPBM models with time
indows. Brito et al. [5] and Reed et al. [32] solved the capacitated

ehicle routing problems using ant colony algorithm. In the for-
er  study, the vehicle capacity and time windows were modeled

s fuzzy constraints due to the uncertain customer demands and
mprecise information.

In recent years, the heterogeneous fleet vehicle routing problem
HFVRP) is gaining popularity due to the increased service cus-
omization in practice. Taillard [38] presented a three-step method
o solve a multi-capacity vehicle routing problem based on column
eneration method. First, vehicles are grouped according to the
apacity or type. Then, the initial solution is obtained by solving the
outing problem for each vehicle type. Finally, the optimal solution
s generated by aggregating all the solutions. Li et al. [26] devel-
ped a variant of record-to-record travel algorithm for the standard
ehicle routing problem by taking into account the heterogene-
ty feature of the fleet, and further reported the computational
esults from eight benchmark problems. Brandão [4] divided dif-
erent types of vehicles into two groups: fixed cost and variable
ost fleets. The objective is to minimize the total fleet transporta-
ion costs subject to one-time customer visit and other operating
equirements. A Tabu algorithm was developed to solve the Tail-
ard examples for the model verification, and a satisfactory result

as claimed to be achieved.
Remarkable achievements have been made in the field of vehi-

le routing. Laporte [25] summarized the developments of the
olution approaches for VRP in the last five decades. Eksioglu
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

t al. [14] provided a taxonomic review on the vehicle rout-
ng optimization problems. Albeit a large body of literature on
RP and its variants, the backhaul mixed-loads and the hetero-
eneous fleet assignment problems are often studied separately.
 PRESS
uting xxx (2016) xxx–xxx

Only recently some researchers started to formulate and solve
the vehicle routing problem by jointly considering fleet hetero-
geneity, backhauls, mixed-load, and time windows (VRPHBMTW).
For instance, Belmecheri et al. [2] formulated a single-objective
VRPHBMTW model to minimize the travel distance, and a parti-
cle swarm optimization algorithm was  implemented to search for
the optimal solution.

This paper aims to solve a type of VRPHBMTW problem arising
from mail delivery and pick-up service industry. Our problem set-
ting is similar to Belmecheri et al. [2] in that both consider the fleet
heterogeneity and mixed backhauling tasks. The main difference is
that we  formulate VRPHBMTW under a bi-objective optimization
framework where both the number and type of transport vehicles
and the aggregate travel cost are jointly minimized. In addition,
our model also imposes the penalty costs on extended customer
waiting time when vehicles arrive either early or late. To solve
the problem, we combined the two  objectives as a single objective
optimization using weighted sum. A two-stage optimization algo-
rithm is then proposed to search for the optimality. Namely, we
first determine the vehicle type and minimize the vehicle quantity,
and then we  optimize the traveling routes based on the results from
the previous stage. To tackle this complex optimization problem,
we develop a Label-based Ant Colony System (LACS) algorithm to
jointly minimize the travel cost and the vehicle quantity and type.
The LACS algorithm synthesizes the multi-attribute labeling (MAL)
technique [8] with the multi-ant colony system (ACS) algorithm
[17]. Hence, it possesses the fast, flexible, and accessible feature
of MAL  as well as the strong robustness and global search abil-
ity of ACS. In particular, the LACS algorithm enables us to resolve
complex operational constraints, such as fleet heterogeneity, time
windows, and multiple periods that are encountered in practical
vehicle routing decisions.

Following the introduction, the rest of this paper is organized
as follows. Section 2 presents the mathematical formulation of the
VRPHBMTW problem. Section 3 provides an overview of the LACS
framework that comprises the label matching technique and the
ant colony system. Section 4 describes the detailed implementation
procedure of the LACS algorithm. In Section 5, the performance of
the proposed algorithm is analyzed and compared using Solomon
benchmark data set and an 84-node shuttle routing problem from
China Post. Section 6 concludes the paper.

2. Problem formulation

2.1. Problem description and assumptions

To simplify our presentation, we  use the word “demand” to rep-
resent a delivery or a pick-up request from a customer. Without loss
of generality, we  also use the phrase “at a demand” to represent “at
the location of a customer demand”.

In VRPHBMTW problem, D =
{

1, 2, ..., |D|
}

is the customer set
in which a customer must be served by a unique depot. Each cus-
tomer requires qi amounts of goods for i = 1, 2,. . .,n. A positive qi
means a delivery request while a negative value indicates a pick-
up task. In addition, K =

{
1, 2..., |K |

}
vehicles with capacity Ck for

k = 1, 2, . . .,|K| are available to serve D customers. Each vehicle is
available at its earliest time sk for k ∈ K and must return to the depot
before the latest time ek for k ∈ K. Meanwhile, the customer must
be served within a required time windows. Here is the summary of
these key assumptions:
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

• Given a set of vehicles K with different capacity Ck, the duty hours
and available times fall in [sk, ek]. Each vehicle can make only one
trip departing from the depot D0 and must return to the depot
within the duty hours.
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Each customer has a fixed service time window TWdi
∈ [ai, bi],

and the linehaul and the backhaul customers can be served in an
arbitrary order on a route.
Each customer can be served only by one vehicle for one time.

.2. Notations

In our problem setting, each vehicle must finish all the tasks
efore returning to the depot. To accommodate this condition, we
efine a notation table consisting of set parameters, time param-
ters, cost and capacity parameters, and decision variables as
ollows:

1) Set parameters
 Set of vehicles, and K = {1, 2, . . .,  |K |}

 Set of customer demands, and D = {1, 2, . . .,  |D|}
¯ Extended set of customer demands including depot D0

where the virtual demand is zero, and D̄ = D ∪ {0}

2) Time parameters

i Earliest start time for serving demand i, and i ∈ D

i Latest start time for serving demand i, and i ∈ D

i Service time for demand i, and i ∈ D

ij Traveling time from demand i to demand j, and i, j ∈ D

k Earliest time for vehicle k to start service, and k ∈ K

k Latest time for vehicle k to finish the service, and k ∈ K

3) Cost and capacity parameters

ij Traveling distance from demand i to demand j, and i, j ∈ D̄
k Traveling cost per unit distance for vehicle k
w
k

Waiting cost per unit time for vehicle k
F
k

Full capacity of vehicle k, and k ∈ K

i Demand for customer i, and i ∈ D

4) Decision variables and dependent variables

ijk ti Start time for servicing demand i, and i ∈ D
w
i

Waiting time at demand or customer site i, and i ∈ D
D
ki

Empty capacity of vehicle k when departing from site i,
i ∈ D, k ∈ K

A
ki

Load for vehicle k when it arrives at demand site i, and
i ∈ D, k ∈ K

.3. Mathematical formulation

Our goal is to minimize the number of required vehicles as well
s to minimize the total travel cost. Denoted as Model 1, the follow-
ng multi-objective optimization problem (MOOP) is formulated to
ccommodate both design criteria as follows,

Model 1:

in  : f1(x) =
∑
j ∈ D

∑
k ∈ K

x0jk (1)

in  : f2(x) =
∑
i ∈ D̄

∑
j ∈ D̄

∑
k ∈ K

xijk(dijck + twj c
w
k ) (2)

ubject to:∑
k ∈ K

∑
j ∈ D

xijk = 1 ∀i ∈ D
(3)

∑
x0jk =

∑
xi0k = 1 ∀k ∈ K

(4)
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

j ∈ D i ∈ D∑
i  ∈ D

xijk =
∑
l ∈ D

xjlk ∀k ∈ K, ∀j ∈ D (5)
 PRESS
uting xxx (2016) xxx–xxx 3

xijk = 1 ⇒ ti + tij + �i ≤ tj ∀k ∈ K, ∀i, j ∈ D (6)

x0jk = 1 ⇒ sk + t0j ≤ tj ∀k ∈ K, ∀j ∈ D (7)

xi0k = 1 ⇒ ti + �i + ti0 ≤ ek ∀k ∈ K, ∀i ∈ D (8)

ai ≤ ti ≤ bi ∀i ∈ D (9)

xijk = 1 ⇒ tw
j

= max
{
aj − ti − �i − tij, 0

} ∀j ∈ D (10)

xijk = 1 ⇒ qD
ki

= qA
kj

∀k ∈ K, ∀i, j ∈ D (11)

QD
ki

= QA
ki

− qi ∀k ∈ K, ∀i ∈ D (12)

xijk = 1 ⇒ qA
kj

= qF
k

−
∑
m ∈ s(i)

max (qm, 0) ∀k ∈ K, ∀i, j ∈ D (13)

0 ≤ qA
ki

≤ qF
k
, ∀i ∈ D, ∀k ∈ ∈ K (14)

0 ≤ qD
ki

≤ qF
k
, ∀i ∈ D, ∀k ∈ ∈ K (15)

xijk ∈ {0, 1} ∀k ∈ K, and∀i, j ∈ D (16)

Note that vehicle k travels directly from demand i to j (where
i /= j), xijk = 1. Otherwise, xijk = 0. Object functions (1) and (2) min-
imize the number of service vehicles and the total traveling cost
respectively. The second objective is achieved by reducing the
travel distance and the vehicle waiting time. Constraint (3) ensures
that each demand must be satisfied by only one vehicle at once.
Constraint (4) states that each vehicle must leave from and return to
the depot. This constraint also implies that vehicle k may stay at the
depot with x00k = 1 if no dispatch is required. Constraint (5) states
that once vehicle k has visited a customer, it must leave the cus-
tomer as well. Constraint (6) prescribes the condition that the time
to serve demand j should not be earlier than the vehicle arrival time
at that customer site. Constraints (7) and (8) define the available
time and duty hours of vehicles respectively. Constraint (9) ensures
that the time windows of all demands are satisfied. Constraint (10)
calculates the waiting time for each customer. Constraint (11) states
that if a vehicle travels directly from demand i to j, the load of the
vehicle on departure from demand i is equal to the amount when it
arrives at demand j. Constraint (12) means the available capacity of
a vehicle increases with linehaul and decreases with pick-up tasks.
Constraints (11) and (12) can be transformed into (13) to charac-
terize the changing volumes of liehauls. Note that s(i) is the set of
customer who have been served by vehicle k. Constraints (14) and
(15) define the maximum capacity of a vehicle. Finally, constraint
(16) captures the status of the vehicle arriving at and leaving from
the same customer.

In general, it is quite difficult, if not impossible, to directly search
for the optimal solution of the MOOP model as it requires the gen-
eration of a non-dominant solution set. In general a multi-objective
programming model can be transformed into a single objective
problem by assigning appropriate weight to individual objective
functions. If the values of these objective functions are close among
each other, assignments of linear weights are preferred as it facili-
tates the construction of the solution algorithm [10,35]. Hence this
paper adopts the linear assignment by combining two objective
functions, i.e., Eqs. (1) and (2), to form a single-objective function
denoted as g(x) as follows:

Model 2:

g(x) = min{p1f 1(x)} + min{p2f 2(x)}, p1, p2 are priority factors(1

Subject to:
Constraints (3)–(16), where p1 and p2 are priority factors or
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

weights. The studies by Bent and Van Hentenryck [3] and Li and
Chang [27] show that by adjusting the values of p1 and p2, we
can always prioritize the minimization of vehicle quantity over the
minimization of the travel distance. In other words, Model 2 can
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e solved using a two-stage optimization method. In stage 1, we
etermine the vehicle types and the number per type, and in stage
, the total travel cost is minimized based on the vehicle quantity
nd types determined in previous stage.

. Overview of labeling technique and ant colony system

In literature, two-stage heuristic algorithms consisting of initial-
zation and optimization are often used to tackle large and complex
RP issues. In general, the performance of the algorithm determines

he computational efficiency and the solution quality. Cheung and
ang [8] developed a two-stage search algorithm within the multi-

abeling framework. In stage 1, they generated the initial solution
nder the label matching framework, and in stage 2 the initial solu-
ion was further refined via simultaneous assignment (MA) and
equential assignment (SA) algorithms respectively. In this paper,
e adopt the label-based initialization framework for stage 1 deci-

ion, but use the nearest neighborhood algorithm to find the initial
olution. In stage 2, we develop an ant colony system algorithm to
earch for the global minimization of the cost. The details of our
lgorithm are elaborated in the following paragraphs.

.1. Labels and label creation

Based on the object-oriented programming concept, Powell
t al. [30] proposed an adaptive labeling approach that turns
athematical constraints into label mapping rules. In their algo-

ithm, multi-attribute labels are created for customers and vehicles
hrough which a set of labels is dynamically updated to form a fea-
ible route. One advantage of the labeling approach is that it can
asily handle a variety of operational constraints, such as hetero-
eneous vehicles, different compartments, and multiple periods.

hen these constraints change, only small adjustments to the algo-
ithm are needed. Before starting the label creation, we  describe
hree types of labels: demand label, vehicle label, and route label.

.1.1. Demand labels
The demand label is created once the vehicle completes a

emand request. Let D be a set of demand labels. For each demand i
or i ∈ D, we define a demand label d ∈ D that contains the following
ttributes:

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

d6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

qi

ai
bi

�i

i

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Amount of demand

Start of time window
End of time window

Service time

Index of the demand
Requirement for the vehicle type

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Because there exists a one-to-one mapping between customer
 and the corresponding label (i.e., d5 = i), we use label d to denote
emand i for notational simplicity. Attribute d1 is defined as the
emand quantity qi for customer i with |qi| < qF

k
. The definitions of

ther attributes are straightforward. For instance, d2 is the start
ervice time, d3 is the end service time, d4 is the actual service time,
5 is the demand site or the customer index, and d6 defines what
ype of vehicle is available for this demand.
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

.1.2. Vehicle labels
A vehicle can own multiple labels, and the values of the

ttributes within a label depend on when, where, and how the vehi-
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cle arrives at a customer site. Let V be a set of vehicle labels. For a
vehicle label v ∈ V , its attributes are defined as:

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3
v4

v5

v6

v7

v8

v9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Available time

Off duty time
Full capacity

Immediate delivery goods

Immediate pickup capacity
Set of demands in the same route

Index of the demand where the vehicle is available

Identity of the vehicle

Type of the vehicle

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here v1 is the vehicle available time at which the vehicle satisfies
the current demand. v4 is the immediate quantity of delivery goods.
Namely, it is the maximum amount of goods that the vehicle can
deliver at the next customer site if it is a linehaul request. Similarly,
v5 is the immediate pick-up capacity. It is the maximum amount of
goods a vehicle can collect for the next customer under a backhaul
request. v6 is the set of demands in the same route, v7 is the index
of demand where the vehicle is available, v8 is the identity of the
vehicle, and v9 is vehicle type. Explanations on v2 and v3 are ignored
because they are self-explanatory.

3.1.3. Route label
When a vehicle serves a customer, a route label is automatically

created. If a vehicle cannot visit any customer, a complete route
is constructed. Let R be a set of route labels. A route label r ∈ R is
defined as follows:

r =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1

r2

r3

r4

r5

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

The total amount of goods delivered on the current route

The total amount of goods picked-up on the current route

Set of demands on the current route

Length of the current route

The index of the vehicle which finishes the current route

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Attributes r1 and r2 are defined respectively as the total amount
of goods delivered and collected on the current route r3 with the
traveling distance r4. Note that r5 is the vehicle identification num-
ber.

3.1.4. Label creations and matching
Demand labels remain the same throughout the computation,

but vehicle and route labels may  change with the service path. The
label creation rules are given as follows:

1) Vehicle label creation conditions

For a given vehicle label v ∈ V and a demand label d ∈ D, let
i = v7 (i.e., the vehicle is currently at demand i) and i = d5 (i.e., index
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

of the demand to be covered). The vehicle with label v can cover
demand d with a label if the following constraints hold.

v1 + tij ≤ d3 (18)
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ax
{

v1 + tij, d2
}

+ d4 + tj0 ≤ v2 (19)

if d1 ≥ 0 v4 ≥ d1 (20)

if d1 < 0, v5 ≤ d1 (21)

j /∈ v6, ∀v ∈ V (22)

All these constraints are associated with the vehicle-demand
ssignment feasibility condition. Constraint (18) represents the
ime window constraints, namely all customers must be served
rior to the end of their window time. Constraint (19) ensures
hat the vehicle can go back to the depot prior to the off-duty time
pon the completion of all required demands. Constraints (20) and
21) define the capacity requirements of linehauls and backhauls,
espectively. Constraint (22) ensures that demand j must be a new
emand which has not been served by any other vehicles.

) Vehicle label creation

Considering a scenario that a vehicle just fulfilled a demand (at
 demand location with vehicle label v) and is going to serve a new
emand with label d. We  will create a new label v′ to capture the
tate of the vehicle when it is serving the new customer. This new
abel is created by mapping F : V × D → V as follows:

′ = f (v, d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′
1 = max(v1 + tij, d2) + d4

v′
2 = v2

v′
3 = v3

v′
4 = v4 − max(d1, 0)

v′
5 = min(v3, v5 + d1)

v′
6 = v6 ∪

{
j
}

v′
7 = j

v′
8 = v8

v′
9 = v9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

Eq. (23) shows that when constraint (18) is satisfied, the service
tarts at max

{
v1 + tij, d2

}
and the vehicle becomes available at

ime v′
1 which is equal to the completion time of demand d. Here

′
1 = max

{
v1 + tij, d2

}
+ d4, and v′

2, v′
3, v′

8, and v′
9 are constant

arameters. Two cases should be considered upon the completion
f the current demand. If the previous service is a backhaul task,
he immediate pick-up capacity v′

5 decreases, while the quantity
f the delivery goods v′

4 remains the same. On the other hand, if
he previous service is a linehaul task, the immediate quantity of
elivery goods v′

4 decreases, and the pick-up quantity v′
5 remains

onstant. In either case, the total pick-up capacity cannot exceed
he current vehicle capacity. From this matching process, we  can
ee that a vehicle can create different vehicle labels corresponding
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

o different customers.

) Route label creation
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Suppose a vehicle with label v cannot cover any demands, then
a route label r is created using a mapping R : V → R such that

r = f (v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 1

r 2

r 3

r 4

r 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ñ∑
i=0

di.d1, fordi ∈ v6, di.d1 > 0

ñ∑
i=0

di.d1, fordi ∈ v6, di.d1 < 0

v6 ∪ v7

ñ∑
i=1

ldi−1di
+ ld0di

, fordi ∈ v6

v8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where ñ is the number of customers a vehicle served. r1 is the sum
of demands of linehaul customers, r2 is the sum of the demands of
backhaul customers, r3 indicates that a trip starts at the depot, and
must terminate at the depot, r4 is the total distance of the current
route, and r5 indicates which vehicle completes the current route.

3.2. Principle of ant colony system

Ant colony system (ACS) was originally introduced by Dorigo
and Gambardella [12] for the purpose of improving the perfor-
mance of ant system in solving traveling salesman problems. We
leverage ACS algorithm to generate the optimal vehicle number and
the travel distance to minimize the objective function in Eq. (17). In
particular, two artificial ant colonies are used: one ant colony opti-
mizes the vehicle number and the other minimizes the total travel
distance. In this section we  describe the working principle of this
optimization method.

Assume that there are m ants and n nodes (i.e., customers). The
distance between nodes i and j is dij . Let �ij be the inverse of the
distance of edge (i, j) which implies that the corresponding heuris-
tic value, �ij is the pheromone intensity of the edge. ��ij is the
pheromone of ant k left on edge (i, j). Let Pk

ij
be the probability

that ant k moves to j from i. The pheromone decay is denoted
as � for 0 <  ̨ < 1. Finally,  ̌ is a positive parameter characterizing
the relative importance of pheromone versus distance. When ant k
departs from node i, it chooses node j as the next destination with
probability Pk

ij
as follows

Pkij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�
ij

)˛ × (�
ij

)ˇ∑
s ∈ Nk

i

(�
is

)˛ × (�
is

)ˇ
, ifj ∈ Nk

i

0 otherwise

(25)

where Nik is the set of the feasible nodes. Dorigo and Gambardella
[12] proposed three rules for the ACS algorithm to improve the
traveling salesman problem solution. We adopt and incorporate
these rules into the LACS algorithm for vehicle label matching and
route optimization as well.

1) State transition rule

Based on the pseudo-random-proportional rule, LACS leverages
exploration and exploitation to determine the next feasible node.
The state transition rule is defined based on the following criterion:
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

p =

⎧⎨
⎩
argmax

s ∈ Nk
i

{
(�is)

˛.(�js)
ˇ
}

Ifq ≤ q0, use exploration

Pk
ij

otherwise, use exploitation
(26) 450
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The state transition rule is equivalent to the random-
roportional rule of the original ant system. It shows that an ant
ends to choose a short edge with more pheromone as the next
our.

) Local updating rule

In LACS, pheromone trail is updated locally and the local updat-
ng rule is applied to the process when an ant searches for a
ingle route. The following formula is applied to update the path
heromone upon the traversing of the ant,

ij = (1 − �) .�ij + ���ij (27)

here � for 0 ≤ � ≤ 1 is the pheromone released by the ant. In fact,
 − � is often used to represent the decay degree of pheromone. �0

s the initial value of trails. It has been shown that �0 = (nLnm)−1

s a good estimate as reported by Gambardella et al. [17]. Here
nm is the length of the initial solution generated by the nearest
eighbor heuristic. The local updating rule in Eq. (27) is able to
ecrease the pheromone of the selected edge, or increase the proba-
ility of choosing alternative paths. Hence, ants are prevented from
electing the same edge.

) Global updating rule

After the current best solution is found, the global updating rule
s applied to adjust the pheromone across the route. This updating
trategy is proved to be more efficient than the one based on all
he constructed solutions by Dorigo and Gambardella [12]. After an
nt has constructed its route, a global update is performed based
n the following rule:

ij = (1 − ˛) .�ij + ˛��ij (28)

ith

� (i, j) =
{(

Lgb
)−1

if(i, j) ∈ global best solution

0 otherwise

here Lgb is the current best global route. It is worth mention-
ng that the global updating rule is only applied in the process of
onstructing Lgb.

. Detailed design of Label-Based Ant Colony System
lgorithm

Recall that LACS is a two-stage heuristic optimization method.
irst, it constructs an initial solution using the nearest neighbor
earch within the label matching framework. Second, it improves
he initial solution using ant colony system algorithm to minimize
he tours and the total route length. The pseudo code of the two-
tage optimization is summarized below:
hile(i <= repeattime; i = i + 1)

nitialsolution();
or(intj  = 1; j <= extendcycle; j = j + 1)

LACS Vehicle();
LACS Distance();
Savecourrentresult();

ndfor
avecourrentbestresult();
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

ndwhile
etbestresult();
rintbestresult();

The flowchart of the algorithm is depicted in Fig. 1.
Fig. 1. The general flowchart of LACS algorithm.

4.1. Initial solution construction

The solution produced by the nearest neighbor heuristic is a
good starting point to initialize the path pheromone. A 6-step pro-
cedure for constructing a solution based on the nearest neighbor
heuristic algorithm is presented below.

Step 1: Create labels for all customers in D, i.e., generate a set
for D.

Create labels for all vehicles in K according to their initial states
and create Q = K.

Step 2: Let v be the first element of Q, v = Q; and delete v from Q,
Q = Q\v.

If v = � and all customers are satisfied, it means the initial solu-
tion is obtained, go to step 6.

Step 3: Obtain the feasible demand set Dv for label v according
to formula (18)–(22);

If Dv = �,  it implies that that label v cannot visit any demand
sites, go to step 5.

Else, run computeDv(v, d) to find the best demand d from set Dv.
Step 4: Create new vehicle label v′ = f (v, d) according to formula

(23), and set v = v′, and go to step 3.
Step 5: Create route label r = f(v) using formula (24), and put it

back the route set R.
Go to step 2.
Step 6: End the procedure, and a feasible solution R = �ini is

obtained. Complete procedure.

4.2. Improving the initial solution

Similar to Duhamel et al. [13], the minimization of the vehicle
number takes precedence over the total route length in this paper.
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

In other words, for a given number of customers and constraints, the
fewer the vehicles are required, the better the algorithm is. Under
the circumstances of the same vehicle quantity, a shorter travel
distance is further exploited to lower the overall service cost.
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.2.1. Vehicle minimization
In this section, we improve the initial solution by minimizing

he vehicle number using the ant colony algorithm. This involves
he global route �gb construction and the single path construction
m. The working principle of vehicle minimization algorithm is

escribed as below.
Step 1: If k ≤ 1, only one tour exists in the solution, go to step 4;
With initialization of the pheromone trails and insertion matrix

record the times a customer has been visited), the best solution
asc vei is obtained by the present ant colony with k vehicles, and

he best solution �gb is obtained up to now. Let k = k − 1;
Step 2: l = AntsBatch, difinesants computation iterated times.
For ant m of batch l, construct a solution from:
Insert the missing demands �m = Ant Solution Vehicle(m,  Insert);

he insertion procedure (insert the unvisited customers into solu-
ion  m) will be conducted if not all customers have been served;
nd now if  m is feasible, update the best solution.

If Distance(�m) < Distance(�asc vei) where Distance(�m) is the
otal length of solution  m, update the best solution  asc vei =
m, and also update the pheromone matrix according to �ij =

1 − �) �ij + �/distance( asc vei), ∀ (i, j) ∈  asc vei. If  m is not fea-
ible, let m = m + 1 and go to step 2.

Step 3: If Distance
(
 asc vei

)
< Distance

(
 gb

)
, let  gb =

asc vei, and also update
pheromone according to �ij = (1  − �) �ij +

/Distance( gb), ∀ (i, j) ∈  gb. If l > 0, let l = l + 1, and go to
tep 2. If all  m are feasible, go to step 1; otherwise go to step 4.

Step 4: End the procedure, print  gb. Complete procedure.
Although the approach to constructing the  m solution is sim-

lar to the construction of the initial solution, there are two  major
istinctions:

) Exploration and exploitation are applied

We  use the pseudo random proportional principle to construct
olution  m for ant m,  and create a random constant q between
0,1] to comply with the average distribution rule.

If q > q0 (q0 is a parameter to be set as 0 < q0 < 1),
e create a random number q̄ from Eq. (25), and rank

he demands Dv in ascending order according to Pkij =(
�ij

)˛
.
(
�ij

)ˇ
)/(

∑
j ∈ Dv

(
�ij

)˛
.
(
�ij

)ˇ
). Then, we sum the data one

t a time until
∑
j ∈ Dv

Pk
ij
> q is satisfied, and finally choose the next

emand d.
If q ≤ q0, we select the demand based on max

{(
�ij

)˛
.
(
�ij

)ˇ}
,

ij =
[

distance(v, d) − insertj
]−1

from Eq. (26).
After visiting a customer, the local pheromone trails are

pdated according to �ij = (1  − �) �ij + ��0 with �0 being the initial
heromone trails.

) Insertion procedure

We  attempt to insert the unvisited customers into the con-
tructed routes. This process is denoted as the insertion procedure,
eaning any customers who are not covered due to the vehicle

eduction should be inserted into these routes generated. Accord-
ng to the demand quantity, we sort all the unvisited customers
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

n a descending order, and insert these customers one by one into
xisting routes. An insertion is considered as successful if the time
indows and the capacity constraints are not violated. A feasi-

le solution is obtained when all these unvisited customers are
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inserted successfully. Otherwise, the number of vehicles should not
be reduced further.

4.2.2. Minimizing the length of routes
In this section, we describe how to minimize the length of a route

with a fixed number of vehicles. The procedure presented here is
similar to the tour minimization with the exception that we  apply
local search to minimize the route length using intra-exchange and
cross-exchange schemes.

Step 1: Initialize pheromone trails, the best solution  a s v is
obtained by the present ant colony, and obtain the temporary best
solution  gb.

Step 2: For ant m in batch l, construct a solution  m =
Ant Solution Vehicle(m, Insert). If not all customers have been vis-
ited, perform the insertion action in an attempt to obtain a feasible
solution  m.

Step 3: Improve  m with local search. If Distance
(
 m

)
<

Distance
(
 asc vei

)
, save the

best solution: let  asc vei =  m;  gb =  m. If
Distance

(
 asc vei

)
< Distance

(
 gb

)
, save the best solution

 gb =  asc vei, and update pheromone trails globally using the
following criteria:

�ij = (1  − �) �ij +
�

Distance( gb)
∀ (i, j) ∈  gb

�ij = (1  − �) �ij +
�

Distance( asc vei)
∀ (i, j) ∈  asc vei

If m < max{m} then m = m + 1; go to step 2. If l < max{l} then
l = l + 1; go to step 2.

Step 4: End the procedure, and print the solution for  gb, com-
plete the procedure.

Next we  explain the local search mechanism consisting of intra-
exchange and cross-exchange as it differs from traditional tour
minimization algorithm.

1) Intra-exchange

The intra-exchange implemented in LACS is called 2-Opt [28], 

and the working principle is presented as follows. We  choose a
pair of demands on a route and exchange them. If the route length
becomes shorter, we mark them locally and continue a new pair
exchange. Once all demand pairs have been exchanged, we select
the demand pair with the largest saving of distance and exchange
them (i.e., update the route). This process is repeated until no fur-
ther improvement can be made on this route.

2) Cross-exchange

Cross-exchange is proposed by Taillard et al. [39]. The idea is
similar to intra-exchange. We  choose an arc from a route, exchange
it with all the arcs in another route. If the total route length becomes
smaller, we mark them and continue the next exchange. Once all
pairs of arcs have been exchanged, we select the arc pair that results
in the largest distance saving and exchange them (i.e., update the
solution). This process is repeated until no further improvement
can be made on all the routes.

5. Numerical experiments
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

5.1. Background of the testing data sets

We test the performance of the proposed LACS algorithm based
on three different data sets. First, we use the Solomon benchmark
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roblem as the test bed, which has been widely used to test the effi-
iency of vehicle routing algorithms with time windows (VRPTW).
econd, we test LACS by solving a series of vehicle routing problems
n heterogeneous fleet settings. Third, we apply the LACS algo-
ithm to optimize the vehicle routing for China Post in Guangzhou
onsisting of 84 nodes. This real-world problem involves multiple
ehicle types, time windows, mixed loads, and random orders of
inehaul and backhaul tasks. Below we briefly describe the features
nd scope of these date sets.

The Solomon benchmark problem consists of three classes
/C/RC and six groups of problem sets R1/R2, C1/C2, RC1/RC2 with
otal of twelve basic problems. These problems vary in terms of the
ime windows and the percentage of customers within the time
indow. With one centralized depot, each problem set has three

emand groups (i.e., 25/50/100) randomly located across the net-
ork. We  compare our results to those from MA/SA algorithms by

heung and Hang [8], ESPPRC algorithm by Jepsen [22] and IPopt
lgorithm by Kohl et al. [23] using the R1 problem set.

In order to compare the performance of solving the vehicle rout-
ng problems with heterogeneous fleet, we use the data sets from
aillard [38] that contain eight problems (numbered from 13 to
0) with three to six types of vehicles. Taillard actually adopted
he problem setting from Golden et al. [19] and transformed it
nto a VRPHF testing bed by allocating relevant parametric data,
uch as variable cost per unit distance per vehicle type and the
umber of available vehicles per type. The size of these problems
aries between 50 and 100 customers, and there are no restric-
ions on route length and customer service times. In this section,
e compare the results generated by our algorithm with those from

aillard [38] and Brandão [4].
We  further use seven postal shuttle-lines of China Post in

uangzhou to demonstrate how the proposed algorithm improves
he cost savings in an actual business setting. The postal shuttles
eliver packages to the post offices, and also collect and send the
ackages to the mail distribution center. We  use the shuttle dis-
atch data from Wusan Distribution Center to optimize the vehicle
ype, vehicle number, and driving paths. The Geographic Informa-
ion Systems (GIS) data are gathered from SuperMap 6R.

The experiments for each problem data set are conducted by
nts = 10, runs with 15 times AntsBatch = 15 (i.e., Iteration number is
5), total RepeatTime = 10 (i.e., the algorithm runs 10 times) or stop
fter getting the best optimal solution for five consecutive times
ith no improvement. Solutions are then averaged for each prob-

em and the results are presented in Tables 2–4. Parameters for the
xperiments are set as: q0 = 0.9,  ̨ = 1, and  ̌ = 1, the coefficients for
pdating the global and the local pheromone trails are �g = �l = 0.1.
he LACS algorithm is implemented in Java 1.6.0 and all tests are
erformed on a Dell P4 computer with 2.4 GHz Intel CPU and 1 GB
AM.

Since algorithms in extant literature are executed in different
enerations of computers, to make a fair comparison, we  convert
he CPU times of different algorithms suggested by Brandão [4]
nd Dongarra [11]. We  adopt the approach proposed by Gajpal and
bad [15] to offset the speed variation of different computers. The
esults of the conversion are summarized in Table 1. It shows that
he Mflops of our computer is faster than those used in prior stud-
es except for Jepsen’s. In other words, had their algorithms been
xecuted on our computer, the CPU times would be equal to the
riginal computing times multiplied by the conversion rate.

.2. Performance comparison using Solomon R1 benchmark
atasets
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

Comparisons between LACS, MA/SA, ESPPRC and IPopt algo-
ithms are reported in Table 2. According to Cheung and Hang [8],

A  ends up with a shorter route but requires longer computational
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time, while SA produces better solutions but consumes more time.
Although ESPPRC can generate the best solutions using exact algo-
rithm, it consumed a much longer CPU time. In Table 2, all bold
numbers indicate the best solution among these algorithms.

In terms of the total route length, LACS is better than MA/SA in 26
instances except for R110.50. Even in that case, LACS still saves one
trip compared to SA and ESPPRC algorithms. For the number of vehi-
cles, except for R106.50, LACS ends up with a smaller number than
both MA/SA and the IPopt algorithm. It is noteworthy that LACS
uses fewer vehicles than the IPopt algorithm in eight instances. For
the CPU time, LACS is close to that of MA,  and almost always less
than that of SA. So we can conclude that LACS is more efficient based
on the fact that LACS consumes less CPU time than SA.

In comparison with ESPPRC, we find that the results from LACS
are almost the same as those from the exact algorithm for small and
medium instances. Even for large instances, the gaps are no more
than 4.6%. Some results under ESPPRC are missing because their
computer could not generate the exact solution in a reasonable CPU
time. This implies that LACS offers more flexibility than ESPPRC in
finding an optimal or sub-optimal solution for large size problems.

5.3. Performance comparison under heterogeneous fleet

Under fleet heterogeneity, we compare the solution generated
from LACS with those from Taillard [38] and Brandão [4], and the
results are listed in Table 3. It shows that the LACS is able to find
75% of the best known solutions among all the testing instances.
In comparison with the algorithm of Taillard [38], the LACS always
ensures a better solution for all the problem instances. In compar-
ison with Brandão [4], both algorithms yield the same number of
the best solutions among the eight testing instances, but the equiv-
alent computation time of LACS is always less than that of Brandão
[4] across all instances. It is worth mentioning that algorithms by
Taillard [38] and Brandão [4] are designed to tackle heterogeneous
fleet problems only, while LACS can solve a much wider array of
vehicle routing problems that involve heterogeneity and backhaul
mixed loads services.

5.4. Application to China Post in Guangzhou

We  use China Post in Guangzhou to demonstrate the effec-
tiveness of the LACS algorithm by solving a large postal
shuttle transportation problem on VRPHBMTW issue. Located in
Guangzhou, the company provides postal services for the down-
town area and its vicinities. Its facility consists of eight subordinate
units and nine sub-companies with more than 360 outlets, 120
delivery stations and a large fleet of heterogeneous vehicles. Among
them, there are more than 60 postal shuttles traveling nearly
7000 km per day. These postal shuttles send the inbound mails
from the central processing center to the delivery stations, and also
pick up the outbound mails from the post offices and send back to
the central processing center. Current routing schedules are estab-
lished primarily upon experiences and administrative divisions.

In this application, we use LACS to minimize the total vehi-
cle routing cost for two cases, namely, a 48-node network with
five routes, and an 84-node network with ten routes. In each case,
two scenarios are considered: heterogamous fleet versus homoge-
nous fleet. We  compared the costs generated from both vehicle
fleets to find which scenario is more competitive in terms of over-
all cost. The necessary data include three types of vehicles (i.e.,
1.5, 3, and 5 tons), variable transportation costs (i.e., 1.5, 2, and
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

2.2 RMB/km), and a fixed waiting cost (i.e., 6 RMB/h). We  define
Gap = ((Post − Optimization result) − Pre-Optimization result)/Pre-
Optimization result × 100% as the performance metric to measure
the potential cost savings generated by LACS algorithm.
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Table  1
Mflops for different computers and conversion factors.Q10Q11

Algorithm Actual computer used Approx. equivalent comp. available in report Mflops Source Conversion

Taillard [38] Sun Sparc workstation 50 MHz  Sun Sparc workstation 50 MHz  10 b 0.0070
Cheung and Hang [8] PII 400 MHz Pentium II, 333 MHz  69 a 0.0668
Ropke and Pisinger [31] Pentium IV 1.5 GHz Pentium IV 1.5 GHz 326 a 0.3156
Li  et al. [26] Athlon 1 GHz Athlon 1 GHz 450 b 0.3129
Gajpal and Abad [15,16] Xeon 2.4 GHz Xeon 2.4 GHz 884 a 0.8558
Brandão [4] Compaq PresarioX 1000 Intel Pentium M 1.4 GHz Compaq PresarioX 1000 Intel Pentium M 1.4 GHz 250 b 0.1739
Jepsen [22] P4 3.0 GHz Pentium 4, 3.06 GHz 1414 a 1.3688
Ours  P4 2.4 GHz P4 2200 MHz 1033 a 1

Note: “a” is from Dongarra [11] and “b” is based on Brandão [4].

Table 2
Comparisons using Solomon R1 benchmark data.Q12

Instance q Distance Vehicles Converted CPU time

LACS MAa SAa ESPPRCb LACS MA SA IPoptc LACS MA SA ESPPRC

R101 25 617.1 670.4 634.9 617.1 8 8 8 8 0.11 0.03 0.13 0.03
50  1054.5 1132.9 1104.4 1043.4 12 12 12 12 0.54 0.13 1.2 0.19

100  1650.4 2034.7 1970.1 1631.2 19 21 21 20 2.58 1.2 9.22 27.49

R102  25 546.4 635.4 594.1 546.4 7 7 7 7 0.12 0.2 4.48 0.18
50  919.7 1062.1 1037 909 10 11 11 11 0.48 1.2 9.75 0.37

100  1486.1 1810 1711.1 1466.6 18 19 19 18 3.08 2.47 34.27 6.01

R103  25 463.4 556.7 529.9 454.6 4 5 5 5 0.24 0.2 1.34 0.15
50  806.4 883 864.9 769.3 8 9 9 9 1.11 0.67 26.05 6.82

R104  25 417.0 501.4 486.4 416.9 4 4 4 4 0.27 0.6 4.48 0.16
50  626.0 802 767.1 619.1 6 7 7 6 1.49 1.54 27.05 45.57

R105  25 531.7 584 602.8 530.5 5 6 6 6 0.2 0.4 3.41 0.03
50  918.6 1096 1231.9 892.2 8 10 10 10 0.88 0.6 7.35 3.81

100  1377.1 1538.1 1543.2 1346.2 15 15 15 15 2.55 2.87 32.26 173.78

R106 25 466.5 522.3 498.1 457.3 3 3 3 3 0.27 0.27 0.27 0.40
50  793.1 912.6 897.6 791.4 7 6 5 5 0.91 0.94 2.07 1.93

R107  25 425.3 518.3 469.9 424.3 4 4 4 4 0.31 0.2 7.41 0.16
50  726.2 755.2 776.3 707.3 7 8 8 7 1.06 3.01 13.69 7.61

R108  25 397.2 459.8 448.3 396.9 4 4 4 4 0.31 0.2 9.15 0.42

R109  25 442.3 512.1 501.2 441.3 5 5 5 5 0.25 0.07 4.21 0.08
50  786.8 1065.3 948.2 775.4 7 9 8 8 0.47 0.6 0.53 27.53

R110  25 445.2 512.3 480.1 438.4 4 4 4 4 0.28 0.27 0.53 1.59
50  707.4 767.8 702.4 695.1 7 8 8 7 0.44 0.33 0.6 4.63

R111  25 429.1 510.2 491.3 427.3 4 5 5 5 0.25 0.2 2.14 0.31

R112  25 390.1 443.1 426.4 387.1 4 4 4 4 0.27 0.27 0.27 1.63

Note: “a” is from Cheung, and “b” is from Jepsen, and “c” is from Kohl.

Table 3
Comparisons in VRP with heterogeneous fleet instances.

Instance Nodes Taillard [38] Brandão [4] LACS Cost gap

Cost Time Cost Time Cost Time

13 50 1536.55 3.29 1517.84 9.74 1517.84 7.86 0%
14  50 623.05 4.00 607.53 9.56 607.53 10.13 0%
15  50 1022.05 2.33 1015.29 10.26 1015.29 7.95 0%
16  50 1159.14 2.43 1144.94 16.34 1145.51 11.04 0.05%
17  75 1095.01 15.61 1061.96 35.81 1061.96 31.12 0%
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20  100 1592.16 23.66 

The optimal routing schedules for the 48-node network and
he 84-node network are depicted in Figs. 2 and 3 respectively.
ost offices, delivery stations, and the central processing center are
enoted as circles, squares and the ellipse, respectively. Table 4
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

ists the cost items and the vehicle allocations for the 48-node
etwork. It shows that the total cost is reduced from RMB  2440
o 2377. The maximum cost saving from a single route is Wusan,
own by 13.24%. Table 5 lists the cost items and the vehicle alloca-
.36 34.42 1830.26 30.42 0.37%

.34 42.25 1120.34 36.21 0%

.17 52.50 1544.07 32.41 0.65%

tion scheme for the 84-node network. Prior to the optimization, the
daily service cost relying on ten routes is RMB  4628. LACS is able
to generate a 9-route solution, and the vehicle used to serve Shahe
is no longer needed. Though the local costs for certain routes may
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

increase, the total service cost is down from RMB  4628 to 4252,
resulting in an 8.12% saving. As the network size increases (i.e.,
extend to the metropolitan Guangzhou), the potential cost savings
of using LACS generated routing solution becomes more promising.
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Table 4
Solutions for China Post in Guangzhou using LACS (48 Nodes).

No. Pre-optimization Post-optimization Gap

Route Nodes Vh. type (ton) Cost (RBM) Routes Nodes Vh. type (ton) Cost (RMB)

1 Wusan 7 1.5 272 Wusan 6 1.5 236 −13.2%
2  Zhujiang Newtown 11 5 348 Zhujiang Newtown 12 5 389 11.8%
3  East Guangyuan 9 3 660 East Guangyuan 8 3 602 −8.8%
4  Longdong 11 5 664 Longdong 11 5 646 −2.7%
5  Yantang 10 3 496 Yantang 11 5 504 1.6%

Total  48 2440 Total 48 2377 −2.6%

Table 5
Solutions for China Post in Guangzhou using LACS (84 Nodes).

No. Pre-optimization Post-optimization Gap

Route Nodes Vh. type (ton) Cost (RBM) Routes Nodes Vh. type (ton) Cost (RMB)

1 Wusan 7 1.5 272 Wusan 6 1.5 236 −13.2%
2  Zhujiang Newtown 11 5 348 Zhujiang Newtown 12 5 400 14.9%
3  East Guangyuan 9 3 660 East Guangyuan 8 3 600 −9.1%
4  Longdong 11 5 664 Longdong 12 5 676 1.8%
5  Yantang 10 3 496 Yantang 12 5 532 7.3%
6  Liuhua 8 3 440 Liuhua 9 3 448 1.8%
7  Shahe 5 1.5 416 Shahe 0 1.5 0 −100.0%
8  Wuyangcun 8 3 442 Wuyangcun 9 3 453 2.5%
9  Haiyin 9 5 520 Haiyin 12 5 558 7.3%
10  Tiyudong 6 1.5 370 Tiyudong 4 1.5 349 −5.7%

Total  84 4628 Total 84 4252 −8.1%

Table 6
Comparisons between heterogeneous and homogenous vehicles.

Instance Status Vh. type (ton) Vehicle num. Cost (RMB) Gap Solution for Vh. num (Vh. type)

48 nodes Pre-LACS 1.5/3/5 5 2440 Baseline 1(1.5), 2(3), 2(5)
Post-LACS 1.5/3/5 5 2377 −2.6% 1 (1.5), 1(3), 3(5)
Post-LACS 1.5 10 2580 5.8% 10(1.5)
Post-LACS 3 7 2514 3.0% 7(3)
Post-LACS 5 5 2467 1.1% 5(5)

84  nodes Pre-LACS 1.5/3/5 10 4628 Baseline 3(1.5), 4(3), 3(5)
Post-LACS 1.5/3/5 9 4252 −8.1% 3(1.5), 3(3), 4(5)
Post-LACS 1.5 18 5056 9.2% 18(1.5)
Post-LACS 3 12 4865 5.1% 12(3)
Post-LACS 5 10 4773 3.1% 10(5)
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Fig. 2. 48-Node Shuttle Service Area.

Cost comparisons between heterogeneous and homogenous
ehicles are also made in Table 6. It shows that the operational costs
ncurred by the homogenous vehicle fleet are always higher than
Please cite this article in press as: W.  Wu,  et al., A label based ant c
backhaul, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.aso

hat of the heterogeneous fleet. As the network nodes increases,
he cost of using small size vehicles grows much faster than using
arge size vehicles. These managerial insights generated by LACAS
an aid the regional China Post in determining the optimal vehicle
Fig. 3. 84-Node Shuttle Service Area.

mix  to realize cost savings, yet without compromising the service
quality.
olony algorithm for heterogeneous vehicle routing with mixed
c.2016.05.011

6. Conclusion

This paper formulates and solves a class of vehicle routing prob-
lems considering vehicle heterogeneity, backhauls, mixed-load,
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nd time windows. Both linehauls and backhauls can be served
n random order. Our study intends to fill the research gap where
ehicle heterogeneity and backhaul mixed-loads are often handled
eparately. A two-stage label-based ant colony optimization algo-
ithm is developed to minimize the total travel cost. That is, in
tage one we optimize the vehicle type and vehicle quantity, and
n stage two we further optimize the travel routes based on the
revious stage decision. The proposed hybrid algorithm possesses
he multi-attribute labeling features and the swarm intelligence,
nd its advantages are demonstrated in terms of global optimality
nd computational time. The real-world case study in China Post of
uangzhou shows that a heterogeneous fleet of vehicles can lower

he service cost up to 9.2% than a homogeneous fleet. As of future
esearch efforts, we want to extend the algorithm to more general
ituations including periodic vehicle assignment, and simultaneous
ickup and delivery in a multi-depot environment. We also want to
ackle the problem by using directly multi-objective evolutionary
lgorithm to obtain the non-dominant solution set, and the results
an be further compared with the ant colony algorithm in terms of
omputational time and global optimality.
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