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Given a set of positive integers S, the minimum generating set problem consists in finding a set of positive
integers T with a minimum cardinality such that every element of S can be expressed as the sum of a
subset of elements in T. It constitutes a natural problem in combinatorial number theory and is related
to some real-world problems, such as planning radiation therapies.

We present a new formulation to this problem (based on the terminology for the multiple knapsack
problem) that is used to design an evolutionary approach whose performance is driven by three search
inimum generating set problem
enetic algorithms
ultiple knapsack problem

eal-parameter crossover operator

strategies; a novel random greedy heuristic scheme that is employed to construct initial solutions, a
specialized crossover operator inspired by real-parameter crossovers and a restart mechanism that is
incorporated to avoid premature convergence. Computational results for problem instances involving up
to 100,000 elements show that our innovative genetic algorithm is a very attractive alternative to the
existing approaches.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

The minimum generating set (MGS) problem, a natural problem
n combinatorial number theory [1], is defined as follows: given a
et of positive integers, S = {s1, . . ., sn}, the problem consists of find-
ng a minimum cardinality set of distinct integers T = {t1, . . ., tm},
alled generating set, such that every element of S is equal to the sum
f a subset of T. The MGS problem has been shown to be NP-hard [1],
nd is related, among other problems, to planning radiation thera-
ies [2–4]: the elements of S represent radiation dosages required
t various points, while an element of T represents a dose delivered
imultaneously to multiple points. Then, the objective is to find the
et of doses that properly combined (subsets of T), produces the
nitial requirements (S). Other variants, namely the cases in which
he elements of T can be negative or fractional, were considered
lsewhere [5,6].

The greedy algorithm presented by Collins et al. [1] is the unique
Please cite this article in press as: M. Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

roposed approach for the MGS problem so far. Its idea is to rep-
esent the largest set of integers si by means of the combination of
ther integers sj, previously accepted solution components tk, and a

∗ Corresponding author.

ttp://dx.doi.org/10.1016/j.asoc.2016.07.020
568-4946/© 2016 Elsevier B.V. All rights reserved.

60

61
new candidate solution component d. The process is repeated until
all the integers si ∈ S have a representation based on solution com-
ponents. Fagnot et al. [7] gave some elementary properties of the
minimum 2-generating set, a natural restriction of the MGS prob-
lem where each element of S must be represented by the sum of
at most two elements from T, and proved its hardness. However,
surprisingly, not a single metaheuristic approach has been applied
so far (to our knowledge) to tackle the problem from a practical
point of view. This fact was our main motivation for the develop-
ment of a genetic algorithm (GA) that aims at optimizing the MGS
problem. GA is a well known metaheuristic that has proved to be
very effective in solving hard optimization problems [8,9].

In GA, a population of candidate solutions, called chromo-
somes, evolves over successive generations using three genetic
operators: selection, crossover, and mutation. First of all, based
on some criteria, every chromosome is assigned a fitness value,
and then the selection mechanism is invoked to choose relatively
fit chromosomes to be part of the reproduction process. Then,
new chromosomes are created through the crossover and mutation
for the minimum generating set problem, Appl. Soft Comput. J.

operators. The crossover generates new individuals by recombining
the characteristics of existing ones, whereas the mutation operator
is used to maintain population diversity with the goal of avoiding
premature convergence.
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The proposal presented in this paper to successfully address the
GS problem rests on four pillars:

We redefine the MGS  problem using the terminology employed
in the well-known multiple knapsack (MK) problem, which has
been extensively studied within this class of algorithms.
We devise a randomized greedy procedure specifically designed
for generating feasible solutions for the given MGS  case in
reasonable computing times. Highly constrained combinatorial
optimization problems such as the MGS  problem have proved to
be a challenge for metaheuristic solvers [10]. This is a situation
in which it is difficult to define an efficient neighborhood, thus
no local search is available [11]. Therefore, the incorporation of
specialized constructive greedy heuristics is often necessary in
order to produce practical implementations [10].
On the basis of the new formulation, we propose a GA approach to
deal with the MGS  problem that comprises an initial population
generation method (based on the proposed randomized greedy
algorithm) with the goal of acquiring a population of diversified,
yet adequate quality solutions, and a restart mechanism, substi-
tuting the usual GA mutation, to regenerate population diversity
when chromosomes become very similar.
In addition, the proposed GA incorporates an innovative spe-
cialized recombination operator, inspired by real-parameter
crossovers [12], which maintains the feasibility and legality of
the offspring as solutions to the problem.

The rest of this paper is organized as follows. Section 2 presents
he MK-based interpretation of the MGS  problem, their similar-
ties and differences. Section 3 introduces the new randomized
reedy heuristic for the MGS  problem, which constitutes one of
he essential components of the proposed GA. Section 4 describes
he evolutionary approach for the MGS  problem. Section 5 provides
n analysis of the GA performance and draws comparisons with the
xisting literature. Finally, Section 6 contains a summary of results
nd conclusions.

. The MGS  problem as searching objects for knapsacks

In the MK  problem, we are given a set of objects O and a set
f knapsacks K. Each object oj ∈ O has a profit, p(oj), and a weight,
(oj), and each knapsack ki ∈ K has a capacity, C(ki). The objec-

ive in the MK  problem is to allocate each object to at most one
napsack in such a way that the total weight of the objects in each
napsack does not exceed its capacity and the total profit of all the
bjects included in the knapsacks is maximized. Its mathematical
ormulation, shown in Fig. 1(left) [13,14], is based on a set of binary
ariables xojki , where xojki = 1 indicates that object oj is included in
napsack ki, and xojki = 0, otherwise. GAs and other metaheuristics
pplications to the MK problem and its variants [15–17,14] usually
ncode solutions as integer arrays whose lengths are equal to the
umber of objects, and the respective ojth element indicates the
napsack ki where it is included into, or an invalid value if it is not
ssigned to any knapsack.

In the MGS  problem, the elements si ∈ S may  be recognized as
napsacks with capacities equal to their si values (C(si) = si, ∀ si ∈ S).
hen, the elements in a candidate generating set, tj ∈ T, are objects
hat may  be inserted in the knapsacks, with weights equal to their
alues (w(oj) = tj, ∀tj ∈ T). In this fashion, the objective of the
GS  problem may  be reformulated as constructing the smaller set
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

f objects T, such that every knapsack is completely filled by includ-
ng replicas of different objects from T. Noticing that no integer
alue j greater than the maximal element in S, Smax, may  belong to

 generating set T, we can reformulate the problem of constructing
 PRESS
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the set of objects T as the one of selecting those from the set {1, . . .,
Smax} that will belong to T.

The MK  mathematical formulation can be adapted for the MGS
problem as shown in Fig. 1(right). There xjsi = 1 indicates that
integer j contributes to fill knapsack si (xjsi = 0, otherwise); and
consequently, xj must be equal to 1, which expresses that integer j
belongs to the generating set T.

Whereas this knapsack-based interpretation provides a math-
ematical adaptation and a pictorial analogy for the MGS  problem,
which is finding objects that properly combined fill all the knap-
sacks, their differences should be clearly remarked:

• The capacity constraints (2) become equality constraints, i.e., the
sum of the weights of the objects in a knapsack must be equal to
its capacity.

• There are not profits, so they disappear from the objective (1).
Additionally, the objective is transformed into a minimization
problem, to reduce the number of created objects.

• Objects may  be placed in more than one knapsack, so the con-
straint (3) is not present.

• Knapsacks cannot carry two  or more objects with the same
weight, so integers j apply only once in the summation in the
constraint (2).

• Objects must be created for solving the problem, whereas they
are initially given in the MK  problem.

This becomes a hard restriction, since the solver has to consider
combinations of every possible object. This can be addressed by
searching in the space of combinations of elements in the set {1,
. . .,  Smax}, either exploiting the mathematical formulation (Fig.
1, right) or applying a metaheuristic with integer arrays for the
possible Smax objects. However, this becomes impractical for large
Smax values. For example, we could not obtain any valid solution
with CPLEX V12.1 and the model in Fig. 1(right) for a random
instance with |S| = 20 and Smax = 4096 after one hour.

Regarding our proposed GA, since the direct adaptation of GAs
for the MK problem to the MGS  one is not viable, we  will propose
a randomized greedy heuristic that evaluates sets with a restricted
number of samples from {1, . . .,  Smax} (Section 3). Our  GA will use it
at different stages, namely initialization, restart, and crossover. To
address extremely hard problems, a common strategy concerns to
include heuristic subordinate procedures into the stages of meta-
heuristics [18–20].

Finally, note that given a solution for this reformulated knapsack
problem, i.e. the set of objects (O = {oj}), we  may  directly obtain a
generating set T for S by building a set with the weight values of
the objects (T = {tj = w(oj), oj ∈ O}).

3. Randomized greedy heuristic

In this section, we propose a randomized greedy heuristic for
the MGS  problem, which is called RG-MGS. The design of RG-MGS
(Fig. 2) is specified under the new formulation for the MGS  problem
presented in this paper. Therefore, one of its inputs is the set of
knapsacks K associated with S, and the output is the set of created
objects, O.

RG-MGS starts with all the knapsacks empty and constructs one
object at a time, which is added to the current partial solution, O,
until all the knapsacks are completed. Specifically, the algorithm
manages the free spaces in the knapsacks, F = {f1, . . .,  fn} (fi stores
the free space in knapsack ki), and creates an object with a weight
 for the minimum generating set problem, Appl. Soft Comput. J.

value belonging to the set {1, . . .,  Fmax} (the weight of the biggest
possible object is equal to the greatest free space in any knapsack,
Fmax) with the aim of minimizing the global free space in the knap-
sacks after the insertion of the new object. To do this, RG-MGS uses
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Fig. 1. Mathematical model of the multiple knapsack problem (left), and the minimum generating set problem (right).

t
u

 

p
t
s
(
4
a
o
M
f
t
w
r

w
w
b
w
E
t
p
(
w
t
o
o
w

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245
Fig. 2. Pseudocode algorithm for RG-MGS.

he global contribution ( (ω, F)) of an object with weight ω to fill
p the knapsacks:

(ω, F) =
n∑
i=1

ı(ω, fi), where ı(ω, fi) =
{
ω, if ω ≤ fi

0, otherwise

Since the calculation of the global contribution for all the
ossible weight values in the set {1, . . .,  Fmax} may  become a
ime-consuming strategy, RG-MGS employs an alternative random
ampling technique, which consists of choosing, at random, nsample
a control parameter of RG-MGS) weight values in this set (Step
). Later, it selects the one for which the global contribution value
cross these sampled weights is maximal (Step 5), and builds an
bject with exactly that weight (Steps 6 and 7). Subsequently, RS-
GS  introduces the new object into every knapsack with sufficient

ree space and updates their free spaces (Steps 8–13). �(o) denotes
he set of knapsacks containing object o. The algorithm finishes
hen the objects assigned to the knapsacks make exactly their

espective capacities.
During the run of RG-MGS, it may  be possible to create objects

ith the same weights, and then, the final associated generating set
ould become infeasible. Therefore, RG-MGS ends its execution

y invoking a repair procedure, called Eliminate-Duplicates,
hich resolves this problematic situation (Fig. 3). The main ideas of

liminate-Duplicates are the following. Whenever there exist
wo different objects, oi and oj, with w(oi) = w(oj), this procedure
ays attention to the set of knapsacks containing both objects
�(oi) ∩ �(oj)). If this set is not empty, a new object with twice the
eight of oi is created (Step 4) and it replaces both oi and oj in
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

hese knapsacks. Moreover, Eliminate-Duplicates replaces oj by
i in those knapsacks that uniquely contained oj. Finally, it removes
bject oj from the solution (Step 12). If there was already an object
ith twice the weight of oi, the procedure will address the new
Fig. 3. Pseudocode algorithm for Eliminate-Duplicates procedure.

conflict in a subsequent iteration. To sum up, the proposed proce-
dure replaces two objects with equal weights with one of the same
weight and another with double the weight.

In another metaheuristic based on constructions, namely
GRASP, it is customary to construct a solution by selecting iter-
atively elements at random from a restricted candidate list of
elements with good evaluations. Recent designs, however, have
proved that this classic design can be improved in some problems
by first applying a random sampling and then performing a greedy
selection from the sampled elements (see for example [21]). Our
proposal here is in line with these recent GRASP designs.

4. Steady-state genetic algorithm for the MGS  problem

GAs [8,9] are adaptive methods based on the genetic process of
biological organisms. They are widely used in many combinatorial
and real-parameter optimization problems. GAs start with an ini-
tial set of random solutions (or seeded candidates with some good
heuristic method) forming a population of so-called chromosomes
of size Np. Chromosomes evolve from population to population
through successive iterations, called generations, keeping Np fixed
throughout the iterations. Each chromosome has a fitness value
associated with it.

In each generation, chromosomes are evaluated by the fitness
function (related to the objective of the problem) to assess their
competence to survive in the next generation. The fittest chromo-
somes are selected to form a new population, which subsequently
undergoes genetic operations: mutation of a single chromosome
and crossover between two ones (parents get offspring). Genetic
operators are applied to the selected solutions to produce new ones
with inherited characteristics of their parents and the associated fit-
 for the minimum generating set problem, Appl. Soft Comput. J.

ness function evaluates the extent to which they achieve the goal
of the optimization problem.

Generational GAs abandon the current population once the
whole offspring population had been created, which becomes the
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Fig. 4. Pseudocode algorithm for GA-MGS.

ew current population. On the contrary, steady-state GAs [22–24]
ypically generate one single new solution and insert it into the pop-
lation at any one time. A replacement/deletion strategy defines
hich member of the current population is forced to perish for the
ew offspring to compete in the next iteration.

In this section, we introduce the use of an advanced steady-
tate GA to solve the MGS  problem. Next, Section 4.1 summarizes
he overall evolutionary process flow in the proposed GA and Sec-
ion 4.2 explains the details of the specific crossover operator
esigned to generate feasible solutions from two parent chromo-
omes.

.1. Overall GA algorithm

An outline of the proposed GA, called GA-MGS, is given in Fig. 4. It
s a steady-state GA, whose chromosomes represent sets of objects
hat fill the different knapsacks, and their fitness values are equal
o the number of objects used. The chromosome encodes for each
bject its weight and the set of knapsacks where it is placed.

GA-MGS operates in two phases: first, the initialization, during
hich the population is filled with Np solutions generated by the
G-MGS procedure (Section 3), and next, the population is subject
o an evolutionary loop that adopts the following operations:

. Select two parents from the population using the binary tour-
nament selection mechanism (Steps 5 and 6). This selection
technique is widely used in GAs due to its simplicity and ability
to escape from local optima. It selects the fittest chromosome
between two that are randomly picked out from the population.

. Create an offspring applying the crossover operator (Step 7;
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

Section 4.2). This is a method for sharing information between
individuals that combines the features of two parents to cre-
ate potentially better offspring. The underlying idea is that
the exchanging of genetic material among good individuals is
 PRESS
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expected to generate good or even better individuals. There-
fore, this operator exploits the available information from the
population.

3. Select an individual from the population and decide if this indi-
vidual will be replaced by the offspring (Steps 9–12). For this
decision, we  consider the replace worst strategy, which replaces
the worst individual in the population only if the new individual
is better. This mechanism induces a high selective pressure even
when the parents are selected randomly [25].

4. A restart process is fired (Steps 13–18) when the population has
converged (the fitness function values of all the individuals in the
population are equal). In this situation, the population is reini-
tialized with Np − 1 new solutions generated by the RG-MGS
method and a randomly chosen one from the current popula-
tion. This source of diversity allows the high selective pressure
associated with the replacement and parent selection mecha-
nisms to be counteracted with the aim of avoiding premature
convergence.

These steps are repeated until some termination condition (e.g.
maximum number of iterations, or maximum computation time
allowed; Step 4) has been met. The best chromosome, Cb, generated
during the iterative process is kept as the overall result.

4.2. Crossover operators to induce objects preferences

The crossover operator has always been regarded as one of the
main components that guides the search process of GAs [9,26],
because it gathers up, combines, and exploits the available infor-
mation on previous samples to influence future search directions
[27–29]. Real-coded genetic algorithms [30,31,12] are a prominent
research field where a substantial effort has been put into the devel-
opment of sophisticated real-coded crossover operators. Herrera
et al. [27] presented a taxonomy to classify the crossover operators
for real-coded GAs. Neighborhood-based crossover operators are a
class of the taxonomy that has been found to be effective in many
cases. They determine the genes of the offspring by sampling prob-
ability distributions associated with the values of the genes of the
parents, which often define the central position and extent of the
distribution.

Inspired by several neighborhood crossover operators proposed
in the literature, we  present in this section three crossover opera-
tors (CX-BLX-˛, CX-PBX-˛, and CX-MP-˛) aimed at exploiting the
information from two  or more parents (their objects oi) to induce
some preferences when creating the objects for the offspring. Sec-
tion 4.2.1 describes the general and common structure they share
to generate objects for the offspring and fill up its knapsacks. Sec-
tion 4.2.2 details two prominent types of probability distribution
usually considered in neighborhood-based crossover operators,
and thus, used in this work. Section 4.2.3 assembles previous con-
cepts into three concrete crossover operators, CX-BLX-˛, CX-PBX-˛,
and CX-MP-˛.

4.2.1. General structure of the crossover operators for the MGS
problem

In contrast to the uniform distribution sampled by RG-MGS,
which covers all the possible weights for new objects, the idea
here is to exploit the information in the population to induce
some preferences when sampling new weight values. Specifi-
cally, the motivation is to promote a fruitful synergy between the
selection pressure of the parent selection and the replacement
strategy, which maintains good solutions in the population, and the
 for the minimum generating set problem, Appl. Soft Comput. J.

crossover operator, which generates new solutions, to concentrate
the sampling in promising limited intervals.

The general structure of the proposed crossover operators is
similar to that of RG-MGS but using the objects in the parents
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Fig. 5. Possible values sampled from Prmean(ω|�, F).

o modify the originally-uniform probability distribution; starting
ith all the knapsacks of the offspring empty and iterating the

ollowing steps until they are filled up.

. Construct a set of objects with one object per parent, Oparents. For
this step, we select the largest object from the first parent, not
previously selected, and the most similar to this one from the sec-
ond parent, not previously selected, too. In the case of more than
two parents, parents are revised iteratively and, each one con-
tributes with the object most similar to those already selected.
The idea here is to favor the creation of objects with high global
contributions  (ωi, F) (Section 3), by using the largest objects
first, and the smaller ones later to fill the gaps. Additionally,
similarity is justified to concentrate the associated probabil-
ity distribution, from which new objects are sampled, on these
objects.

. Define a probability distribution Pr(ω|�, F) according to the
weights of the selected objects (� = {w(o), ∀o ∈ Oparents}), and
the free spaces in the knapsacks of the offspring (F). Here, we
follow the idea from two significant families of neighborhood-
based crossover operators, mean-centric and parent-centric ones.
The former centers the probability distribution on an aggregated
measure of the values of the parents, whereas the latter centers it
on the value of one of the parents. Particularly, we  design appro-
priate distributions for the MGS  problem, inspired by BLX-  ̨ [31]
(mean-centric) and PBX-  ̨ [32] (parent-centric) (Section 4.2.2).

. Sample csample integers from Pr(ω|�, F).

. Evaluate their global contributions  (ωi, F).

. Create an object with weight equals to the integer with  (ωi,
F) maximum and insert it in every knapsack with sufficient free
space.

If this process left some knapsacks incomplete, because all the
bjects from the parents have been selected once, they would be
lled up with RG-MGS. Finally, the Eliminate-Duplicates proce-
ure (Section 3) is invoked to repair the possible existence of more
han one object with the same weight.

.2.2. Mean-centric and parent-centric distributions
Given a set of weights, from objects selected from the parents

hat undergo crossover, �,  we define the following probability dis-
ributions from which new weights are sampled. We  shall indicate
hat they come (when |�|  = 2 and ω ∈ R) from the definition of the
LX-  ̨ [31] and PBX-  ̨ [32] crossover operators, respectively:

Prmean(ω|�, F) is uniform in the following integer range, which is
centered on the mean of the set of weights (�), and is equal to 0
out of it (Fig. 5):

VI = {max{1, � − �I · (1 + ˛)�}, . . .,

min{Fmax, � + �I · (1 + ˛)�}},
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

where I = y − x, x = min(�), y = max(�), and  ̨ is a control
parameter.
Fig. 6. Possible values sampled from Prparent(ω|�, F).

• Prparent(ω|�, F) is uniform in the following integer range, which
is centered on the first weight of the set (ω1 ∈ �),  and is equal to
0 out of it (Fig. 6):

VII = {max{1, ω1 − �I · ˛�}, . . .,

min{Fmax, ω1 + �I · ˛�}},

where I = y − x, x = min(�), y = max(�), and  ̨ is a control param-
eter.

4.2.3. Crossover operators
Gathering up previous ideas, we  present the following crossover

operators:

• CX-BLX-˛, named after BLX-  ̨ [31], takes two  parent solutions
and produces an offspring applying the steps commented in Sec-
tion 4.2.1 and using the Prmean(ω|�, F) probability distribution.
Thus, this is a mean-centric crossover operator.

• CX-PBX-˛, named after PBX-  ̨ [32], is similar to CX-BLX-  ̨ but
uses the Prparent(ω|�, F) probability distribution. Therefore, this
is a parent-centric crossover operator.

• CX-MP-  ̨ is motivated by the superior performance shown by
some multi-parent real-parameter crossover operators that com-
bine the features of more than two  parents [29] (examples
are UNDX [33], SPX [34], and PCX [30]). This operator takes
np parents, which is a parameter, and generates an offspring
applying the steps in Section 4.2.1 using the Prmean(ω|�, F)
probability distribution. Thus, this is a mean-centric crossover
operator. The complimentary multi-parent crossover operator
using Prparent(ω|�, F) is not analyzed in this work because
the first empirical results, shown in Section 5.2, conclude that
mean-centric crossover operators produce better solutions than
parent-centric ones for the MGS  problem.

The designed crossover operators exploit a subordinate heuris-
tic procedure, which samples a set of weights and returns the one
with the maximal global contribution, to generate new solutions for
this complex problem. In particular, this helps the GA  with dealing
with a very large set of possible candidate objects to be created
({1, . . .,  Smax}; as mentioned in Section 2. This strategy resem-
bles the indirect encoding methodology of several metaheuristics
that incorporate a subordinate greedy decoder. In these cases, the
individuals in the population do not directly represent candidate
solutions, but the way a greedy algorithm should construct feasible
ones [18–20].

5. Computational experiments

This section describes the computational experiments that we
conducted to assess the performance of the evolutionary approach
introduced in the previous section to face the MGS  problem. Firstly,
we detail the experimental setup (Section 5.1) then, we  analyze the
 for the minimum generating set problem, Appl. Soft Comput. J.

with this algorithm. Our aim is: (1) to analyze the influence of the
parameters and settings associated with GA-MGS (Section 5.2), and
(2) to compare the results of the proposal with those of a greedy
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Fig. 7. Pseudocode algorithm for MS-RG-MGS.

Table 1
Results for the multi-start RG-MGS algorithm.

nsample Av Rank %D %B

1 5.470 19.0 0
2  2.614 4.5 20.4
5  1.322 0.5 86

10  2.914 8.1 10
25  4.584 16.4 4
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euristic approach for the MGS  problem from the literature (Sec-
ion 5.3).

.1. Experimental setup

All algorithms have been implemented in C and the source code
as been compiled with gcc 4.8.2. The experiments were conducted
n a computer with a 3.2 GHz Intel® CoreTM i7 processor with 24 GB
f RAM running FedoraTM Linux V20. Importantly, the establish-
ent of common execution conditions for all algorithms is essential

or an adequate replication of previous computational experiments,
hich is a necessary condition for obtaining meaningful findings

35]. In this regard, we have chosen execution time as compari-
on metric, instead of number of evaluations, since our proposal
mploys a repair procedure prior to the evaluation of each solu-
ion, which undoubtedly adds an additional computational cost
hat it is difficult to quantify to perform a fair comparison with other
lgorithms if not using time as comparison metric. In addition of
sing for all experiments the same conditions such as programming

anguage or operating system, we have also tried to minimize the
ffect of any OS background task on the algorithm’s performance.
o achieve this, we limit the number of simultaneous algorithm
xecutions to five in the same computer, being 3 of the 8 running
hreads in the Intel Core i7 processor available to operating sys-
ems tasks. Moreover, it is important to note that the findings of the
xperimental comparison are obtained from a large number of exe-
utions on different instances, limiting the incidence of a one-time
S task on those findings.

We  considered two types of benchmark instances for our
xperiments, which are described below; they were automatically
enerated and parameterized by the number of values to be repre-
ented, n = |S|.

Instances Type U. They are unconstrained instances that consist
of n integers randomly sampled from the positive range of pos-
sible values of a signed integer variable of the C programming
language (gcc 4.8.2, {1, . . .,  2, 147, 483, 647}). An upper bound
for the value of the optimal solution for this type of instances is
log2(Smax) = 31 [1].
Instances Type L. They are limited-representation instances that
are additionally parameterized by the maximal value in the set
S, Smax, and a desired optimal objective value, m = |T|. The proce-
dure that generates the problem instance firstly samples an initial
candidate solution with m random integers in {1, . . .,  Tmax}. Then,
the numbers in S are computed as sums of random subsets of T,
whose sum is less or equal to Smax.

The parameter m limits, in contrast to unconstrained instances,
the complexity of the representations of the elements in S. For
instance, m equals to ten impedes the existence of any number
in S, whose representation, in the optimal solution, required the
sum of more than ten numbers. In addition, m is a known upper
bound for the value of the optimal solution. For these instances,
Tmax has to be computed properly. On the one hand, Tmax has to be
inferior or equal to Smax, and on the other, values of Tmax close to
Smax, favors the apparition of numbers in S with simple represen-
tations (sum of few elements from T). Thus, we have computed
Tmax as 2 · Smax/m, what makes that the expected complexity of
the numbers in S be at least m/2.

When comparing algorithms, we compute the overall best solu-
ion value for each problem instance, BestValue,  obtained by the
xecution of the algorithms under consideration (in each compar-
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

son analysis). Afterwards, for each algorithm, we  calculate the
elative deviation between the best solution value found by the
ethod and BestValue.  Then, we report the average of this relative

eviation in percentage (%D) across all the instances considered in
50  5.256 20.5 5.2
100 5.840 23.3 2.4

each particular experiment and the percentage of instances (%B) for
which the value of the best solution obtained by a given method
matches BestValue.  We  will also show the average rankings (Av
Rank) achieved by these algorithms, computed by the Friedman
test. This measure is obtained by computing, for each instance, the
ranking ra of the observed results for algorithm a assigning to the
best of them the ranking 1, and to the worst the ranking |A| (where
A is the set of algorithms). Then, an average measure is obtained
from the rankings of this algorithm for all test problems. For exam-
ple, if a certain algorithm achieves rankings 1, 3, 1, 4, and 2, on five
instances, the average ranking is (1 + 3 +1 + 4 +2)/5 =2.20. Note that
the lower the ranking, the better the algorithm.

5.2. Components and parameter tuning

In this section, we  investigate the effect of the different param-
eters and strategies applied in GA-MGS and their interactions. For
these experiments, we  consider a set of 250 instances Type U that
range from n = 50 to n = 1000. All the algorithms were stopped after
a time limit of n

10 s to have a fair comparison. Additionally, each
algorithm was executed once for each problem instance.

Given the relevance of the RG-MGS procedure as generator of
good starting solutions for our GA, the first preliminary experiment
is devoted to adjusting the nsample parameter of this procedure.
To do this, we have implemented a multi-start metaheuristic that
invokes repeatedly RG-MGS until a termination condition (e.g.
maximum computation time allowed) has been met. The best solu-
tion generated during the iterative process is kept as the overall
result. The complete pseudocode of this procedure, which will be
termed MS-RG-MGS, may  be found in Fig. 7. MS-RG-MGS is an
instance of the so-called randomized greedy multi-start metaheuris-
tic, which was  described by Martí et al. [36] as a type of multistart
method that fires a greedy procedure integrating random diversifi-
cation. Early instances can be found under the name of semi-greedy
heuristic [37].

We  ran 7 different MS-RG-MGS variants with nsample = {1, 2, 5, 10,
25, 50, 100}. Table 1 shows the results: averaged ranking, relative
 for the minimum generating set problem, Appl. Soft Comput. J.

deviation from the best result, and percentage of successful runs.
The results in Table 1 show that the choice of the value for nsample

has an important influence on the RG-MGS behavior. According
to the three performance measures, the variant with nsample = 5
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Table  2
CX-BLX-˛ vs. CX-PBX-˛.

Cross. Op. csample Av Rank %D %B

1 10.424 8.4 0
2  6.638 3.6 14

CX-BLX-˛ 5 4.192 1.8 48
Prmean(ω|�, F) 10 3.716 1.3 56.4

20  4.764 2.2 44.4
30  6.732 3.9 21.2

1  11.972 16.2 0
2  9.262 6.3 0.8

CX-PBX-˛ 5  5.428 2.7 22
Prparent(ω|�, F) 10 4.646 2.1 38.4

o
v
t
t
(
c

b
p
a
(
2
o
t
s
d
b
r
c

•

•

M
o
t
i
p
[
(
s
o
a
T

˛

Table 3
SCX vs. CX-BLX-˛.

Cross. Op. Av Rank %D %B

SCX 1.922 4.6 13.6
CX-BLX-˛ 1.078 0.05 98

Table 4
Results with the multi-parent crossover operator.

Cross. Op. csample Av Rank %D %B

1 13.600 6.4 0
2  10.260 4.0 5.2

CX-MP np = 3 5 7.736 2.8 22.8
10 6.746 2.3 30.8
20 6.472 2.1 34.8
30 7.346 2.6 25.6

1 13.238 6.2 0.4
2  8.008 2.9 16.8

CX-MP np = 4 5 5.858 1.8 44.4
10 5.300 1.6 55.2
20 8.740 4.1 32.4
30 12.660 6.9 10

1  14.636 9.6 0.4
2  7.382 2.8 26.4

CX-MP np = 5 5 6.210 2.3 53.6
10 7.714 3.5 47.6
20 13.276 8.4 15.6
30 15.818 11.7 3.6

Table 5
CX-MP vs. CX-BLX-  ̨ and CX-PBX-˛

Cross. Op. csample Av Rank %D %B

CX-MP np = 4 10 1.242 0.2 94.8
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20  4.742 2.2 38.8
30  5.484 2.8 28.8

btains, clearly, the best results (therefore, we choose this nsample
alue for all remaining experiments involving GA-MGS). Moreover,
he worst performance is achieved when: (1) there is not a competi-
ion among different candidate objects to enter into the knapsacks
nsample = 1) or (2) too much time is wasted in this competitive pro-
ess (nsample = 100).

We  now undertake to analyze the effects of the type of proba-
ility distribution used by the crossover operator on the GA-MGS
erformance. Specifically, we have implemented 12 GA-MGS vari-
nts that apply CX-BLX-  ̨ (  ̨ = 0.25 ; Prmean(ω|�, F)) and CX-PBX-˛

 ̨ = 1 ; Prparent(ω|�, F)) with different values for csample({1, 2, 5, 10,
0, 30}). Though the values for  ̨ are different for each crossover
perator, they produce interval amplitudes for the probability dis-
ributions, more similar than using the same value. The population
ize for these GAs is set to 50 and nsample = 5 for the RG-MGS proce-
ure, which is employed by the GAs in the initialization phase and
y the restart mechanism. Table 2 shows the associated results,
eporting again the same statistics. We  can draw the following
onclusions from this table:

In general, GA-MGS variants with CX-BLX-  ̨ are better than the
corresponding ones with CX-PBX-˛. In addition, the two  best
ranked algorithms are based on CX-BLX-  ̨ (those with csample
equal to 10 and 5, respectively). As was pointed out in Section 4.2,
this operator samples weight values from a mean-centric prob-
ability distribution. This fact indicates that the sampling of the
weights for objects of the offspring becomes more profitable
when the two parents participate equitably in the crossover oper-
ation than when one of the parents has a predominant rule in this
operation.
For both crossover operators, the best outcomes (rankings) are
obtained when csample = 10 and the worst ones with too low csample
values. Thus, the evaluation of many different objects as candi-
date components for the knapsacks aroused as a suitable strategy
to create promising offspring.

To complement these experiments, we now compare the GA-
GS  that has given the best results in the previous experiments, the

ne invoking CX-BLX-  ̨ with csample = 10, with an alternative variant
hat applies a more simple crossover procedure, SCX. This operator
s based on the idea of the classical standard crossover operators of
rovoking that genes of the parents are inherited by the offspring
23]. SCX follows the general structure of our crossover operators
Section 4.2.1) to pick iteratively objects from two parents and
elects, at random, the ones that are directly used to create the
ffspring. In the same way as our operators, it additionally includes
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

 mechanism to ensure the feasibility of the generated solutions.
he comparison results are listed in Table 3.

A visual inspection of Table 3 allows one to remark that CX-BLX-
 was able to provide considerably better %D and %B performance

613
CX-BLX-˛  10 2.240 2.8 24
CX-PBX-˛  10 2.518 3.6 13.6

than SCX. This experiment indicates that the scheme of the pro-
posed crossover operators may  be beneficial and the improvement
is significant, which gives a sense on the highly complex nature of
their design. They allow our GA model to have a promising ability
to solve the MGS  problem that is difficult to achieve from the use
of a simple crossover operator.

Finally, we  analyze the performance enrichment that might be
produced by the combination of the information of more than two
parents. Therefore, we  investigate the performance of the GA-MGS
algorithm when it applies a multi-parent extension of the CX-BLX-˛
operator (CX-MP-˛; with  ̨ = 0.25), in which the number of partic-
ipating parents is directly specified as a crossover parameter, np

(Section 4.2.3).
To do this, we  have built different GA-MGS instances that

invoke CX-MP with different values for np ({3, 4, 5}) and for csample
({1,2,5,10,20,30}). In these GAs, parents are selected at random
(instead of by tournament selection) to avoid a harmful premature
convergence caused for the application of a mean-center crossover
with many parents and a fitness biases selection operator. Table 4
summarizes the results of these algorithms and Table 5 compares
the best GA-MGS instances that apply CX-BLX-˛, CX-PBX-˛, and
CX-MP-  ̨ obtained so far.

We  may  observe that the two  best ranked algorithms in Table 4
combines the information of four parents (np = 4; and csample = 10
and csample = 5, respectively), and the third one considers five
(csample = 5). Then, Table 5 reveals the clear advantage of the CX-
MP-  ̨ operator on CX-BLX-  ̨ and CX-PBX-˛. Particularly, these
 for the minimum generating set problem, Appl. Soft Comput. J.

two-parent operators obtain a low performance in terms of %D, and
%B. Therefore, we may  conclude that the presented mean-centric
CX-MP crossover operator is worth using within our GA template.
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We  may  then summarize previous results in the following
conclusion, G-MGS performs considerably well for small problem
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.3. GA-MGS vs. state-of-the-art algorithm for the MGS problem

In this section, we undertake a comparative analysis between
A-MGS (Np = 50, nsample = 5, and CX-MP-  ̨ with np = 4 and

sample = 10) and the current state-of-the-art algorithm for the MGS
roblem, the greedy algorithm (named G-MGS) proposed by Collins
t al. [1]. This method, which does not require any parameter to be
et, starts with an empty solution T and its strategy is to include,
t each step, the value d that let us to represent the largest num-
er of elements s ∈ S which have not been represented yet. To do
his, the method computes the differences d from different combi-
ations of elements s ∈ S and t ∈ T, so the representation of some
lements (Rsj ) are expressed in terms of the representation of oth-
rs (Rsj = Rsi

⋃
{t}

⋃
{d}), and chooses the one that participates on

he representation of more elements that still have not got any.
he considered combinations, avoiding those that produce repeti-
ions of T elements on the proposed representations, are 1) sj = si + d,
) sj = si − t + t′ + d, 3) sj = si − t1 − t2 − t3 + d, 4) sj = si − t + t′1 + t′2 + d
where t, ti ∈ Rsi and t′, t′

i
∈ T − Rsi )). To facilitate the comprehen-

ion of the method, we show an example in Table 6 with S = {4, 7,
1, 13, 17}.

At the beginning, T is empty and every element of S is associ-
ted to an empty representation Rsi . Then, it computes the elements

 that are candidates to enter in T. These elements are obtained
ccording to the aforementioned production rules. First each ele-
ent sj produces a candidate d = sj (note that this production rule

s a case of rule 1) sj = si + d with si = 0; as commented in [1]). Then,
ore candidates are computed according to rule 1 with si /= 0.
o more candidates appear with the other rules at this intera-

ion because there are not t values, so the method proceeds to
ount the number of representations each candidate participates
n. Since d = 4 appears in more representations than the others, it
s included in T and the process avances to the following iteration.
n the second iteration, the element 4 has got a complete represen-
ation R4 = {4}, the representations of 7 and 13 are still empty and
hose of 11 and 17 are expressed in terms of R7 and R13, respec-
ively. Therefore, the method consider new candidates that may
ontribute to the representations of 7 and 13. The rules produced
n the previous iteration for these two elements are imported. How-
ver some of these rules are now invalid because it would produce
epetitions in the representations of some elements. For instance,
xpressing R7 in terms of R4

⋃
{3} is not valid, because that would

reate a repetition in R11 = {4}
⋃

R7 = {4, 4, 3}. Below, there are
ew production rules according to sj = t′ + d, which is a case of rule
) sj = si − t + t′ + d with si = 0 and t = 0, and sj = si + t′ + d (case of the
ame rule with t = 0). None of these instances of these rules are
alid for being in conflict with the representation of other elements,
nd no other candidates can be computed according to the other
roduction rules. In this case, all the candidates appear with the
ame frequency and one is chosen randomly. Finally, assume we
nserted d = 6 into T and representations are updated accordingly
R17). The third iteration applies the same procedure as previ-
us one and the only candidate is now d = 7, which, after being
nserted into T, completes the solution (T={4,6,7}) and the repre-
entations (R4 = {4}, R7 = {7}, R11 = {4, 7}, R13 = {6, 7}, and R17 = {4,
, 7}).

Additionally, we include in this study the MS-RG-MGS algo-
ithm (Fig. 7) and an economized version of G-MGS (Ge-MGS;
imited and faster), which only considers combinations 1) sj = si + d
nd 2) sj = si − t + t′ + d. All the algorithms were implemented and
un under the same computational conditions (machine, program-
ing language, and compiler) to enable a fair comparison between

hem.
The analysis has been divided into results on small instances
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

Section 5.3.1), large instances (Section 5.3.2), and very large
nstances (Section 5.3.3).
 PRESS
puting xxx (2016) xxx–xxx

5.3.1. Results on small instances
The first comparison between these algorithms is carried out

by considering different sets with 17 small Type L instances
of sizes n = 20, 25, . . .,  100. Each set is distinguished by
the values of |T| ({10, 20}) and for Smax ({65,536, 1,048,576,
16,777,216}). The algorithms were run once on each instance.
The cutoff time for each execution of GA-MGS and MS-RG-
MGS  was set to n/10 s. Table 7 reports the average objective
function value (Av) and the %B measure achieved by all the
algorithms, and also, the average CPU time in seconds required
by G-MGS and Ge-MGS to construct their solution (t) (t =
6 for all the instance sets for the case of MS-RG-MGS and
GA-MGS, which is the result from the averaged summation
1/17 ·

∑
nn/10).

Examining the data in Table 7, we  may  conclude the following:

• Attending to the values of Av and t reported by G-MGS and Ge-
MGS, instances with |T| = 20 seem to be the hardest ones, because
the results are much larger than the known upper bounds of the
optimal solutions (min(|T|, log2(Smax))), and G-MGS needs 441.4 s
to construct a single solution. This can be explained by the fact
that there are much more possible combinations of 20 elements
than 10. In any case, the results of all the algorithms when |T| = 10
are clearly distant from the upper bounds for the optimal solution,
which exhibits the hardness of the MGS  problem, even with small
instances with low complexity (all the values of S could had been
generated with only ten ti values).

• The search difficulties for G-MGS and Ge-MGS increase as Smax

becomes greater for |T| = 20 instances. However, in this case, GA-
MGS  (and MS-RG-MGS) performs significantly better than these
greedy algorithms, returning values very close to the upper bound
|T| or even better (|T| = 20 and Smax = 65, 536 or 1,048,576), and
consuming much less time (6 s as computed above).

• It is interesting to observe that the greedy algorithm G-MGS
obtains relatively good results when |T| = 10, regardless the value
of Smax (they are the best results for |T| = 10 and Smax = 1,048,576
or 16,777,216). This suggests that the heuristic combinations of
values used by this method (Section 5.3) allow it to mildly approx-
imate the real complexity of the problem when that is less or
around 16, i.e., when all the elements in S can be generated with
only 16 ti values (when |T| = 20 and Smax = 65, 536, the upper
bound is still 16 = log2(65, 536)). However, it finds very difficult
to deal with instances of higher complexity (those where more
than 16 ti values are needed to generate all the elements in S),
i.e., its heuristics are unable to approximate the real complexity
of the problem. Consequently, we observe that Ge-MGS, which
considers less heuristic combinations of values, obtains worse
results and find more difficulties earlier with lower complexities
(though its running times are considerable smaller).

• Regarding MS-RG-MGS and GA-MGS, we  observe that their
results seem to be determined only by the value of Smax, not |T|.
Even when the problem instances were generated by excessive
T sets, because log2(Smax) < |T|, they find that smaller T sets are
sufficient. On the contrary, when |T| < log2(Smax), the large space
of values ({1, . . .,  Smax}) becomes a hard challenge that hinders
them to find the real simpler complexity of the problem (|T|). This
is clearly due to the fact that operations in these two algorithms
(initialization, crossover, etc.) depend on the range of the val-
ues, and they do not look for value combinations as G-MGS and
Ge-MGS do.
 for the minimum generating set problem, Appl. Soft Comput. J.

instances when the complexity of the problem is inferior or around
16, otherwise, GA-MGS is a safer alternative.
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Table  6
G-MGS, example of execution for S = {4, 7, 11, 13, 17}.

First iteration Second iteration Third iteration

T { } T {4} T {4,6}
4 R4 = ? 4 R4 = {4} 4 R4 = {4}
7  R7 = ? 7 R7 = ? 7 R7 = ?

S  11 R11 = ? S 11 R11 = {4} ∪ R7 S 11 R11 = {4} ∪ R7

13 R13 = ? 13 R13 = ? 13 R13 = {6} ∪ R7

17 R17 = ? 17 R17 = {4} ∪ R13 17 R17 = {4, 7} ∪ R7

sj = d sj = d sj = d
4  R4 = {4} 7 R7 = {7} 7 R7 = {7}
7  R7 = {7} 13 R13 = {13} sj = si + d
11  R11 = {11} sj = si + d No new rules for R7

13 R13={13} 3 R7 = R4 ∪ {3} Conflict R11 sj = t′ + d
17  R17={17} 9 R13 = R4 ∪ {9} Conflict R17 1 R7 = {6} ∪ {1} Conflict R13

sj = si + d 6 R13 = R7 ∪ {6} sj = si + t′ + d
3  R7 = R4 ∪ {3} 2 R13 = R11 ∪ {2} Conflict R17 No new rules for R7

7 R11 = R4 ∪ {7} sj = t′ + d sj = si − t + t′ + d
9  R13 = R4 ∪ {9} 3 R7 = {4} ∪ {3} Conflict R11 No new rules for R7

13 R17 = R4 ∪ {13} 9 R13 = {4} ∪ {9} Conflict R17 Count
4  R11 = R7 ∪ {4} sj = si + t′ + d 7 |{R7}| = 1
6  R13 = R7 ∪ {6} 5 R13 = R4 ∪ {4} ∪ {5} {4} repeated

d  10 R17 = R7 ∪ {10} d 2 R13 = R7 ∪ {4} ∪ {2} Conflict R17 d
2  R13 = R11 ∪ {2} Count
6 R17 = R11 ∪ {6} 6 |{R13}| = 1
4 R17 = R13 ∪ {4} 7 |{R7}| = 1
Count 13 |{R13}| = 1
4 |{R4, R11, R17}| = 3
7 |{R7, R11}| = 2
13 |{R13, R17}| = 2
6  |{R13, R17}| = 2
11 |{R11}| = 1
3 |{R7}| = 1
9 |{R13}| = 1
10 |{R17}| = 1
2 |{R13}| = 1

Table 7
Results on small Type L instances.

Instances G-MGS Ge-MGS MS-RG-MGS GA-MGS

|T| Smax log2(Smax) Av %B t Av %B t Av %B Av %B

65,536 16 16.4 29.4 2.2 17.1 17.6 1 16.5 11.8 15.5 70.6
10  1,048,576 20 15.8 82.4 2.2 17.2 29.4 1.2 20.9 5.9 19.5 5.9

16,777,216 24 15.4 88.2 2.1 17.4 23.5 1.2 25.8 5.9 23.4 5.9

25.7 5.9 8.2 16.6 29.4 15.8 100
34.8 5.9 26.3 21.0 11.8 19.6 100
43.1 5.9 33.4 25.9 5.9 23.5 100
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Table 8
Results of G-MGS and Ge-MGS on large instances.

Instances G-MGS Ge-MGS

|T| Smax max  n Av max n Av

65,536 250 28 350 31.16
15  1,048,576 100 30 150 38.6

16,777,216 100 36 100 50.5

65,536 200 27.5 250 33.4
23  1,048,576 100 31.5 150 44
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65,536 16 21.5 11.8 19.7 

20  1,048,576 20 29.2 5.9 87.7 

16,777,216 24 36.2 5.9 441.4 

.3.2. Results on large instances
The aim of the next experiment is to compare the algorithms

n larger instances. Specifically, we have generated 6 sets of Type
 instances and one of Type U instances with 110 cases with sizes
hat range from n = 50 to n = 10, 000. The former resulted from the
ombination of |T| = {15, 23}  and Smax = {65, 536, 1, 048, 576, 16,
77, 216}.

Due to the computational requirements of G-MGS and Ge-MGS
hown in the previous experiment, we have imposed a maximum
unning time of one hour for these experiments, and presented the
esults separately. Table 8 shows the size of the largest instances for
hich the greedy approaches were able to provide a solution within

ne hour, along with the Av measure for the solved instances (those
or which they provided a solution). On the other hand, Table 9
eports the Av and %B measures of GA-MGS and MS-RG-MGS on
he 7 sets of large instances.

Looking at Tables 8 and 9, we may  point out the following facts:
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

G-MGS and Ge-MGS generated solutions for very few instances
in one hour (Table 8). Even more, they were only able to pro-
vide a solution for the smallest Type U instances (n = 50). On the
16,777,216 100 41 100 51.5

Type U Inst. 50 49 50 51

contrary, our algorithms generated solutions for all the instances
consuming at most 1000 s ( n10 , with n = 10, 000).

• The averaged results (Av) of GA-MGS and MS-RG-MGS are bet-
ter than those of the greedy approaches, even though they are
 for the minimum generating set problem, Appl. Soft Comput. J.

computed over much larger instances.
• Our GA manages to generate much better results than MS-RG-

MGS  (Table 9). Differences are larger as Smax increases (notice that
Type U instances have the largest Smax value). This performance
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Table 9
Results of MS-RG-MGS and GA-MGS on large instances.

Instances MS-RG-MGS GA-MGS

|T| Smax Av %B Av %B

65,536 18.1 14.54 17.2 94.54
15  1,048,576 23.5 19.09 21.8 91.81

16,777,216 30.6 0 25.9 100

65,536 18.0 9.09 17.1 98.18
23  1,048,576 23.4 5.45 21.3 95.45

16,777,216 30.9 0 25.9 100

Type  U Inst. 44.8 0 36.8 100
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Table 10
GA-MGS vs. MS-RG-MGS on very large Type U instances.

Inst. Size GA-MGS MS-RG-MGS

10,000 33 44
20,000 34 46
30,000 36 45
40,000 35 45
50,000 38 46
60,000 38 47
70,000 39 49
80,000 41 48
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Fig. 8. GA-MGS and MS-RG-MGS on large Type U instances.

difference, also present in the previous experiment with small
instances, proves that the operators included in our GA, particu-
larly the CX-MP-  ̨ crossover operator and the fact of maintaining
good solutions in the population, are effectively working better
than the random search developed by MS-RG-MGS, and lead the
algorithm to better solutions.

To complement the above experimental study, we  now analyze
he detailed results obtained by GA-MGS and MS-RG-MGS on the
omplex large Type U instances after 500 and 3600 s. Fig. 8 plots
he objective function value for the best solutions found by the
lgorithms with each time limit according to the size of the problem
nstance. These results allow us to make the following observations:

GA-MGS with 3600 s clearly obtains always the best results. Inter-
estingly, the results are very similar regardless the size of the
problem instance. Remember that the upper bound for this prob-
lem instances is log2(Smax) = log2(2, 147, 483, 647) = 31. Therefore,
GA-MGS seems to be able to approach the optimal solution closely
when it is given sufficient running time.
The solutions obtained by the GA after 500 s are already clearly
better in comparison with those obtained by MS-RG-MGS after
3600 s.
Given the performance difference gained by GA-MGS between
500 and 3600 s as n increases, we may  conclude that the restart
mechanism is allowing it to escape from the stagnation in local
optima, letting the rest of the operators to progress further
on the quest for better solutions. Particularly, this performance
improvement is much more reduced in MS-RG-MGS. In this case,
Please cite this article in press as: M.  Lozano, et al., A genetic algorithm
(2016), http://dx.doi.org/10.1016/j.asoc.2016.07.020

since MS-RG-MGS is a memoryless technique and just generates
almost random solutions at each iteration, its little performance
improvement is only due to randomness and more running time.
90,000 41 48
100,000 39 50

Therefore, we  may  conclude that GA-MGS is really effective on
large instances, for which the greedy approaches are not able to
produce solutions within reasonable running time.

5.3.3. Results on very large instances
A final computational experiment has been conducted for test-

ing the performance of our GA on very large test cases of size up
to 100,000 elements. Specifically, we have generated 10 Type U
instances with sizes n = 10, 000, 20, 000, . . ., 100, 000. Table 10 pro-
vides, for each instance, the value of the best solution found during
a 5 hour run of GA-MGS and MS-RG-MGS. As Table 10 shows, the GA
again is definitely superior to the multi-start algorithm. Though the
problem instances are more difficult than those considered so far,
GA-MGS was able to find good solutions at a relatively moderate
computation time.

6. Conclusions

In this paper, a new formulation of the MGS  problem was
developed to conceive a GA that revolves around RG-MGS, a new
randomized greedy method being able to construct, in an intel-
ligent, diversified feasible solutions for this highly constrained
problem. This heuristic procedure is employed as initialization
mechanism for the GA and it is the basic pillar on which the design
of the crossover operators is supported. A design that was  com-
pleted precisely through the knowledge acquired in the research
field of GAs for continuous optimization problems [30,38,39,29].
The GA also integrates a restart operator to ensure a reliable evo-
lution toward promising areas throughout the entire search. The
proposal has proven to be a very high performing algorithm for
the MGS  problem, showing it to be very competitive with respect
to state-of-the-art algorithms. Specifically, the empirical study
reveals a clear superiority when tackling hard and large instances.

The ability of the proposed GA to yield superior outcomes along
with the simplicity and flexibility of this approach, allows us to
conclude that this metaheuristic arises as a tool of choice to face this
problem. Moreover, it invites further consideration to explore other
forms of evolutionary algorithms, such as the memetic algorithms
[40,39], which apply a local search method to members of the GA
population after crossover and mutation operations, with the aim of
exploiting the best search regions identified by the global sampling
done by the GA.
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