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a  b  s  t  r  a  c  t

Data  Centers  are  huge  power  consumers,  both  because  of  the energy  required  for  computation  and  the
cooling  needed  to  keep  servers  below  thermal  redlining.  The  most  common  technique  to  minimize  cool-
ing  costs  is increasing  data  room  temperature.  However,  to avoid  reliability  issues,  and  to  enhance  energy
efficiency,  there  is a  need  to predict  the  temperature  attained  by  servers  under  variable  cooling  setups.
Due  to  the  complex  thermal  dynamics  of  data  rooms,  accurate  runtime  data  center  temperature  pre-
diction  has  remained  as  an important  challenge.  By  using  Grammatical  Evolution  techniques,  this  paper
presents  a  methodology  for the generation  of  temperature  models  for data  centers  and  the runtime
prediction  of  CPU  and  inlet  temperature  under  variable  cooling  setups.  As  opposed  to time  costly  Com-
nergy efficiency putational  Fluid  Dynamics  techniques,  our  models  do not  need  specific  knowledge  about  the  problem,
can  be  used  in  arbitrary  data  centers,  re-trained  if  conditions  change  and  have  negligible  overhead  dur-
ing  runtime  prediction.  Our  models  have  been  trained  and tested  by  using  traces  from  real  Data  Center
scenarios.  Our  results  show  how  we  can  fully  predict  the  temperature  of  the  servers  in a data  rooms,  with
prediction  errors  below  2 ◦C and  0.5 ◦C in  CPU  and server  inlet  temperature  respectively.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Data Centers are found in every sector of the economy and
rovide the computational infrastructure to support a wide range
f applications, from traditional applications to High-Performance
omputing or Cloud services. Over the past decade, both the
omputational capacity of data centers and the number of these
acilities have increased tremendously without relative and pro-
ortional energy efficiency, leading to unsustainable costs [1]. In
010, data center electricity represented 1.3% of all the electric-

ty use in the world, and 2% of all electricity use in the US [2].

n year 2012, global data center power consumption increased to
8GW, and in year 2013 there was a further rise of 17% to 43 GW
3].

∗ Corresponding author at: DACYA, Universidad Complutense de Madrid, Madrid
8040, Spain.

E-mail addresses: marina.zapater@ucm.es (M.  Zapater),
lrisco@ucm.es (J.L. Risco-Martín), parroba@die.upm.es (P. Arroba), jayala@ucm.es
J.L. Ayala), josem@die.upm.es (J.M. Moya), rhermida@ucm.es (R. Hermida).

ttp://dx.doi.org/10.1016/j.asoc.2016.07.042
568-4946/© 2016 Elsevier B.V. All rights reserved.
The cooling needed to keep the servers within reliable thermal
operating conditions is one of the major contributors to data center
power consumption, and accounts for over 30% of the electricity bill
[4] in traditional air-cooled infrastructures. In the last years, both
industry and academia have devoted significant effort to decrease
the cooling power, increasing data center Power Usage Effective-
ness (PUE), defined as the ratio between total facility power and
IT power. According to a report by the Uptime Institute, average
PUE improved from 2.5 in 2007 to 1.65 in 2013 [5], mainly due
to more efficient cooling systems and higher data room ambient
temperatures.

However, increased room temperatures reduce the safety mar-
gins to CPU thermal redlining and may  cause potential reliability
problems. To avoid server shutdown, the maximum CPU tempera-
ture limits the minimum cooling. The key question of how to set the
supply temperature of the cooling system to ensure the worst-case
scenario, is still to be clearly answered [6]. Most data centers typi-

cally operate with server inlet temperatures ranging between 18 ◦C
and 24 ◦C, but we can find some of them as cold as 13 ◦C [7], and
others as hot as 35 ◦C [8]. These values are often chosen based on
conservative suggestions provided by manufacturers, and ensure

dx.doi.org/10.1016/j.asoc.2016.07.042
http://www.sciencedirect.com/science/journal/15684946
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nlet temperatures within the ranges published by ASHRAE (i.e.,
5 ◦C to 32 ◦C for enterprise servers [9]).

Data center designers have collided with the lack of accurate
odels for the energy-efficient real-time management of comput-

ng facilities. One modeling barrier in these scenarios is the high
umber of variables potentially correlated with temperature that
revent the development of macroscopic analytical models. Nowa-
ays, to simulate the inlet temperature of servers under certain
ooling conditions, designers rely on time consuming and very
xpensive Computational Fluid Dynamics (CFD) simulations. These
echniques use numerical methods to solve the differential equa-
ions that drive the thermal dynamics of the data room. They need
o consider a comprehensive number of parameters both from the
erver and the data room (i.e. specific characteristics of servers such
s airflow rates, data room dimensions and setup). Moreover, they
re not robust to changes in the data center (i.e. rack placement
nd layout changes, server turn-off, inclusion of new servers, etc.).
f the simulation fails to properly incorporate a relevant parameter,
r if there is a deviation between the theoretical and the real val-
es, the simulation becomes inaccurate. Due to the high economic
nd computational cost of CFD simulation, models cannot be re-run
ach time there is a change in the data room.

To minimize cooling costs, the development of models that
ccurately predict the CPU temperature of the servers under vari-
ble environmental conditions is a major challenge. These models
eed to work on runtime, adapting to the changing conditions of
he data room automatically re-training if data center conditions
hange dramatically, and enabling data center operators to increase
oom temperature safely.

The nature of the problem suggests the usage of meta-heuristics
nstead of analytical solutions. Meta-heuristics make few assump-
ions about the problem, providing good solutions even when
hey have fragmented information. Some meta-heuristics such
s Genetic Programming (GP) perform Feature Engineering (FE),

 particularly useful technique to select the set of features and
ombination of variables that best describe a model. Grammatical
volution (GE) is an evolutionary computation technique based on
P used to perform symbolic regression [10]. This technique is par-

icularly useful to provide solutions that include non-linear terms
ffering Feature Engineering capabilities and removing analytical
odeling barriers. Also, designer’s expertise is not required to pro-

ess a high volume of data as GE is an automatic method. However,
E provides a vast space of solutions that may  need to be bounded

o achieve algorithm efficiency.
This paper develops a data center room thermal modeling

ethodology based on GE to predict on runtime, and with suffi-
ient anticipation, the critical variables that drive reliability and
ooling power consumption in data centers. Particularly, the main
ontributions of our work are the following:

The development of multi-variable models that incorporate time
dependence based on Grammatical Evolution to predict CPU and
inlet temperature of the servers in a data room during runtime.
Due to the feature engineering and symbolic regression per-
formed by GE, our models incorporate the optimum selection of
representative features that best describe the thermal behavior.
We prevent premature convergence by means of Social Disas-
ter Techniques and Random Off-Spring Generation, dramatically
reducing the number of generations needed to obtain accurate
solutions. We  tune the models by selecting the optimum param-
eters and fitness function using a reduced experimental setup,
consisting of real measurements taken from a single server iso-

lated in a fully sensorized data room.
We offer a comparison with other techniques commonly used
in literature to solve temperature modeling problems, such as
autoregressive moving average (ARMA) models, linear model
puting 49 (2016) 94–107 95

identification methods (N4SID), and dynamic neural networks
(NARX).

• The proposal of an automatic data room thermal modeling
methodology that scales our solution to a realistic Data Center
scenario. As a case study, we model CPU and inlet temperatures
using real traces from a production data center.

Our work allows the generation of accurate temperature models
able to work on runtime and adapt to the ever changing conditions
of these scenarios, while achieving very low average errors of 2 ◦C
for CPU temperature and 0.5 ◦C for inlet temperature.

The remainder of the paper is organized as follows: Section 2
accurately describes the modeling problem, whereas Section 3 pro-
vides an overview of the current solutions. Section 4 describes our
proposed solution, whereas Section 5 presents the experimental
methodology. Section 6 shows the results obtained and Section 7
discusses them. Finally, Section 8 concludes the paper.

2. Problem description

2.1. Data room thermal dynamics

To ensure the safe operation of a traditional raised-floor air-
cooled Data Center, data rooms are equipped with chilled-water
Computer Room Air Conditioning (CRAC) units that use conven-
tional air-cooling methods. Servers are mounted in racks on a raised
floor. Racks are arranged in alternating cold/hot aisles, with server
inlets facing cold air and outlets creating hot aisles. CRAC units
supply air at a certain temperature and air flow rate to the Data
Center through the floor plenum. The floor has some perforated
tiles through which the blown air comes out. Cold air refrigerates
servers and heated exhaust air is returned to the CRAC units via the
ceiling, as shown in Fig. 1.

Even though this solution is very inefficient in terms of energy
consumption, the majority of the data centers use this mecha-
nism. In fact, despite the recent advances in high-density cooling
techniques, according to a survey by the Uptime Institute, in 2012
only 19% of large scale data centers had incorporated other cooling
mechanisms [5]. In some scenarios, the control knob of the cooling
subsystem is the cold air supply temperature, whereas in others,
it is the return temperature of the heated exhaust air to the CRAC
unit.

The maximum IT power density that can be deployed in the Data
Center is limited by the perforated tile airflow. Because the plenum
is usually obstructed (e.g. blocked with cables in some areas), a
non-uniform airflow distribution is generated and each tile exhibits
a different pressure drop. Moreover, in data centers where the hot
and cold aisles are not isolated, which is the most common scenario,
the heated exhaust air recirculates to the cold aisle, mixing with the
cold air.

2.2. Temperature-energy tradeoffs

The factor limiting minimum data room cooling is maximum
server CPU temperature. Temperatures higher than 85 ◦C can cause
permanent reliability failures [11]. At temperatures above 95 ◦C,
servers usually turn off to prevent thermal redlining. Previous
work on server power and thermal modeling [12], shows how CPU
temperature is dominated by: (i) power consumption, which is
dependent on workload execution, (ii) fan speed, which changes
the cooling capacity of the server, and (iii) server cold air supply

(inlet temperature).

Thus, to keep all the equipment under normal operation, CRAC
units have to supply the air at an adequately low temperature to
ensure that all CPU’s are below the critical threshold. However, inlet
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Fig. 1. Typical raised-floo

emperature is also not uniform across servers. The cold air tem-
erature at the server inlet depends on several parameters: (i) the
RAC cold air supply, (ii) the airflow rate through the perforated
iles, and (iii) the outlet temperature of adjacent servers due to air
ecirculation.

Setting the cooling air supply temperature to a low value, even
hough ensures safety operation, implies increased power con-
umption due to a larger burden on the chiller system. The goal
f energy-efficient cooling strategies is to increase the cold air sup-
ly temperature without reaching thermal redlining. Due to the
on-linear efficiency of cooling systems, lowering air supply tem-
erature can yield important energy savings. A metric widely used

s that each degree of increase in air supply temperature yields 4%
nergy savings in the cooling subsystem [13]. To increase air supply
emperature safely, however, we need to predict not only the inlet
emperature to the servers, but also the CPU temperature that each
erver attains under the current workload.

Due to the temperature gradients between hot and cold aisles
nd the data room layout and geometry, the air inside a data center
ehaves like a turbulent fluid. Thus, obtaining an analytical relation
etween cold air supply and server inlet temperature is not trivial,
aking inlet and CPU temperature prediction a challenging prob-

em. Besides, data centers are composed of thousands of CPU cores,
hose temperatures need to be modeled independently. This pre-

ents the usage of classical regression techniques that need human
nteraction to train and validate the models.

. Literature overview

Data center room thermal modeling enables both thermal
mergency management and energy optimization, and enhances
eliability. Because of the turbulent behavior of the air in the Data
enter room, Computational Fluid Dynamics (CFD) simulation has
raditionally been the most commonly used solution in both indus-
ry and academia [14].

CFD is used to model the inlet and outlet temperature of servers,
iven cold air supply parameters, room layout, server configuration
nd utilization, in order to either optimize cooling costs or detect
ot spots [15]. CFD solvers perform a three-dimensional numeri-
al analysis of the thermodynamic equations that govern the data
oom. Their main drawbacks is that they require and expert to
onfigure the simulation, and are computationally costly both in
he modeling stage (i.e. modeling a small-sized data room may
ake from hours to days) and in the evaluation phase, thus pre-
enting their online usage. Moreover, CFD simulation is not robust

o changes in the layout of the Data Center, i.e. server placement,
pen tiles, workload running or cold air supply setting.

To solve these issues, Chen et al. [16] use CFD together
ith sensor information to calibrate the simulation and reduce
ooled Data Center layout.

computational complexity. Their work achieves a prediction error
below 2 ◦C when predicting temperature 10 min  in advance. Other
work [17] presents the Data Center as a distributed Cyber-Physical
System (CPS) in which both computational and physical parameters
can be measured with the goal of minimizing energy consumption.
Our work leverages this concept by using a monitoring system [18]
capable of collecting environmental (i.e. cold air supply and server
inlet temperature, airflow, etc.) and server data (i.e. temperature,
power, fan speed, etc.) from a real data center.

A common alternative to CFD are abstract heat flow models.
These models characterize the steady state of hot air recirculation
inside the data center. Recirculation is described by a cross-
interference coefficient matrix which denotes how much of every
node’s outlet heat contributes to the inlet of every other node. This
matrix is obtained in an offline profiling stage using CFD [19]. Even
though profiling is still costly, model evaluation can be performed
online.

Machine learning techniques have also been used in Data Center
modeling. The Weatherman [20] tool uses neural networks to pre-
dict the inlet temperature of servers, obtaining prediction errors
below 1 ◦C in over 90% of their traces. However, they use simula-
tion traces obtained with CFD simulation for their training and test
sets, instead of real data. The problem behind time series predic-
tion can be explained as a problem of extracting a manageable set
of adequate features, followed by a regression mechanism. Careful
selection of features and their horizon is therefore of much greater
importance compared with the static-data prediction problem.
Neural network-based approaches require previous knowledge of
the parameters that drive thermal modeling, obtaining them using
pseudo-exhaustive algorithms. Our work, on the contrary, relies on
the benefits of feature engineering in Symbolic Regression prob-
lems to obtain the relevant features and construct the models in an
automated way.

The work by De Silva et al. [21] is the one most similar to ours,
regarding the modeling methodology. The authors use Grammat-
ical Evolution for electricity load prediction. As opposed to our
work, this paper is focused on predicting the trend, momentum
and volatility indicators of a timeseries, not on obtaining a physical
model, i.e. they do not solve a multi-variable problem.

In summary, the main issues in all previous approaches are: (i)
they monitor and predict inlet temperature instead of CPU tem-
perature, (ii) modeling is performed for only certain hand-picked
cooling and workload configurations, (iii) the use of CPU utiliza-
tion as a proxy for server power, (iv) they assume data centers with
homogeneous servers, (v) server fan speed is considered constant,

(vi) results are not validated with real traces, and (vii) model con-
struction requires specific knowledge on the problem and classical
feature selection, which prevents the usage of automated tech-
niques.
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Our work, on the contrary, first predicts inlet temperature and
hen uses this result to predict CPU temperature, which is the fac-
or limiting cooling. Both in our training and test sets, we  use real
races obtained from enterprise servers in a data center. Moreover,
s shown in previous work [12], in highly multi-threaded enter-
rise servers, utilization is not a good proxy for power for arbitrary
orkloads.

Enterprise servers come with automatic temperature-driven
ariable fan control policies. When fan speed changes, so does the
irflow and the server cooling capacity [22]. Our methodology also
onsiders the contribution of variable fan speed, allowing us to
redict temperature in heterogeneous data center setups running
rbitrary workloads.

At the server level, Heather et al. [23] propose a server tem-
erature prediction model based on simplified thermodynamic
quations obtaining results within 1 ◦C of accuracy. Even though
his approach predicts CPU temperature and takes into account
nlet temperature, it does not predict the inlet and needs specific
nowledge about several server parameters. Our approach only
ses data from the generic sensors deployed in the server and data
oom.

Another common approach to CPU temperature modeling is
he usage of autoregressive moving average (ARMA) modeling to
stimate future temperature accurately based on previous mea-
urements [24]. Their main drawbacks are that, because they only
se past temperature samples, the prediction horizon is usually
elow 1 s. Moreover, they do not provide a physical model, disre-
arding the effect of power or airflow, and need to be retrained
ften.

As opposed to others, our work achieves prediction horizons of
 min  for CPU temperature and 10 min  for inlet temperature with
igh accuracy. This enables data center operations to take action
efore thermal events occur, by changing either the workload or
he cooling in the data center.

. Grammatical evolution techniques

Evolutionary algorithms use the principles of evolution to turn
ne population of solutions into another, by means of selection,
rossover and mutation. Among them, Genetic Programming (GP)
as proven to be effective in a number of Symbolic Regression (SR)
roblems [25]. However, GP presents some limitations like bloating
f the evolution (excessive growth of memory computer struc-
ures), often produced in the phenotype of the individual. In the
ast years, variants to GP like Grammatical Evolution (GE) appeared
s a simpler optimization process [26]. GE is inspired in the biolog-
cal process of generating a protein given the DNA of an organism.
E evolves computer programs given a set of rules, adopting a
io-inspired genotype-phenotype mapping process.

In this section, we describe how we perform feature selection,
rovide a brief insight on the grammars and mapping process, as
ell as on several model parameters.

.1. Feature selection and model definition

In this work we use Feature Engineering (FE) and Grammat-
cal Evolution to obtain a mathematical expression that models
PU and server inlet temperature. This expression is derived
rom experimental measurements in real server and data room
cenarios, gathering data that have an impact on temperature,
ccording to previous work in the area [12,18]. To predict CPU

emperature, we gather server power, fan speed, inlet temperature
nd previous CPU temperature measurements. For inlet temper-
ture, we gather the CRAC air supply and return temperature,
umidity, pressure difference through perforated tiles (which is a
Fig. 2. CPU temperature prediction diagram.

measurement that provides information about airflow) and pre-
vious inlet temperature measurements. Our goal is to predict
temperature a certain time (samples) in advance, by using past
data of the available magnitudes within a window. We may  use past
samples from the magnitude we  need to predict, or even previously
predicted data.

For illustration purposes, in Fig. 2 we show a diagram in which
CPU temperature is predicted 1 min  ahead given: (i) 2 min of past
measurements (data window) for fan speed, server power, inlet
and CPU temperature and, (ii) the previous CPU temperature pre-
dictions (prediction window).

Formally, we claim that CPU temperature prediction for a cer-
tain time instant  ̨ samples into the future is a function of past
data measurements within a window of size i = {0 . . . Wcpu}, and
previously predicted values within a window of size j = {1 . . . ˛} as
expressed in Eq. (1):

ˆ
TCPU(k + ˛) = f (Tinlet(k − i), FS(k − i), P(k − i), TCPU(k − i),

ˆ
TCPU(k + j)) (1)

where Tinlet is a short form for the previous inlet temperature values
in a window: {Tinlet(k − i)|i ∈ {0, . . .,  Wcpu}}.  TCPU, FS and P are past
CPU temperature, fan speed, and server power consumption val-

ues respectively, which are defined similarly, and
ˆ
TCPU are previous

temperature predictions.
For inlet temperature, our claim is that inlet temperature Tinlet

of a certain server is driven by the room thermal dynamics and
can be expressed as a function of the cold air supply (or return)
temperature, TCRAC, differential pressure across perforated tiles �
(measured in inches of water, in H2O) and data room humidity h
(in percentage), as in Eq. (2):

T̂inlet(k + ˇ) = f (TCRAC (k − i), �(k − i), h(k − i),

FSp−m(k − i), T̂inlet(k + j)) (2)
where the data window can be defined in the range i = {0 . . . Winlet}
and the prediction window is j = {1 . . . ˇ}

Note that, in general,  ̨ and  ̌ are not equal, as the room dynam-
ics are much slower than the CPU temperature dynamics of the
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ervers, i.e. in a real data room we might need hours to appreciate
ubstantial differences in ambient temperature, whereas CPU tem-
erature changes within seconds. The selection of relevant features
mong all data measurements is a Symbolic Regression (SR) prob-
em. In our approach, GE allows the generation of mathematical

odels applying SR.
Regarding both the structure and the internal operators, GE

orks like a classic Genetic Algorithm [27]. GE evolves a popu-
ation formed by a set of individuals, each one constituted by a
hromosome and a fitness value. In SR, the fitness value is usu-
lly a regression metric like Mean Squared Error (MSE). In GE, a
hromosome is a string of integers. In the optimization process,
A operators, are iteratively applied to improve the fitness value
f each individual. In order to compute the fitness function for
very iteration and extract the mathematical expression given by
n individual (phenotype), a mapping process is applied to the chro-
osome (genotype). This mapping process is achieved by defining a

et of rules to obtain the mathematical expression, using grammars
n Backus Naur Form (BNF) [26].

The process does not only perform parameter identification. In
onjunction with a well-defined fitness function, the evolutionary
lgorithm is also computing mathematical expressions with the set
f features that best fit the target system. Thus, GE is also defining
he optimal set of features that derive into the most accurate power

odel.
Moreover, this methodology can be used to predict magnitudes

ith memory, such as temperature, where the current observation
epends on past values. To incorporate time dependence, data used
or model creation needs to be a timeseries. In addition, we need
o tune our grammars so that they can produce models where past
emperature values can be used to predict temperature a certain
umber of samples into the future. Grammar 1 shows an exam-
le where variable x may  take values in the current time step k,

.e., x[k − 0] or in previous samples like x[k − 1] or x[k − 2]. More-
ver, a new variable xpred[k − idx] can be included, that accounts
or previously predicted values of variable x.

Including time dependence into a grammar has some draw-
acks. First, we are substantially increasing the search space of our
lgorithms, as now the GE needs to search for the best solution
mong all variables within the specified window. As a consequence,
he number of generations needed to obtain a good fitness value
ncreases. Second, as we show in the results section, depending on
he prediction horizon the models tend to fall into a local optimum,
n which the best phenotype is the last available observation of
he predicted variable. To address the latter challenge, we  propose
he use of the premature convergence prevention techniques that
re next explained, and that also benefit the converge time of our
lgorithms. Despite the drawbacks, introducing time dependence
n our modeling is a must, as temperature transients (both at the
erver and the data center level) are not negligible and need to be
ccurately predicted.

For a more detailed explanation on the principles of the mapping
rocess, and how the BNF grammars are used to incorporate time
ependence, the reader is referred to the Appendix.

rammar 1. Example of a grammar in BNF that generates pheno-
ypes with time dependence

expr〉 : : = 〈expr〉〈op〉〈expr〉|〈preop〉(〈expr〉)|〈var〉 (I)
op〉  : : =+|−|*|/ (II)

preop〉  : : = sin|cos|log (III)
var〉  : : = x[k − 〈idx〉]|xpred[k − 〈idx〉]|y|z|〈num〉 (IV)
num〉  : : = 〈dig〉. 〈dig〉|〈dig〉  (V)
dig〉  : : =0|1|2|3|4|5 (VI)
idx〉  : : =0|1|2 (VII)
mputing 49 (2016) 94–107

4.2. Preventing premature convergence

Premature convergence of a genetic algorithm arises when the
chromosomes of some high rated individuals quickly dominate the
population, reducing diversity, and constraining it to converge to a
local optimum. Premature convergence is one of the major short-
comings when trying to model low variability magnitudes by using
GE techniques.

To overcome the lack of variety in the population, work by Kure-
ichick et al. [28] proposes the usage of Social Disaster Techniques
(SDT). This technique is based on monitoring the population to find
local optima, and apply an operator:

1 Packing: all individuals having the same fitness value except one
are fully randomized.

2 Judgment day: only the fittest individual survives while the
remaining are fully randomized.

Work by Rocha et al. [29] proposes the usage of Random Off-
spring Generation (ROG) to prevent the crossover of two  individuals
with equal genotype, as this would result in the off-spring being
equal to the parents. Individuals are tested before crossover and,
if equal, then one off-spring (1-RO) or both of them (2-RO) are
randomly generated.

Both previous solutions have shown important benefits in clas-
sical Genetic Algorithms problems. In our work, we use these
techniques to improve the convergence time of our solutions, as
we show in Section 6.

4.3. Fitness

The goal of using GE for data room thermal modeling is to obtain
accurate models. Thus, our fitness function needs to express the
error resulting in the estimation process. To measure the accuracy
in our prediction, we  would preferably use the Mean Absolute Error
(MAE). However, because temperature is a magnitude that varies
slowly and might remain constant during large time intervals, we
need to give higher weight to large errors. To this end, the fitness
function f presented in Eq. (3) tries to reduce the variance of the
model, leading the evolution to obtain solutions that minimize the
Root Mean Square Error (RMSE):

f =
√

1
N

·
∑

i

ei
2 (3)

where the estimation error ei represents the deviation between
the real temperature samples (both for CPU and inlet temperature
modeling) obtained by the monitoring system T, and the estimation
obtained by the model T̂ .  i represents each sample of the entire set
of N samples used to train the algorithms.

4.4. Problem constraints

As we  are modeling the behavior of physical magnitudes for
optimization purposes, we need to obtain a solution with phys-
ical meaning. To this end, we constrain the general problem of
temperature modeling in several ways that are subsequently pre-
sented, while still being able to address heterogeneous workloads,
architectures and topologies. In the results section we evaluate the
impact of these constraints on the model generation stage.
4.4.1. Constraining the grammar
The mathematical expressions can be constrained to a limited

number of functions with physical meaning. Because temperature
exhibits exponential transients, we can include the exponential
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unction in our grammar, whereas we do not find physical basis
o include other mathematical functions such as sines or cosines.

.4.2. Fitness biasing
Some parameters drive the variables being modeled. For

nstance, power consumption drives CPU temperature. As we want
o obtain models able to capture the physical phenomena that drive
emperature, this magnitude should be present in the final model.
hus, CPU temperature models that do not include power in their
henotype are expected to provide good results in the training
hase, but to perform poorly for the test, as they are not captur-

ng the physical phenomena. To solve this issue, we  can force the
ppearance of some parameters by biasing the fitness, giving higher
eights (i.e. worse fitness) to expressions that miss a parameter.
y biasing fitness we speed-up convergence, we ensure that our
odels incorporate all parameters directly correlated with tem-

erature, but we could obtain less accurate results.

.4.3. Real vs. mixed models
Purely real models only use real temperature data measure-

ents to predict future samples. Purely predictive models do not
sed previous temperature measurements, but may  use previous
redictions. Mixed models may  used both real and predicted data.
dding the predicted samples as a variable increases the size of the
earch space but may  provide higher accuracy.

. Experimental methodology

In this section we describe the experimental methodology fol-
owed in this paper to model server and environmental parameters
n Data Centers. First, we describe an scenario consisting only in
he temperature prediction of one server in a small air-cooled data
oom. We  use this scenario to tune the model parameters, testing
hose that generate better models and studying the convergence of
he solutions. Then, we apply the best algorithm configuration to

 real data center. As a case study, we use real traces of CeSViMa
ata Center, a High Performance Computing cluster at Universidad
olitécnica de Madrid in Spain.

.1. Reduced scenario

This scenario consists on an Intel Xeon RX-300 S6 server
quipped with 1 quad-core CPU and 16GB of RAM. The server is
nstalled in a rack with another 4 servers, 2 switches and 2 UPS
nits, in an air-cooled data room of approximately 30 m2, with
he rack inlet facing the cold air supply and the outlet to the heat
xhaust. The cooling infrastructure consists on a Daikin FTXS30
plit that pumps cold air from the ceiling, and there is no floor
lenum. The cold air supply ranges from 16 ◦C to 26 ◦C. The data
oom is fully monitored, and both the cooling and server workload
re controllable.

.1.1. Monitoring
Both the server and data room are fully monitored using the

nternal server sensors and a wireless sensor network, as described
n [18]. In particular, server CPU temperature and fan speed val-
es are obtained via the server internal sensors, collected through
he Intelligent Platform Management Interface (IPMI) tool.1 IPMI

llows polling the internal sensors of enterprise servers with
egligible overhead. As the server is not shipped with power con-
umption sensors, we use non-intrusive current clamps connected
o the power cord of the server to gather total server power

1 http://ipmitool.sourceforge.net/.
Fig. 3. Training samples used for CPU temperature modeling.

consumption. Wireless sensors monitor the inlet temperature of
the server, the cold air supply temperature of the split unit and
data room humidity. Data are sent to the monitoring server, stored
and aligned to ensure a common timestamp.

5.1.2. Training and test set generation
We generate the training and test set by assigning a wide vari-

ety of workloads that exhibit various stress levels in the CPU and
memory subsystems of the server while we modify the cold air
supply temperature of the split in a range from 16 ◦C to 26 ◦C. All
workloads used are a representative set, in terms of stress to the
server subsystem and power consumption, of the ones that can
be found in High-Performance Computing data centers. Also, the
temperatures selected for cold air supply temperature are within
the allowable ranges in current data centers. The workloads used
are the following: (i) Lookbusy,2 a synthetic workload that stresses
the CPU to a customizable utilization value, avoiding the stress of
memory and disk; (ii) a modified version of the synthetic bench-
mark RandMem,3 that allows us to stress random memory regions
of a given size with a given access pattern, and (iii) HPC workloads
belonging to the SPEC CPU 2006 benchmark suite [30].

During training, we launch Lookbusy and Randmem at various
utilization values, plus a subset of the SPEC CPU 2006 bench-
marks that exhibit a distinctive set of characteristics according
to Phansalkar et al. [31]. Both the arrival time and task duration
are randomly selected. During execution, the cold air supply tem-
perature is also randomly changed. For the test set, we  randomly
launch a SPEC CPU benchmark, with random waiting intervals
while changing cold air supply temperature.

Our monitoring system collects all data with a 10 s sampling
interval for a total time of 5 h for the training and 10 h for the test
set. Fig. 3 shows part of the training set used for modeling.

5.2. Case study: CeSViMa Data Center
To show how our solution can be applied to a real
data center scenario, this paper presents a case study for a
real High-Performance Computing Data Center at the Madrid

2 http://www.devin.com/lookbusy/.
3 http://www.roylongbottom.org.uk.

http://ipmitool.sourceforge.net/
http://ipmitool.sourceforge.net/
http://ipmitool.sourceforge.net/
http://ipmitool.sourceforge.net/
http://ipmitool.sourceforge.net/
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://www.roylongbottom.org.uk
http://www.roylongbottom.org.uk
http://www.roylongbottom.org.uk
http://www.roylongbottom.org.uk
http://www.roylongbottom.org.uk
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ig. 4. CeSViMa data room layout. Models are developed for Power7 nodes 1,4 and
 at high c02 in racks 1 and 4.

upercomputing and Visualization Center (CeSViMa).4 CeSViMa
osts the Magerit Supercomputer, a cluster consisting of 286 com-
uter nodes in 11 racks, providing 4160 processors to execute
igh-Performance jobs on demand. 245 of the 286 nodes are IBM
S702 2S with 2 Power7 CPU’s blade servers, each with 8 cores run-
ing at 3.3 GHz and 32 GB of RAM. The other 41 nodes are HS22 2U
ervers with 2 Intel Xeon processors of 8 cores each at 2.5 GHz and
4 GB RAM.

CeSViMa data room has a cold-hot aisle layout and is cooled
y means of 6 CRAC units arranged in the walls that impulse air
hrough the floor plenum. To control data room cooling, the air
eturn temperature of each CRAC unit can be set independently. The
oom has a total size of 190 square meters. Fig. 4a shows the layout
f the data center. Rack 0 is a control rack that runs no HPC com-
utation. Racks 1-9 are filled with Power7 blade servers, whereas
ack 10 contains Intel Xeon servers. Each Power7 node is installed
n a blade center. Each blade center contains up to 7 blades, and
ach rack contains 4 chassis (C01 to C04), as shown in Fig. 4b. To
un our models, we have deployed the same sensor network as
n the reduced scenario. In particular, to model inlet temperature

e gather inlet temperature, humidity, CRAC air return temper-
ture and differential pressure through the floor plenum. Because
e have placed pressure sensors in the tiles in front of racks 1 and 4,
e model the Power7 nodes in these racks. To model CPU temper-

ture, we also collect CPU temperature and fan speed of all servers
ia IPMI. CeSViMa Power7 chassis do not have per-server power
ensors and we are not able to deploy current clamps. Thus, we use
er-server utilization as a proxy for the power consumption of the
ode. As stated before, utilization is not an accurate metric for arbi-
rary workloads. However, because of the nature of the workloads
n CeSViMa and only for thermal modeling purposes, utilization can
e used as a proxy variable to power consumption, as we  show in
ection 6.

In this work we show the modeling results for the servers high-
ighted in red in Fig. 4, i.e. nodes 1, 4, 7 at chassis c02 of both rack

 and 4. These nodes are the ones that exhibit the most variable
orkload and extreme temperature conditions and constitute the
orst-case scenario for modeling.

.3. Modeling framework

Because of the large number of servers in CeSViMa, to enable
ooling optimization we need a framework that allows to automati-

ally model and predict the CPU and inlet temperature of all servers.
ven though CeSViMa is a small-sized data room, it has a very high
ensity in terms of IT equipment. For instance, the amount of data

4 http://www.cesvima.upm.es/.
mputing 49 (2016) 94–107

gathered that needs to be processed to enable full environmental
modeling and prediction, for a period of 1 year, is above 100GB.
Thus, modeling the whole data center with traditional approaches
that require human interaction is not feasible.

Our work uses the proposed GE techniques to automatically
model all the parameters involved in data center optimization by
automatically running the training of the algorithms and testing
them during runtime.

6. Results

In this section we present the experimental results obtained
when applying Grammatical Evolution to model CPU and inlet
temperature. First, we show the results for the controlled sce-
nario, describing the best algorithm configuration, and compare
our method with state-of-the art solutions. Then, we apply the
best configuration to train and test the models in a real data center
scenario.

6.1. Algorithm setup and performance

First, we  use GE to obtain a set of candidate solutions with low
error when compared to the temperature measurements in our
controlled experimental setup, under different constraints.

After evaluating the performance of our model with several
setups, we select the following one for each model in this paper:

• Population size: 200 individuals
• Chromosome length: 100 codons
• Mutation probability: inversely proportional to the number of

rules.
• Crossover probability: 0.9
• Maximum wraps: 3
• Codon size: 8 bits (values from 0 to 255)
• Tournament size: 2 (binary)

For CPU temperature prediction, we  use a data window of
Wcpu = 20 samples (corresponding to 200 s) and a prediction
window of  ̨ = 6 (corresponding to 60 s). The data window is heuris-
tically chosen with respect to the largest observed temperature
transient, and its size is a trade-off between model accuracy and
convergence time. In this sense, the data window needs to incor-
porate enough samples to capture the trends of thermal transients,
but we  also need to consider that the larger the data window, the
larger the exploration space. The prediction window needs to be
selected with respect to the time it takes to actuate on the system
and observe a response. In our case, the data window size Wcpu has
been chosen in accordance to our previous work on server power
modeling, where we  analytically modeled temperature transients
in enterprise servers, observing that the largest transients, i.e.
the worst-case modeling scenario, occur for the lower fan speed
values [12]. The prediction window is chosen given the physical
constraints of the problem: 1-min prediction is sufficient time to
change the workload assignment of a server, as canceling the work-
load of a server in case of thermal redlining takes few seconds.

For inlet temperature prediction, we  also use a data window
of Winlet = 20 samples but a prediction window of  ̌ = 5 samples.
Inlet temperature dynamics are much slower than CPU tempera-
ture. Because of this, a sampling rate of 2 min  over inlet temperature
is sufficient to get accurate results. Given the size of the prediction
window, we are able to obtain inlet temperature samples 10 min

advance, which is sufficient time to act upon data room cooling.

Next, we present the comparison among several configurations
in terms of grammar expressions and rules, premature conver-
gence prevention and fitness biasing. We  detail our results for CPU

http://www.cesvima.upm.es/
http://www.cesvima.upm.es/
http://www.cesvima.upm.es/
http://www.cesvima.upm.es/
http://www.cesvima.upm.es/
http://www.cesvima.upm.es/
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Fig. 5. CPU temperature error evolution for real and mixed models under differ-
M.  Zapater et al. / Applied S

emperature modeling. The procedure to tune inlet temperature
odels is completely equivalent.

.1.1. Data preprocessing and model simplification
Because the power measurements of the Intel Xeon server are

aken with a current clamp, the power values obtained exhibit some
oise. We  preprocess the data to eliminate high-frequency noise,
moothing the power consumption trace by means of a low pass fil-
er. The remaining traces did not exhibit noise, so no preprocessing
as needed.

Moreover, we perform variable standardization for every fea-
ure (in the range [1, 2]) to assure the same probability of
ppearance for all the variables and to enhance the GE symbolic
egression.

.1.2. Grammars used
To model CPU temperature we have tested three different gram-

ars:

The first is shown in Grammar 2 and contains a wide set of
operands and preoperands (rules II and III), that do not necessarily
yield models with a physical meaning.
The second grammar is a variation of Grammar 2 in which the
number of preoperands (rule III) is reduced to exponentials only,
i.e. 〈preop〉  : : = exp
The last grammar is the one presented in Grammar 3 and also
reduces the set of possible expressions (rule I).

rammar 2. Grammar used for CPU temperature modeling in
NF, that uses inlet temperature (TIN), fan speed (FS), power con-
umption (PS), past CPU temperature (TS) and past predicted CPU
emperature (TpS)

expr〉 : : = 〈expr〉〈op〉〈expr〉|(〈expr〉〈op〉〈expr〉)|〈preop〉(〈expr〉)|〈var〉|〈cte〉 (I)
op〉  : : =+|−|*|/ (II)
preop〉  : : = exp|sin|cos|tan (III)
var〉  : : = TS[k − 〈idx〉]|TIN[k − 〈idx〉]|PS[k − 〈idx〉]|FS[k − 〈idx〉] (IV)
idx〉  : : = 〈dgt2〉〈dgt〉 (V)
cte〉 : : = 〈dgt〉. 〈dgt〉 (VI)
dgt〉  : : =0|1|2|3|4|5|6|7|8|9 (VII)
dgt2〉  : : =0|1 (VIII)

From the previous three grammars the one that has faster con-
ergence time to achieve a low error, is Grammar 3. Constraining
he grammar improves convergence time and provides phenotypes
hat have physical meaning, without an increase in the modeling
rror obtained. Thus, for the remaining of the paper we work with
he simplified Grammar 3 when modeling CPU temperature.

rammar 3. Simplified grammar in BNF format used for CPU tem-
erature modeling

expr〉 : : = 〈expr〉〈op〉〈expr〉|(〈expr〉〈op〉〈expr〉)〈preop〉(〈exponent〉)
|〈var〉|〈cte〉

(I)

op〉 : : =+|−|*|/ (II)
preop〉  : : = exp (III)
exponent〉  : : = 〈sign〉〈cte〉 * 〈var〉|〈sign〉〈cte〉 * (〈var〉〈op〉〈var〉) (IV)
sign〉  : : =+|− (V)
var〉  : : = TpS[k − 〈idx〉]|TS[k − 〈idx〉]|TIN[k − 〈idx〉]|PS[k − 〈idx〉]

|FS[k − 〈idx〉]
(VI)

idx〉 : : = 〈dgt〉 (VII)
cte〉  : : = 〈dgt2〉. 〈dgt2〉 (VIII)
dgt〉  : : =1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20 (IX)
dgt2〉  : : =0|1|2|3|4|5|6|7|8|9 (X)
We  test two variations of this grammar: (i) one that searches
or a mixed model (i.e. uses past temperature predictions, and it
s the one shown in Grammar 3), and (ii) the one that provides

 real model (i.e. only uses CPU temperature measurements). The
ent  premature convergence prevention techniques: (i) no technique applied, (ii)
ROG + SDT keeping 5% of equal individuals and (iii) ROG  + SDT randomizing all equal
individuals.

only difference between the mixed and the real grammars, is the
presence of the parameter TpS.

6.1.3. Tested configurations
With respect to premature convergence, we test three different

techniques:

• No premature convergence technique applied
• Random Off-Spring Generation (2-RO) plus Packing, keeping no

more that a 5% of equal individuals.
• Random Off-Spring Generation (2-RO) plus Packing, leaving no

more than 1 individual with equal phenotype.

For each of the previous configurations, we run both real and
mixed models, with the goal of comparing the convergence time
and the fitness evolution of each configuration. Because of the ran-
dom evolution of the algorithms, for comparison purposes, we  run
the same model training 5 times and average the RMSE obtained for
different number of generations. Fig. 5 shows the RMSE evolution
for the three configurations, with both real and mixed models.

When we do not apply any technique, error decay is much
slower, as population loses diversity and improves only due to
mutation in the individuals. The impact is higher for the mixed
models, where search space is larger. When we apply ROG and SDT,
we need less generations to obtain good fitness values. However,
keeping only 1 individual with the same phenotype and random-
izing the remaining population is too aggressive, while keeping
a higher percentage of equal individuals, i.e. a 5%, yields better
results. As shown, using 30,000 generations is enough to obtain
low RMSE values.

Regarding fitness biasing, Fig. 6 shows the differences in terms
of RMSE for different number of generations for real and mixed
models when we bias the fitness to force all parameters and when

we do not bias it. Convergence is similar, being slightly better that
of the non-biased models. In fact, all variables in the grammar tend
to appear in non-biased models, backing up the hypothesis that all
those magnitudes are correlated with temperature.
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Table 1
Phenotype, RMSE and MAE  for the test set in the CPU temperature modeling reduced scenario.

Phenotype RMSE MAE

TS[k − 3] + PS[k − 1] − PS[k − 4] + 1.1 · TIN[k − 7]/(e(−0.1·(TpS[k−8]−TS[k−3]))·(PS[k − 20]/9.9) + 9.9) − (e(−4.5·(TpS[k−5]/TS[k−19])) · TS[k − 7]) − 9.6 2.8 2.08
TS[k  − 5] + PS[k − 1]) − PS[k − 5] + (TS[k − 5]/5.7 − e(−1.3·(TS[k−5]/TIN[k−12])) · TS[k − 5])

+PS[k  − 11]/(3.7 − TS[k − 5] · (e(−0.3·(PS[k−18]+FS[k−7])) − e(−4.9·(PS[k−12]/PS[k−16])))) − 9.8
2.59 1.86

TS[k  − 5] + PS[k − 1] − PS[k − 4] + e(+6.1·(TIN[k−10]/TS[k−5])) − 5.2) − TIN[k − 14] · (0.06 · (TIN[k − 7]/TS[k  − 5]))
+(PS[k  − 1]/3.1 · TIN[k − 7]) · TS[k − 5] − (PS[k − 20]/TIN[k − 7]) · (−6.4·(TIN[k−15]/TS[k−11])) − 8.0

2.77 2.01

TS[k  − 3] + PS[k − 1] − PS[k − 4] − e(−4.1·(TpS[k−5]/TIN[k−19]))/TS[k − 3] +(TpS[k − 1]/(e(−0.1·(TpS[k−8]−TS[k−3]))

TS[k  − 1] + 0.73 · (PS[k − 1] · 4.4 − PS[k − 2] · 4.4 − TS[k − 1] + TpS[k − 8] + e(−0.2·TIN[k−8])

+(e(−3.4·(PS[k−20]/PS[k−10])) − e(−4.0·(PS[k−6]/PS[k−19]))) · TpS[k − 12]/9.0 − 0.9)
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Fig. 6. CPU temperature error evolution for real and mixed models under ROG + SDT
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Finally, we show results for both the training and test set when
odeling CPU temperature with the best configuration, i.e. a mixed
odel obtained with Grammar 3, using ROG and Packing tech-

iques leaving 5% of equal individuals, and not biasing the fitness.
able 1 shows the 5 better phenotypes obtained and their corre-
ponding RMSE and MAE  values for the test set after simplification.
o avoid overfitting, we use the five best models to compute the
amples of the test set, i.e., we predict the next temperature sample
ith all five equations, obtaining 5 different results, and we  average

hem to obtain the prediction value. By applying this methodology
e obtain a RMSE of 2.48 ◦C and a MAE  of 1.77 ◦C. Because CPU

emperature sensors usually have a resolution of 1 ◦C we consider
hese results to be accurate enough for our purposes. Fig. 7 shows

 zoom-in of the real CPU temperature trace and its prediction, for
oth the training and the test set. As can be seen, the prediction
ccurately matches the measured values in both the training and
est sets.
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ig. 7. Training and test set CPU temperature prediction vs. real measurements with
ime (s).
· (PS[k − 20]/9.9) + 9.2))/1.6 − 9.6 2.55 1.77
2.5 1.75

6.2. Comparison to other approaches

We  compare our results with three common techniques for
CPU temperature modeling in the state-of-the-art: autoregressive
moving average models, linear subspace identification techniques
and dynamic neural networks. We  first briefly describe these three
modeling techniques and then we  show the results obtained and
compare them with our proposed technique.

6.2.1. ARMA models
ARMA models are mathematical models of autocorrelation in

a time series, that use past values alone to forecast future values
of a magnitude. ARMA models assume the underlying model as
stationary and that there is a serial correlation with the data, some-
thing that temperature modeling accomplishes. In a general way,
an ARMA model can be described as in Eq. (4):

yt =
p∑

i=1

(ai · yt−i) = et +
q∑

j=1

(cj · et−j) (4)

where yt is the value of the time series (CPU temperature in our
case) at time t, ai’s are the lag-i autoregressive coefficients, ci’s
are the moving average coefficient and et is the error. The error
is assumed to be random and normally distributed. p and q are
the orders of the autoregressive (AR) and the moving average (MA)
parts of the model, respectively.

The ARMA modeling methodology consists on two different
steps: (i) identification and (ii) estimation. In our work we use an
automated methodology similar to the one proposed by Coskun
et al. [24]. During the identification phase, the model order is com-
puted, i.e., we  find the optimum values for p and q of the ARMA(p,
q) process. To perform model identification we use an automated
strategy, that computes the goodness of fit for a range of p and
q values, starting by the simplest model (i.e., an ARMA(1,0)). The
goodness of fit is computed using the Final Prediction Error (FPE),
and the best model is the one with lowest FPE value, given by Eq.
(5):

FPE = 1 + n/N

1 − n/N
·  V (5)

where n = p + q, N is the length of the time series and V is the variance
of the model residuals. For a fair comparison with our proposed
methodology, the model obtained needs to forecast  ̨ = 6 samples.

6.2.2. N4SID
N4SID is a subspace identification method that estimates an

n order state-space model using measured input-output data, to
obtain a model that represents the following system:

ẋ(t) = Ax(t) + Bu(t) + Ke(t) (6)
y(t) = Cx(t) + Du(t) + e(t) (7)

where A,B,C and D are state-space matrices, K is the disturbance
matrix, u(t) is the input, y(t) is the output, x(t) is the vector of n
states and e(t) is the disturbance.
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State-space models are models that use state variable obser-
ations to describe a system by a set of first-order differential
quations, using a black-box approach. The approach consists on
dentifying a parameterization of the model, and then determining
he parameters so that the measurements explain the model in the

ost accurate possible way. They have been very successful for the
dentification of linear multivariable dynamic systems.

To be constructed, certain parameters need to be fed into the
odel, such as the number of forward predictions (r), the number

f past inputs (su), and the number of past outputs(sy). Again, for a
air comparison with our proposed methodology, we need a model
n the form N4SID[r, su, sy] where r = 6, su = 20 and sy = 20.

.2.3. NARX
A Nonlinear Autoregressive eXogenous (NARX) model is a non-

inear autoregressive model with exogenous inputs. In this case,
he current value of a time series is computed in function of a) past
alues of the same series, and b) current and past values of the
xogenous series. Additionally, the model contains an error term,
ince knowledge of the other terms will not enable the current value
f the time series to be predicted with precision. This is model is
escribed as follows:

(t) = F(y(t − 1).y(t − 2),  y(t − 3),  . . .,

u(t), u(t − 1),  u(t − 2),  u(t − 3),  . . .)  + e(t) (8)

here y(t) is the output, u(t) is the exogenous variable and e(t) is
he error term. F is a nonlinear function, and in our case is defined
hrough a neural network. The NARX model is based on the linear
RX model, which is commonly used in time-series modeling.

.2.4. Model comparison
Finally, we compare the results for CPU temperature modeling

etween our proposed approach, ARMA, N4SID, and NARX models,
ll of them with a prediction window of 6 samples (1 min). To per-
orm a statistical comparison, we have conducted a non-exhaustive
-fold cross-validation. The complete data set is obtained from
ore than 10 h of temperature traces gathered from an Intel Xeon

X-300 S6 server running a wide range of workloads under vari-
us cooling setups. This data set has been partitioned into 5 equal
ized subsamples. A single subsample is retained as the validation
ata for testing the model, and the remaining 4 subsets are used
s training data. This process is repeated 5 times with each of the

 subsamples used exactly once as the validation data. RMSE and
AE are averaged to perform a comparison between ARMA, N4SID,
ARX and GE. Each resultant set of five models will be averaged to
roduce the final estimation.

Table 2 shows the RMSE and MAE  errors obtained for our pro-
osed modeling technique based on GE, ARMA, N4SID and NARX
odels, and Fig. 8 shows a zoom-in into the CPU temperature curve

or the actual measurements and the averaged prediction of the five

odels obtained in the cross validation over the whole data set.
s can be seen, GE models are the ones with both lower RMSE and
AE. Moreover, the CPU temperature trend is accurately predicted.

his does not happen for ARMA models that, even though keep the

able 2
MSE and MAE  in CPU temperature prediction for each model (ARMA, N4SID, NARX
nd  GE).

Model Training set Test set

RMSE MAE  RMSE MAE

ARMA1,4 3.38 ± 0.23 1.62 ± 0.13 3.23 ± 1.02 1.62 ± 0.57
ARMA9,8 3.35 ± 0.24 1.70 ± 0.14 3.24 ± 1.01 1.74 ± 0.64
N4SID 2.55 ± 0.28 1.69 ± 0.07 3.98 ± 1.11 2.93 ± 0.58
NARX 2.53 ± 0.10 1.64 ± 0.05 3.88 ± 1.16 2.35 ± 0.69
GE 2.32 ± 0.19 1.50 ± 0.08 2.56 ± 0.90 1.66 ± 0.45
Fig. 8. Zoomed-in averaged CPU temperature modeling comparison between
ARMA(1,4), N4SID, NARX and GE.

maximum error low, provide values that are always behind the real
trend, yielding poor forecasting capabilities. This issue cannot be
solved by increasing the model order, as shown in Table 2. N4SID
models, even though they are very accurate in the training set, per-
form poorly in the test set and have an important bias error. Even if
the bias error is corrected (which has been done in Fig. 8) the pre-
diction is still behind the measurements and the model is unable to
capture the system dynamics. NARX models clearly show an over-
fitting effect in the training data. The GE prediction, even though
has more oscillations (due to the smoothed noise of the power
consumption signal) is the only one that captures the temperature
trend, advancing the real measurements.

6.3. Inlet temperature modeling

For inlet temperature modeling we perform the same study
than for CPU temperature in terms of grammars, premature con-
vergence and fitness biasing. As expected, the results in terms of
the best model configuration yield very similar results. Thus, for
inlet temperature modeling, we use the same configuration: (i) a
mixed model using a simplified version of the grammar that only
allows exponentials, (ii) SDT with 5% packing and (iii) RMSE fitness
function without biasing.

The BNF grammar used is very similar to Grammar 3, where
instead of rule VI, we use the following rule:
〈var〉::= TIN[k-〈idx〉] | TpIN[k-〈idx〉]
| TSUP[k-〈idx〉] | HUM[k-〈idx〉]
where TSUP is cold air supply temperature, HUM is humidity, TIN
are past inlet temperatures and TpIN are past inlet temperature

predictions. Fig. 9 shows the prediction for the test set. The RMSE
of the prediction is of 0.33 ◦C and MAE  is 0.27 ◦C for a prediction
window of 10 min  and for the test set. Again, the model includes all

Time (hours)
4 8 12 16 20 24

T
em

p(
° C

)

18

20

22

24 Real temperature Predicted temperature

Fig. 9. 10-min inlet temperature prediction in the reduced scenario for a mixed
model with SDT Packing 5% and simplified grammar.
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he available variables, i.e., TSUP, TIN and HUM appear in the final
odel.

.4. Data Center modeling

We  use the previous model with the same configuration to
redict the CPU and inlet temperature of the blade servers at
eSViMa data center. Because CeSViMa is a production environ-
ent, when it comes to server data, we are subject to the data

ampling rates provided by the data center. CeSViMa collects all
ata from servers every 2 min, and environmental data (i.e. from
oolers) every 15 min. Thus, for both CPU and inlet temperatures,
e need to change our prediction windows. For CPU temperature
e use a prediction window ˛′ = 1, which means that we predict
PU temperature 2 min  into the future. For inlet temperature we
se a prediction window ˇ′ = 1 samples, i.e. we predict temperature
5 min  ahead.

Because in CeSViMa we cannot control the workload being exe-
uted, nor modify the cooling setup, we need to select longer
raining and tests sets to ensure that they exhibit high variabil-
ty on the magnitudes of interest. For CPU temperature, we  select

 days of execution for the training set, and 4 days for the test set.
or inlet temperature, which varies very slowly in a real data center
etup we use 14 days of execution for both the training and the test
et.

Fig. 10 shows a zoomed-in plot of the measured and predicted
nlet temperature to the chassis c02 of racks 1 and 4 in CeSViMa
ata center for a period of 8 days. Fig. 11 shows the measured and
redicted CPU temperature traces for blades b01, b04 and b07 in

hassis c02 of both racks, for the first two days of the same period,
s well as the prediction error (i.e. the difference between the real
easurements and the prediction). To generate these last models,

nstead of using the real inlet temperature measurements, we  use
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Fig. 11. Data Center CPU temperature modeling and prediction error for v
Fig. 10. Inlet temperature modeling for various racks.

predicted inlet temperature. This way, we are able to accurately
predict all variables needed for optimization.

Table 3 shows the phenotypes obtained for CPU and tempera-
ture modeling of the servers in CeSViMa data center. We  also report
MAE for both training and test sets. We  observe that all pheno-
types that model CPU temperature incorporate the parameters of
interest (inlet temperature, power and fan speed), and we obtain
errors below 1 ◦C in all cases. The average RMSE across models are
1.52 ◦C and 1.57 ◦C for the training and test set respectively. As
for inlet temperature, the phenotypes incorporate both differen-
tial pressure, and CRAC return temperature. Moreover, depending
on the rack placement, the influence of the CRAC units vary. Here
we can observe the benefits of the feature selection performed by
GE. Rack1, which is the leftmost rack in the data center, is affected
only by CRAC2; whereas Rack4, situated in the middle of the row,
is affected both by CRAC2 and CRAC3. The model automatically

incorporates the most relevant features, discarding the irrelevant
ones. For inlet temperature prediction, our error is below 0.5 ◦C,

ture Real temperature
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arious servers in different racks for 2 days of traces (time in hours).
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Table  3
Phenotype and average error (in Celsius) in training and test set for CPU and inlet temperature modeling in a production Data Center.

Model Phenotype Train. Test

Inlet TIN[k − 1] + e(−4.3·(TRET2[k−3]/TRET2[k−11]))/TIN[k − 1] · (e(+1.5·TIN[k−5]) 0.32 0.4
Rack1  −e(−3.8*(PDIF[k−20]−TIN[k−1])))
Inlet TIN[k − 1] + 3.1/e(+5.0·TIN[k−1]) · e(+2.2·TIN[k−2]) − e(−2.9·TpIN[k−3]) · TRET3[k − 12]·
Rack4 (TRET3[k − 5] + e(−4.9·(HUM[k−6]/TRET2[k−1]))/TIN[k − 2]/e(+7.2·(PDIF[k−20]−TIN[k−1]))) 0.18 0.44

CPU  TS[k − 1] + (PS[k − 20] · FS[k − 1] − 9.4 · (TpS[k − 5] · TpS[k − 2]))/(e(+2.0·FS[k−7])/
Rack1, C02, B01 e(−4.1·TpS[k−5])/(2.3 + e(+1.7*(TpS[k−10]*TpS[k−10])) + e(+1.5*FS[k−1]) − e(+1.6*PS[k−7]))) 0.68 0.76
CPU  TS[k − 1] + e(−7.2*(TS[k−6]/PS[k−1]))/(e(−6.1*(TS[k−10]−PS[k−15]))/5.6/FS[k − 20]
Rack1, C02, B04 −1.7 + TpS[k − 20] − e(−3.0*(TIN[k−4]/TS[k−15])))
CPU TS[k − 1] + e(−6.2·(TS[k−2]·TIN[k−11]))/((e(−9.8·TS[k−8]) + e(−5.2*(TS[k−9]*PS[k−19]))) 0.51 0.85
Rack1, C02, B07 ·e(+5.8*FS[k−9]))
CPU TS[k − 1] + e(−3.1·TS[k−2])/(((TS[k − 3]/PS[k  − 3]) + (FS[k − 18] − FS[k − 8])/ 0.55 0.75
Rack4, C02, B01 e(−9.4·(FS[k−1]−TpS[k−9]))) − TpS[k − 4] + (TpS[k − 6] + TS[k − 3]) − (TIN[k − 3]/TpS[k − 9])) 0.29 0.46
CPU

(−5.7·(TpS[k−6]*TpS[k−10])) (+9.9·(TpS[k−9]−TIN[k−10]))

(−9.9·(T
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Rack4, C02, B04 TS[k − 1] + e /e
CPU
Rack4, C02, B07 TS[k − 1] + TIN[k − 11] · e(−9.5·(TpS[k−10]/TIN[k−5]))/e

hich is enough for our purposes and below other state-of-the-art
pproaches.

. Discussion

In this section we briefly discuss the applicability of our models,
nd the computational effort needed to model a full data center
cenario, to validate the feasibility of our approach.

.1. Applicability

The goal of our modeling is predicting server CPU temperature
nder variable cooling setups, so that cooling-associated costs can
e reduced without incurring on reliability issues. To this end, we
rst predict the inlet temperature of servers given the data room
onditions and cooling setup, and use this result to predict server
emperature.

Having analyzed the spatio-temporal variability of inlet temper-
ture traces in CeSViMa data center, we find that it is sufficient to
redict inlet temperature at 3 different heights (at the bottom, mid-
le and top of the rack), in one out of two racks. This way, we need
o generate 30 inlet temperature models at most. Because the max-
mum CPU temperature in the data center is the one limiting the
ooling, at most we need to predict the CPU temperature of each
erver in the data room, i.e. we need as many models as servers
n the data center. However, if by analyzing the traces we find
hat there is a subset of CPUs that limit the maximum cooling of
he overall data center, our problem can be reduced to modeling
hose that always exhibit higher temperatures. For the particular
ase of the traces of CeSViMa, if we examine 6 months of CPU tem-
erature traces, we find that the CPUs limiting the cooling are the
lades b04 and b07 placed in the second chassis (c02) of all racks. In
his sense, for energy optimization purposes our problem reduces
o generating 10 different models. These models allow us to pre-
ict the maximum server temperature attained in the data center
nd, thus, detect any potential thermal redlining and act before it
ccurs. Moreover, to leverage energy optimization, our results can
e used to set cooling dynamically during runtime, by predicting
he maximum data center CPU temperature under various cooling
onditions and increasing CRAC air supply temperature without
ncurring in reliability issues.

Even though in this paper we have applied our modeling

ethodology to a raised-floor air-cooled data center scenario, the

roposed technique is also valid for data centers equipped with
ther state-of-the-art cooling mechanisms, such as in-row or in-
ack cooling used in high-density racks.
0.26 0.73

IN[k−10]−TS[k−5])) 0.43 0.87

7.2. Computational effort

Our approach is computationally intensive in the model training
stage. The GE model needs to evolve a random initial population for
30,000 generations to obtain accurate results. In our experiments,
running 30,000 generations of 4 different models in parallel takes
28h in a computer equipped with a QuadCore Intel i7 CPU @3.4 GHz
and 8 GB of RAM. This computational cost is much larger than the
computational cost for training ARMA and N4SID models. However,
to obtain accurate results ARMA needs to be manually tuned, and
N4SID requires a manual feature selection step that greatly impacts
accuracy, whereas GE models can be automatically developed.

However, as the models obtained for homogeneous servers are
very similar, it is possible to reduce the training overhead by using
already evolved populations to fine-tune the models instead of
using the a new random population every time. This way, we can
reduce the training time significantly.

As for the model testing, in the worst case scenario, the model
needs to be tested every 10 s. The overhead to test one model is
found to be negligible. In this sense, it is feasible to compute all
temperatures to find the maximum. Moreover, because of the tem-
perature imbalances of servers in the data room we can reduce
the amount of models run to those that are limiting the cool-
ing, i.e. the servers with higher CPU temperature values. Overhead
incurred by testing is in the same order of magnitude than the over-
head of ARMA and N4SID, but provides better results in terms of
error.

8. Conclusions

In this paper we  have presented a methodology for the unsu-
pervised generation of models to predict on runtime the thermal
behavior of production data centers running arbitrary workloads
and equipped with heterogeneous servers.

Our approach leverages the usage of Grammatical Evolution to
automatically generate models of the data room by using real data
center traces. Our solution allows to predict the CPU temperature
and inlet temperature of servers, with an average error below 2 ◦C
and 0.5 ◦C respectively. These errors are within the margin obtained
by other off-line supervised approaches in the state-of-the art. Our
solution, generates the models in an unsupervised way, is able to
work on runtime, is trained and tested in a real scenario, and does

not require the usage of CFD software.

To the best of our knowledge our work is the first to propose
data center temperature forecasting using evolutionary techniques,
allowing predictive model generation for runtime optimization.
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ppendix.

In this Appendix we provide further information on the mapping
rocess used by our grammar. For a more detailed explanation on
he principles of GE, the reader is referred to [32]. A BNF specifica-
ion is a set of derivation rules, expressed in the form:

〈symbol〉 : : = 〈expression〉
Rules are composed of sequences of terminals, which are items

hat can appear in the language, and non-terminals, which can be
xpanded into one or more terminals and non-terminals. A gram-
ar  is represented by the tuple N, T, P, S, being N the non-terminal

et, T is the terminal set, P the production rules for the assignment
f elements on N and T, and S is a start symbol that should appear
n N. The options within a production rule are separated by a “|”
ymbol.

rammar 4. Example of a grammar in BNF designed for symbolic
egression

 = {expr, op, preop, var, num, dig}
 = {+, -, *, /, sin, cos, exp, x, y, z, 0, 1, 2, 3, 4, 5, (,),.}

 = {expr}
 = {I, II, III, IV, V, VI}
expr〉  : : = 〈expr〉〈op〉〈expr〉|〈preop〉(〈expr〉)|〈var〉 (I)
op〉  : : =+|−|*|/ (II)
preop〉::= sin|cos|log (III)
var〉::=  x|y|z (IV)
num〉  : : = 〈dig〉. 〈dig〉|〈dig〉  (V)
dig〉::=  0 | 1 | 2 | 3 | 4 | 5 (VI)

Grammar 4 represents an example grammar in BNF. The final
xpression consists of elements of the set of terminals T, which
ave been combined with the rules of the grammar.

The chromosome is used to map  the start symbol onto terminals
y reading genes (or codons) of 8 bits to generate a correspond-

ng integer value, from which the options of a production rule are
elected by using the modulus operator:

ule = CodonValue%NumberofRuleChoices (9)

Example: in this example, we explain the mapping process per-
ormed in GE to obtain a phenotype (mathematical function) given a
enotype (chromosome). Let us suppose we have the BNF grammar
rovided in Fig. 4 and the following 7-gene chromosome:

21-64-17-62-38-254-2
According to Fig. 4, the start symbol is S = 〈expr〉, hence the

ecoded expression begins with the non-terminal:

olution = 〈expr〉
Now, we use the first gene of the chromosome (i.e. 21) in rule I

f the grammar. The number of choices in that rule is 3. Hence, the
apping function is applied: 21 MOD 3 = 0 and the first option

s selected 〈expr〉〈op〉〈expr〉. The selected option substitutes the
ecoded non-terminal, giving the following expression:
olution = 〈expr〉〈op〉〈expr〉
The process continues with the codon 64, used to decode the

rst non-terminal of the current expression, 〈expr〉. Again, the

[

mputing 49 (2016) 94–107

mapping function is applied to the rule: 64 MOD 3 = 1 and the sec-
ond option 〈preop〉(〈expr〉) is selected. So far, the current expression
is:

Solution = 〈prep〉(〈expr〉)〈op〉〈expr〉

The next codons (17, 62, 38, 254 and 2) are decoded in the same
way. After codon 2 has been decoded, the expression is:

Solution = exp(x) ∗ 〈var〉

At this point, the decoding process has run out of codons, and
we need to reuse codons starting from the first one. This tech-
nique is known as wrapping and mimics the gene-overlapping
phenomenon in many organisms [33]. Applying wrapping, we use
gene 21 to decode 〈VAR〉 with rule IV.  This result gives the final
expression of the phenotype:

Solution = exp(x) ∗ y

Apart from performing parameter identification, in conjunction
with a well-defined fitness function, the evolutionary algorithm is
also computing mathematical expressions with the set of features
that best fit the target system. Thus, GE is also defining the optimal
set of features that derive into the most accurate model.

Adding time dependence: previously shown grammars allow
us to obtain phenotypes that depend on a certain number of vari-
ables (e.g. x, y, z). We  could use the previous method to predict
variables that depend only on the current observation of other
magnitudes, such as server power [34].

Models created this way can be used to predict magnitudes
without memory and the data used for model creation consists
of samples. Temperature, however, is a magnitude with memory,
i.e. the current temperature depends on past temperature values.
Thus, the data used for model creation need to be a time series.
By properly tuning our grammars, we can add time dependence to
the variables in the phenotype, so that past values can be used to
predict the variable a certain number of samples ahead.
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