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� Flexible recording frequency approach is applied for low frequency signals.
� The most dynamic period is analyzed with DWT and FFT for high frequency signals.
� The mean absolute derivation method verifies the most dynamic period by DWT.
� Recording at 1 Hz is not enough for voltage and current during the dynamic period.
� The optimal recording frequency will not influence the SOC estimation accuracy.
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a b s t r a c t

Massive data storage is an advanced function in a fully functional battery management system (BMS).
Reducing the recording signal length undoubtedly saves the precious memory space for BMS. And it also
reduces the network and computation loads. However, it leads to a side effect that the trend of signal
distortion is enhanced. The optimal recording frequency in practice should be as low as possible on
the condition that little signal distortion happens. This paper presents a novel method which uses a
multi-frequency recording technology that cooperates two approaches according to the signal dynamics.
A flexible recording frequency method is applied for stationary signals which only records signals when
their values are changed. While for dynamic signals, the most dynamic period is found using discrete
wavelet transformation (DWT) and further analyzed by fast Fourier transformation (FFT). By comparing
two recording signal indicators for four different recording frequencies, we conclude that recording at
1 Hz is not qualified for the cell voltage and current during the dynamic period in our system due to
the high dynamic performance of the vehicle. In the demonstrated vehicle, only by increasing the record-
ing frequency to at least 2 Hz, can the accuracy of the recorded cell voltage achieve the level the same as
the measurement accuracy in engineering. And we also verify that when the recording frequency is
reduced to the optimal frequency compared to the high frequency recorded original signals, the accuracy
of the SOC estimation is not influenced.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid progress in lithium ion battery chemistry, large
scale electric energy storage becomes possible nowadays. Large
battery packs such as battery energy storage stations or electric
vehicles (EVs) consist numerous battery cells [1,2]. However, cells
always have inevitable variations which may come from manufac-
turing process or the operation environment [2–5]. A battery man-
agement system (BMS) is therefore required to manage and
monitor all cells as well as the overall states of the battery pack.
A fully functional BMS should fulfil the following requirements:

(1) Sensing and monitoring: all kinds of BMSs at least monitor
the total current, the total voltage, voltages and temperatures of
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individual cells, as well as temperatures of the specified nodes in
air [6]; (2) Power management: good power management will
not only improve the life of battery packs or reducing the charging
cost [7,8] but also precisely detect battery cell parameters by speci-
fic methods [9,10]; (3) State estimation: state of charge (SOC), state
of health (SOH) and state of function (SOF) are calculated and are
extensively investigated in literature [6,11,12]; (4) Thermal man-
agement: good thermal management guarantees preference tem-
perature to make battery packs work well and temperature
uniformity between cells is a more critical issue for better thermal
management [13]; (5) Communication: as the modular topology is
commonly applied in the BMSs, CAN (Controller area network) bus,
the most typical communication link in the automotive environ-
ments, is commonly used in BMSs [14]. Daisy chained network is
also a current focus in engineering for the BMS network. The future
networks could be Flexray [15], and wireless commutation also
draws much attention; (6) Cell balancing: BMS needs to equalize
the cells in order to maximize the battery’s capacity and life
[16,17]; (7) Fault detection: battery system faults can be generally
categorized into two types: system related faults and battery
related faults which are intensively studied [18,19].

Massive data storage is an extended and advanced function in
BMS. A fully functional BMS may record history data including
the signals of total voltage, total current, cell voltages, cell temper-
atures and states such as pack and cell SOCs as well as cell balanc-
ing currents and so on. These data are recorded in a block of the
BMS master controller which is specialized for data recording or
a data logger controller linked to the master controller through
the network. A secure digital memory card (SD card) or other
memory storage devices are commonly used to store the data in
the data logger, and it can be read on a PC for further research or
for the maintenance of the battery pack [18]. With the progress
in wireless communication, data transferred and saved into the
server through wireless networks, e.g. 3G or 4G, is the newly devel-
oped technology for massive data storage. Though not all types of
the BMSs have the function of massive data storage, it is very
important for the BMS to record battery data during the operation
in order to thoroughly analyze the battery performance off line:

(1) As one of the most important part in big data digging for
energy storage systems, the recorded data provide real
working conditions of the battery packs. Data in EVs contain
the information of the vehicle power demands and the driv-
ing habits as well as the charging habits of the EV users.
Micro grid power demands can be revealed by analyzing
data in battery energy storage stations.

(2) Precise working conditions of battery packs from the stored
data support the further development of EVs and other
energy storage systems with improved data-driven algo-
rithms [12,20,21], and as well as academic study of battery
pack ageing [22].

(3) When battery system failures occur in some instances, the
stored data can be used to investigate the origins of the
faults and help to reduce similar failures in the future. For
example, if we would have more comprehensive data during
the battery fire accident in Boeing 787 (ANA 787 on January
16, 2013), causes of the fire might have been directly
revealed instead of inferring conclusions from the post-
mortem battery pack [23].

A data logger needs to record hundreds to thousands of signals
according to the size of the battery packs. For example, in a small
pack with 96 cells in series, at least 400 signals are typically
required to be recorded including the total voltage and current, cell
voltages, cell temperatures, balancing currents, cell SOCs and some
control state signals et al. [18]. For large packs, e.g. a battery energy
station with 20 battery strings in parallel and each string with 240
cells in series [1], the order of magnitude of the recording signals
will be a ten thousand.

Data from a demonstrated EV in our experiments show 434 sig-
nals were recorded with 1 Hz recording frequency, and 2 signals
ware were recorded with 4 Hz (the total current and voltage).
The recording time was 26 days and recording a signal at a time
takes an average of 8 bytes. To calculate the memory space the
data takes, we use the following the equation.

M ¼ nTfm ð1Þ
whereM is the total memory space the data take, n is the number of
signals, T is the total recording time, f is the recording frequency and
m is the memory space it takes to record a signal at a time. Data of
26 days occupied 7.4 Giga Bytes (GB), i.e. completely full memory
space of an 8 GB Secure Digital Memory Card (SD card). It was not
a coincidence that the SD card was full, because the earlier data
were covered by the incoming data.

Because the number of signals is predetermined by the design
of the battery pack system, it is an effective way to reduce the
recording frequency in order to increase the total recording time
for the limited memory space in BMS. On the one hand, reducing
the recording frequency will increase the capability of the record-
ing time. As a result, some data logger set the recording period to
1 min or even longer [1]. But on the other hand, dynamic working
condition in EVs requires fast recording of the current and voltage
so as to ensure that no distortion happens to the recording signals.
Typically, the recording frequency is set to 1 Hz [24] or even 10 Hz
for this purpose.

In conclusion, reducing the recording frequency increases the
total recording time but also increases the tendency of signal dis-
tortion according to the Shannon’s sampling theorem. Conversely,
increasing the recording frequency decreases the tendency of sig-
nal distortion but also decreases the total recording time. There-
fore, the optimal recording frequency in practice should be as
low as possible on the condition that no signal distortion happens.
The benefits of reducing recording signal length without signal dis-
tortion are to save the memory space for memory stick devices and
to reduce the network load. Besides, the additional benefits are:

(1) For off-line data processing, less data means faster and
easier data processing.

(2) More importantly, the battery data are required to be stored
in the memory space of the BMS microcontrollers for on-line
calculation with some slightly more sophisticated functions.
For example, cell voltage interpolating, charging curve fit-
ting or on-line data-driven battery parameter estimation
[12,25], they all need to recall the saved battery data from
the Flash to the RAM (Random-Access Memory) and then
calculated by the core of the microcontrollers. Obviously,
the precious resources of RAM (currently less than 8 MB in
most applications) as well as the computation capability
limit the size of the recorded data. By optimizing the record-
ing frequency, RAM as well as the computation capability
will be greatly saved and more efficiently used.

(3) With the increasing popular wireless networks (e.g. 3G or
4G), cloud storage and computing are becoming feasible
for vehicle application [26]. As the wireless flow is expensive
at present, reducing recording signal length will undoubt-
edly save the cost of the cloud storage system.

This paper presents a novel method which uses a multi-
frequency recording technology according to the signal dynamics.
For stationary signals, a flexible recording frequency method is
applied which only records signals when their values are changed.
For dynamic signals, firstly, the most dynamic period is revealed



Table 1
Features of the multi-frequency recording method.

Multi-frequency recording

Flexible recording frequency Recording frequency optimization

Signal dynamic property Stationary/low frequency Dynamic/high frequency
Typical application Temperature, SOC, current and voltages during stationary charging Current and voltages during dynamic charging/discharging
Method Recording signals and the corresponding time when their values

are changed. The recording frequency is not predetermined, and is
variant

Optimal recording frequency is predetermined by signal FFT analysis
to ensure that the most dynamic period of the signal will not be
distorted
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using discrete wavelet transformation (DWT). Subsequently, its
frequency is analyzed by fast Fourier transformation (FFT). And
finally, the recording frequency is optimized according to the Shan-
non’s sampling theorem.
1 For interpretation of color in Figs. 1, 3, 5, 6, 8, and 9, the reader is referred to the
web version of this article.
2. Multi-frequency recording method

Because signals in BMS have different dynamics, e.g. tempera-
ture is commonly stationary while the current can be very
dynamic, we present the multi-frequency recording method for
signals with different dynamics. The principle of the method is
simple: low frequency recording for low frequency signals and
high frequency recording for high frequency signals. A flexible
recording frequency technology for stationary signals is in low fre-
quency domain. Recording frequency optimization for dynamic
signals is in high frequency domain.

Therefore, before we use the multi-frequency recording
method, dynamic properties of the signals in BMS should be dis-
cussed. The most important signals in BMS are the total current
and voltage, and cell voltages are also essential in order to analyze
cell variations and faults. Because the total and cell voltages
directly correlate with the current as a natural property of the bat-
tery system, voltages and current are in the same frequency
domain. It means that if we have optimized the recording fre-
quency for the current, the same recording frequency can be used
for the voltages. In most vehicle and energy storage applications,
current varies in different working conditions. Battery working
conditions can be categorized into three states: dynamic charg-
ing/discharging, stationary charging and standing by [18]. Current
is in the high frequency domain during dynamic charging/dis-
charging, and enters the low frequency domain during stationary
charging and standing by.

Because temperature change of 1 �C has very little influence on
the battery behavior, the temperature resolution of 1 �C is consid-
ered to be sufficient for BMS. High specific heat capacity, relatively
low heat generation and good heat dissipation condition make rel-
atively slow temperature change in BMS. As a result, temperature
can always be considered as a stationary signal. Similarly, SOC is
also in the low frequency domain because SOC change of 1% usu-
ally takes dozens of seconds even at a high power output/input.
Therefore, both temperature and SOC are considered to be in the
low frequency domain regarding their resolutions.

Table 1 describes the features of the multi-frequency recording
method which cooperates two approaches according to the
dynamic properties of signals. The flexible recording frequency
approach is used in the low frequency domain for stationary sig-
nals, e.g. temperature, SOC, current and voltages during stationary
charging. This approach records signals and the corresponding
time when their values are changed regarding their resolutions.
Fig. 1(A) demonstrates a typical signal which is suitable for the
flexible recording frequency approach. The horizontal dotted lines
indicate the signal resolution and the red dots are at the ideal
recording time using the flexible recording frequency approach.
The signal value changes slowly and not periodically with the time.
Therefore, the ‘‘recording frequency” is flexible.
The recording frequency should be optimized for dynamic sig-
nals such as the current and voltages during dynamic charging/dis-
charging. Fig. 1(B) demonstrates a typical signal which needs the
approach of the recording frequency optimization. The vertical
dotted lines indicate the recording period and the red1 dots are uni-
formly distributed along the time axis according to the recording fre-
quency. The most dynamic period can be observed in the figure. If
the recording frequency is high enough to keep the signal undis-
torted in the most dynamic period, the whole signal will not be dis-
torted. Procedures of the recording frequency optimization for
dynamic signals are given in Fig. 1(C). Before the mass production
of the BMS data logger, the demonstrated data logger will set to
the maximum recording frequency fmax to record the dynamic signal
for some time. During that time, the battery pack is required to oper-
ate in all working conditions so that the recorded signal will contain
the most dynamic period. And then the signal is transformed using
DWT which tells the most dynamic period during the whole opera-
tion. The most dynamic period of the signal is thereafter analyzed by
FFT to find the essential frequencies contained in the signal which
have higher amplitude. By determining the threshold of the essential
frequencies, the optimal recording frequency is determined accord-
ing to the sampling theorem. The data loggers under mass produc-
tion will always use the optimized recording frequency for the
signal as long as the working conditions of the battery pack are
similar.

Battery data were collected in a developing BMS before the
release of a demonstrated EV. The EV was tested in an automotive
proving grounds for weeks. And for ten hours during the test, the
EV covered all working conditions and the data logger was set to
the maximum recording frequencies the system can provide for
all signals: the recording frequency for temperatures and SOCs is
approximately 1 Hz and the recording frequency for current and
voltages is around 4 Hz (fmax = 4 Hz). We believe that if a recording
frequency was found to be optimal under such a test, it would be
redundant to other working conditions.

Temperature and SOC of Cell 1 as well as the total current and
the mean voltage recorded during the test are displayed in Fig. 2.
Because the test mainly contains an intensive dynamic discharging
and followed by a constant charging, all signals exhibit two phases.
Temperature in Fig. 2(A) raises from 15 �C to 22 �C in the first
phase and maintains during the second phase. The insignificant
change of the temperature during 10 h presents itself as a station-
ary signal. SOC in Fig. 2(B) is also stationary. It falls from 100% to
10% approximately during the intensive dynamic discharging and
raises back to about 100% in the second phase.

The total current and the mean voltage in Fig. 2(C) are very
dynamic during the first phase and become stationary during the
constant charging. The total current and the mean voltage require
the recording frequency optimization for the first phase and the
flexible recording frequency approach in the second phase.
Fortunately, the charging and idle state signals from BMS will tell
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the data logger to distinguish the two phases and makes the multi-
frequency recording method feasible for online applications.
3. The flexible recording frequency approach for stationary
signals

The temperatures, SOCs, voltages and the current in the second
phase are recorded with the flexible recording frequency approach
because they perform as stationary signals as shown in Fig. 2.
The flexible recording frequency approach for the temperature
of Cell 1 are demonstrated for an instance. Fig. 3(A) gives the flow-
chart for recording the temperature immediately when the signal
is changed and it is indicated as Method A. The basic idea is quite
simple: the incoming value is compared to the latest recorded
value and if the difference is less than the threshold h, the incoming
value and time will not be recorded. The threshold h for tempera-
ture here is set to 1 �C which is the same as the recording accuracy.
The result of Method A for the temperature recording is shown in
Fig. 3(C) and its details from 6.7 h to 6.8 h are shown in Fig. 3(D) in
the red circles. It is obvious that recording with Method A for the
temperature not only keeps the signal undistorted but also has a
significant reduction of the signal length.

The details of Method A in Fig. 3(D) suggests that some mea-
surement disturbance occurs during the change of the temperature
and it greatly increases the recording signal length using Method A
in such cases. To further reduce the recording length, we proposed
Method B which records the value after the signal is changed for p
times. The flowchart of Method B is shown in Fig. 3(B). An obvious
difference from Method A is that when the difference between the
incoming value and the latest recorded value is larger than the
threshold h, the incoming value and time will not be recorded
immediately. Instead, it will be first written to a buffer. When
the difference between the incoming value and the latest recorded
value is consecutively larger than the threshold h for p times, the
value in the buffer is then recorded.

The threshold h for the temperature using Method B is also set
to 1 �C which is the same as that in Method A. And p is 3 here,
which means if the difference between the following 3 incoming
values and the latest recorded value are always larger than the
1 �C, the first incoming value will be recorded. The result of
Method B for the temperature recording is shown in Fig. 3(C) and
its details from 6.7 h to 6.8 h are shown in Fig. 3(D) in the black
crosses. Although the recorded signal with Method B shows a little
difference from the original signal, it reduces the signal length a lot
compared to that with Method A. Besides, the real temperature
alteration point might be closer to the recorded signal with
Method B rather than the original signal because of the measure-
ment disturbance.

We quantitatively compare the recorded signals using different
methods with the original signal as shown in Table 2. Three meth-
ods are compared here: Methods A and B, and the traditional fixed
recording frequency method which records temperature value
once every minute. According to the requirement of the signal
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Table 2
Comparing the recorded temperature signals using different methods with the
original temperature signal.

Signal length Signal distortion (RMSE/�C)

Original signal 25,752 0
Fixed recording (1 min) 601 0.1092
Method A 142 0
Method B 22 0.0540
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recording, two essential indicators are used: the signal length
indicates the required storage memory and the signal distortion
stands for the ability to keep the original signal. The signal distor-
tion is calculated as the root mean square error (RMSE) between
the recorded signal and the original signal. As seen in Table 2,
the signal length of one-minute recording method is 601, and the
signal distortion is 0.1092 �C. However, the signal length using
Method B is only 22 with a decreasing signal distortion of 0.054 �C.

The SOC, the charging voltage and the charging current are sim-
ilarly recorded using Method B with p = 3 as shown in Fig. 4. The
indicators of the signals with the one-minute recording method
and Method B are listed in Table 3. The signal length of the SOC
recording with Method B is longer than that of one-minute record-
ing method, because the threshold h here is set to 0.1% SOC. As a
result, the distortion is much smaller compared to the
one-minute recording method. Regarding the charging voltage
and current, thresholds here are 1 mV and 0.1 A respectively. The
indicators of the recorded signals using Method B are all far better
than that using one-minute recording method.

4. Recording frequency optimization for dynamic signals

4.1. Finding the most dynamic period

As we mentioned in Section 2, the recording frequency for the
current and voltages during dynamic charging/discharging should
be optimized. And we also explained that if the recording fre-
quency is optimized for the current, we could use the same record-
ing frequency for the voltages. Finally, Fig. 1(B) suggested that if
the recording frequency is high enough to keep the signal undis-
torted in the most dynamic period, the whole signal will not be dis-
torted. Hence, the very thing need to do for dynamic signals in data
loggers is to optimize the recording frequency of the current during
the most dynamic period.

Before we may implement the recording frequency optimiza-
tion, the most dynamic period of the current in Fig. 2(C) during
the first phase need to be examined. As no definition has been
introduced to quantitatively measure the signal dynamic, one usu-
ally subjectively considers a signal to be dynamic according to his
observation. As a result, it would be ambiguous to find the most
dynamic period of the current. Nevertheless, the amplitude and
frequency can always be used to describe the signal dynamic: a
signal with a higher amplitude at a higher frequency is obviously
more dynamic.
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Fourier transformation looks a promising candidate to solve the
issue mentioned above because the method is expert in the signal
frequency analysis with the corresponding amplitudes. However,
Table 3
Comparing the fixed recording method and Method B with different signals.

Origina

SOC Length 26,706
Distortion (RMSE/%) 0

Charging voltage Length 104,29
Distortion (RMSE/mV) 0
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this method is unable to exhibit the information about time. As a
result, the most dynamic period cannot be found with the Fourier
transformation. Considering the information about time, short-
time Fourier transform or DWT is a feasible choice. Here, we use
DWT to examine the most dynamic period as DWT is one of the
most powerful time-frequency-transformations because of the
varied time-frequency window compared to the short-time Fourier
transform. Kim et al. [27] presents a thorough application for a Li-
ion cell based on the DWT. They suggested the order 3 Daubechies
wavelet (dB3) as the mother wavelet, and the decomposition level
was 5.

Hence, we use Matlab� wavelet toolbox to do the DWT using
dB3 and 5 levels for our data in Fig. 2(C) during the first phase.
The DWT absolute coefficients are displayed in Fig. 5(A), and the
figure reads as follows: the horizontal axis indicates the time;
the vertical axis represents the decomposition level, where the
low levels represent high frequency component of the signal and
the high levels represent the low frequency part; the values indi-
cated by the pink color map can be considered as the signal ampli-
tudes at the corresponding time and frequency. A larger amplitude
at a lower level means the signal at that time can be expected to be
more dynamic.

Because the most dynamic period should be a ‘‘period”, we set
the period Tp = 60 s. Thereafter, we calculate the mean signal
amplitudes in the period Tp at Levels 1 and 2 every one second to
determine the most dynamic period from the time interval
2313 s to 9471 s which covers the dynamic period in the first
phase. Every mean signal amplitude from the time interval
2313 s to 9471 s at each level may be expressed as Eq. (2)

AkðjÞ ¼
XTp �fmax

i¼1

Lkði=fmax þ jþ 2312Þ=ðTp � fmaxÞ; j ¼ 1;2;3 . . .7100

ð2Þ
where Ak(j) is the mean signal amplitude at time j + 2312 s, and
Lk(i/fmax + j + 2312) is the absolute coefficient at time
i/fmax + j + 2312 s and Level k. As mentioned before, the data logger
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was set to the maximum recording frequency fmax = 4 Hz for the
current.

The results are shown in Fig. 5(B) and (C). As marked by the red
dots, the maximum values of the mean signal amplitudes locate at
the time 3165 s and 3167 s respectively for Levels 1 and 2. It means
the mean signal amplitude from 3165 s to 3225 s is the maximum
at Level 1 and the mean signal amplitude from 3167 s to 3227 s is
the maximum at Level 2. Because a larger mean signal amplitude at
low levels can be expected to be a more dynamic period, we can
say that the most dynamic period is around 3165 s to 3225 s.

From the engineering point of view, signal dynamics is usually
measured using signal derivative. For the signal sequence of the
current, the derivative can be calculated as Eq. (3)

dIðtÞ ¼ ðIðt þ DtÞ � IðtÞÞ=Dt ¼ fmaxðIðt þ 1=fmaxÞ � IðtÞÞ ð3Þ
The mean absolute derivative for every one second in the time

window Tp is calculated,

dIðjÞ ¼
XTp �fmax

i¼1

jdIði=fmax þ jþ 2312Þj=ðTp � fmaxÞ; j ¼ 1;2;3 . . .7100

ð4Þ

where dIðjÞ is the mean absolute derivative at time j + 2312 s, and dI
(i/fmax + j + 2312) is the derivative at time i/fmax + j + 2312 s. The
most dynamic period appears when dIðjÞ reaches the maximum
value. The mean absolute derivative during the time interval 2313
–9471 s is displayed in Fig. 6. As indicated by the red dot, the max-
imum value of the mean absolute derivative locates at the time
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Fig. 6. The mean absolute derivation during the time interval 2313–9471 s.
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Fig. 7. (A) The most dynamic period of the current from 3165 to 3225
3165 s, which means the period 3165 –3225 s can be considered
as the most dynamic period.

As the result suggests, the most dynamic period from the mean
absolute derivative method is the same as that from the DWT
method. Besides, the correlation between dI and A1 is 0.9788, so
we may say dI and A1 are similar. Because the mean absolute
derivative method has less computation effort, it can be used for
on-line determination of the most dynamic period for the current.
4.2. Recording frequency optimization

The most dynamic period of the current achieved in Section 4.1
is shown in Fig. 7(A). As the figure shows, the current swings
swiftly between 0 and 125 A in this minute. To analyze the current
frequency and amplitude, FFT is implemented. Because the direct
current (DC) component of the current is not important, and also
because FFT of the DC component has a large amplitude at zero fre-
quency which will make the amplitudes of the other frequencies
insignificant, we directly ignore the DC component in the following
analysis. The signal length in the time domain is 241, so we set the
signal length in the frequency domain to be 256. Doing so can
speed up the computation of the FFT when the signal length in
the time domain is not an exact power of 2. As the maximum
recording frequency for the current is fmax = 4 Hz, the analyzed
maximum FFT frequency is half of fmax. The FFT result is shown
in Fig. 7(B). As the figure shows, the amplitude is set to 0 at f = 0
because the DC component is subtracted. The analyzed maximum
FFT frequency is 2 Hz, and the plotted FFT frequency length is 128
which is a half of the signal length in the frequency domain.

The amplitude of the FFT signal generally declines with the fre-
quency, which manifests that the current mainly consists of low
frequency components. Besides, the amplitude is significantly
small when the signal frequency is larger than 1.2 Hz, which indi-
cates the maximum recording frequency fmax = 4 Hz is ample for
the current recording.

Four characterized frequencies are investigated to determine
which frequency is suitable for the current storage. As demon-
strated in Fig. 7(B), the four characterized frequencies are
f1 = 0.5 Hz, f2 = 0.68 Hz, f3 = 1 Hz, and f4 = 1.2 Hz respectively.
According to the sampling theorem, the recording frequencies are
fs1 = 1 Hz, fs2 = 1.36 Hz, fs3 = 2 Hz, and fs4 = 2.4 Hz correspondingly.
3200 3210 3220
t (s)
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s and (B) FFT analysis of the most dynamic period of the current.



Table 4
Comparison the current and mean voltage with four recording frequencies with the
original signals.

Signal
length

Current distortion
(RMSE/A)

Mean voltage
distortion (RMSE/mV)

Original signal (4Hz) 28,701 0 0
Recording at 1 Hz 7183 7.85 11.5
Recording at 1.36 Hz 9768 5.90 8.6
Recording at 2 Hz 14,365 4.02 5.8
Recording at 2.4 Hz 17,238 3.39 4.8
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Because the recording frequencies fs1 = 1 Hz and fs3 = 2 Hz are
the common engineering choices, the corresponding characterized
frequencies f1 = 0.5 Hz and f3 = 1 Hz are naturally to be investi-
gated. Regarding the characterized frequencies f2 = 0.68 Hz and
f4 = 1.2 Hz, they are determined when the amplitudes are always
less than the thresholds (500 and 300 in Fig. 7(B) respectively) with
the further increasing frequencies.

Data storage at the above recording frequencies implies that
higher frequency signal components are not considered any more.
For example, the recording frequency fs1 = 1 Hz will discard signal
components with the frequencies higher than f1 = 0.5 Hz. Obvi-
ously, for the recording frequency fs1 = 1 Hz, a lot of the signal com-
ponents are discarded, because the signal with the frequencies
higher than f1 = 0.5 Hz still have considerable amplitudes. There-
fore, we may expect that large signal distortion is inevitable with
the recording frequency fs1 = 1 Hz in this case.

Comparison between the current signals with four recording
frequencies and the original current with the maximum recording
frequency fmax = 4 Hz is shown in Fig. 8. The current with solid blue
curve in Fig. 8 is recorded at 4 Hz and is considered as the original
signal. The current with the dashed red curve in Fig. 8(A) is
recorded at 1 Hz. As we expected, signal distortion is clearly
observed especially during the time intervals 3176–3184 s,
3197–3202 s and 3205–3208 s. By increasing the recording fre-
quency to 1.36 Hz, as shown in the dashed green curve in Fig. 8
Fig. 8. Comparison between the current signals with four recording frequencies
and the original current. Recording at (A) 1 Hz (B) 1.36 Hz (C) 2 Hz and (D) 2.4 Hz.
(B), the distortion decreases a lot because the amplitudes of the
signal components from f1 to f2 are considerable. However, with
the recording frequency of 1.36 Hz, signal distortion is still obvious
during the time interval 3197–3202 s and 3205–3208 s.

By increasing the recording frequency to 2 Hz, as shown in the
dashed black curve in Fig. 8(C), signal distortion is no longer signif-
icant. However, as shown in the dashed magenta curve in Fig. 8(D),
further increasing the recording frequency to 2.4 Hz seems no help
to improve the signal quality as the amplitudes of the signal com-
ponents from f3 to f4 are relatively small.

We again use the signal length to indicate the required storage
memory and RMSE to measure the signal distortion. To examine
the overall dynamic current signal, we use the dynamic current
in Fig. 2(C) during the first phase instead of the most dynamic per-
iod we found. The indicator results are shown in Table 4. The signal
length recorded at 1 Hz is the least, but the current distortion is the
most with RMSE of 7.85A. By increasing the recording frequency,
the signal length increases, but the current distortion decreases.
4.3. Discussion

It is difficult to tell whether the current distortion with an RMSE
of 7.85 A or 3.39 A is qualified for the current recording. Hence, we
further investigate the mean voltage distortion in Table 4. The
measurement accuracy for the cell voltage is commonly demanded
at 5 mV in engineering and 1 mV in experiments [28,29]. As a
result, we can see that recording at 1 Hz is not qualified even we
set the accuracy to 10 mV for the cell voltage recording. Recording
at 1.36 Hz is acceptable when the recording accuracy is not impor-
tant. And if we want the accuracy of the recorded cell voltage to be
as high as the measurement accuracy in engineering, we need to
increase the recording frequency to at least 2 Hz in the working
condition of the development EV.

To further examine the reliability of the data at the recording
frequency of 2 Hz compared to the original signals which were
recorded at 4 Hz, we use the SOC estimation which is one of the
most concerned issues in BMS to evaluate the data. Three typical
SOC estimation methods are commonly used for on-line applica-
tion: the OCV method, the ampere hour method and EKF based
estimations [30]. The OCV method requires the battery to be rested
for some time (several hours especially when the battery is at low
temperatures [31]). Therefore, the flexible recording frequency
approach for stationary signals is used. The measured voltage by
this method is almost the same as the original voltage, because
we set the threshold for the voltage to be 1 mV in this method.
Hence, it will not reduce the accuracy of the SOC estimation by
the OCV method.

Regarding SOC estimation using the ampere hour method, cur-
rents recording at 2 Hz and 4 Hz (the original current) are com-
pared. Because the ampere hour method uses the current
integration, the only thing we need to do is to show the difference
between the current integration values using different recording
frequencies. The current integration values (Ah) and the difference
between the two recording frequencies from the time interval



Fig. 9. Influences on SOC estimation when signals are recorded at the optimal
recording frequency compared to the original signals. (A) Current influence using
ampere hour method and (B) voltage influence using EKF based estimation method.
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2313 s to 9471 s are shown in Fig. 9(A). The blue curve shows the
current integration value with the original current, and the black
dashed curve which represents the current integration value at
2 Hz is almost the same as the blue curve. The difference is also
plotted in the red curve where the maximum difference is about
0.04 Ah only accounting for 0.1% of the total current integration
value. Therefore, current recording at 2 Hz will not influence the
SOC estimation using the ampere hour method compared to the
original current.

The well-known EKF based SOC estimation has its general
discrete-time equations as

xkþ1 ¼ Axkþ1 þ Bxkþ1 þxk

ykþ1 ¼ Cxkþ1 þ Dxkþ1 þ tk
ð5Þ

yk+1 is usually the voltage output and tk is the measurement (or
observation) noise which is assumed to be Gaussian white noise
with zero mean and covariance Rk [32]. Therefore, the voltage is
needed to be observed in the EKF based SOC estimation. When
the recording frequency is reduced from 4 Hz to 2 Hz, the voltage
difference between the two recording frequencies from the time
interval 2313 s to 9471 s exhibits itself as a white noise with the
mean and covariance plotted in Fig. 9(B). The absolute value of
the mean voltage difference is less than 0.2 mV and the covariance
is far less than 0.0001 V2. This means the voltage difference can be
treated as a part of the measurement noise tk. As a consequence, it
will have a negative influence on the convergence behavior but the
accuracy of the SOC estimation would not be influenced.

From the above analysis, we may see that though using the
optimal recording frequency may remove some ‘‘information”
from the original signals, the removed ‘‘information” is however
mostly white noise with no information. As a result, the accuracy
of the SOC estimation is not influenced.
5. Conclusion

Massive data storage in BMS can provide statistical and individ-
ual working conditions of battery packs which support the further
development of EVs. The optimal recording frequency in practice
should be as low as possible on the condition that little signal dis-
tortion happens. In this paper, we present a novel method which
uses a multi-frequency recording technology according to the sig-
nal dynamics.

Firstly, dynamic properties of signals in BMS are discussed.
Temperature, SOC, the current and voltages during stationary
charging are low frequency signals. While the current and voltages
during dynamic charging and discharging are high frequency sig-
nals. The multi-frequency recording technology according to the
signal dynamics is then proposed.

For low frequency signals, a flexible recording frequency
method is applied which only records signals when their values
are changed. Compared to the fixed recording frequency, the
recorded signal length is drastically shortened with the additional
benefit of even lower signal distortion.

For dynamic signals, the most dynamic period is successfully
found using DWT. The mean absolute derivative method also veri-
fies the most dynamic period from the engineering point of view.
The most dynamic period is further analyzed by FFT. By comparing
two recording signal indicators for four different recording frequen-
cies, we conclude that recording at 1 Hz is not qualified during the
dynamic period in our systemdue to the high dynamic performance
of the vehicle. Only by increasing the recording frequency to at least
2 Hz, can the accuracy of the recorded cell voltage achieve the level
the same as the measurement accuracy in engineering.

With the flexible recording frequency approach proposed in this
paper, the signal length is shortened and the signal distortion is
lowered for low frequency signal in BMS. For the dynamic current
and voltage recording, with the procedures proposed in this paper,
the optimal recording frequency can be suggested according to the
working conditions which helps the determination of the recording
frequency during the BMS development. And by comparing the sig-
nals with different recording frequencies, we also concluded that
when the recording frequency is reduced to the optimal frequency
compared the high frequency recorded original signals, the accu-
racy of the SOC estimation is not influenced. This will provide a
solid support for on-line SOC estimation when different recording
frequencies are used.
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