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� An EV charging demand forecasting model with big data technologies is proposed.
� The forecasting model uses historical real-world traffic data and weather data.
� A battery charging starting time is determined by real-world traffic patterns.
� The presented model considers charging demand for electric cars and buses.
� The proposed model considers both slow and fast charging classifications.
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This paper presents a forecasting model to estimate electric vehicle charging demand based on big data
technologies. Most previous studies have not considered real-world traffic distribution data and weather
conditions in predicting the electric vehicle charging demand. In this paper, the historical traffic data and
weather data of South Korea were used to formulate the forecasting model. The forecasting processes
include a cluster analysis to classify traffic patterns, a relational analysis to identify influential factors,
and a decision tree to establish classification criteria. The considered variables in this study were the
charging starting time determined by the real-world traffic patterns and the initial state-of-charge of a
battery. Example case studies for electric vehicle charging demand during weekdays and weekends in
summer and winter were presented to show the different charging load profiles of electric vehicles in
the residential and commercial sites. The presented forecasting model may allow power system engi-
neers to anticipate electric vehicle charging demand based on historical traffic data and weather data.
Therefore, the proposed electric vehicle charging demand model can be the foundation for the research
on the impact of charging electric vehicles on the power system.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Achieving sustainable transportation to address future energy
requirements is now a vital mission of many countries. Electric
vehicles (EVs) play a major role to increase energy security and
to reduce emissions of greenhouse gases and other pollutants [1].
Because of insufficient domestic resources, South Korea relies on
import to meet about 97% of its primary energy consumption [2].
The transportation sector was estimated to account for 17.9% of
the country’s energy consumption in 2015. To overcome the
dependence on oil in this sector, the government has encouraged
the development and usage of EVs and related infrastructure in
the country.

However, if the penetration of these EVs increases in the future,
electricity demand on the power system is also expected to
increase because of charging their batteries from the utility grids.
According to [3], large penetration of EVs may improve the sustain-
ability of transportation but could also introduce various problems.
Aside from the construction of related infrastructure, the main
issue is the increase in electricity demand. Charging the battery
of a single EV can increase household electricity consumption by
50% [3]. Therefore, several studies [4–12] have assessed the impact
of charging EVs on the distribution systems. Various models have
been developed to determine the impact of this additional EV
charging demand to the distribution systems. In [8–12], a proba-
bilistic approach was used to consider the factors in determining
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the EV charging behaviors. In [11], a stochastic model of an EV load
with the beginning battery charging time and the initial state-of-
charge (SOC) of the battery was formulated to analyze its impact
on the distribution system, and a comparative analysis on the four
EV charging scenarios was also carried out. On the other hand, a
recent study [12] concluded that EV charging demand variability
is significant only in scenarios without control on charging EVs,
but not in scenarios with control cases such as tariff controlled
and smart charging scenarios, which reduce the EV charging
demand variability. Although the research work presented in [12]
considered EV model characteristic, mobility pattern, charging pro-
cesses, social and economic variables, it did not consider the real-
world data of weather and traffic volumes which may change the
EV charging demand.

The prediction of EV charging demand is the foundation for the
research on the impact of charging EVs on the power system. A
number of methods have been proposed for the prediction of EV
charging demand [13–25]. Some studies [13,14] have used a math-
ematical model, and other studies [5,6,15–19] have used different
methods such as a Monte Carlo forecasting technique and Support
Vector Machines for predicting the charging demand of EVs. In
[18], a Monte Carlo simulation was used to obtain the spatial-
temporal distribution of EVs considering the uncertainties of bat-
tery characteristics and transportation behaviors. A recent study
[19] also presented different forecasting methods based on histor-
ical charging data; these datasets include charging records from
customer profiles which are prone to privacy invasion issues, and
station measurement records which contain a large volume of data
to require long processing time. On the other hand, this paper pre-
sents an EV charging demand forecasting method which considers
real-world traffic volume data with weather conditions that can
resolve the privacy invasion issues and data processing speed con-
cerns from the previous research works. Different variables were
also considered in determining the electric vehicle charging
demand. In [20], vehicle speed, acceleration, and roadway grade
were used to model EV energy consumption. However, most stud-
ies considered driving patterns for predicting EV charging demand.
The considered variables based on these driving patterns were
starting charging time, charging periods, traveled distance, and
battery SOC. In [21], the driving patterns were based on a national
household travel survey, and studies in [22–24] used real-world
driving patterns. A study [25] that statistically modeled the tempo-
ral availability of EVs charging by the utility grid considered travel
survey data to generate travel patterns with a kernel density esti-
mation method. Compared with the research works that used the
travel survey data, this paper considers the real-world traffic vol-
ume with weather conditions in determining the travel patterns
which may affect the EV charging demand forecasting.

This paper proposes an EV charging demand forecasting method
based on big data including real-world traffic distribution data and
weather data collected in South Korea in every hour. Big data sets
are not only in the form of large files that require long processing
time, but also in the collection of numerous small files [26,27]. In
[27], a short-term load forecasting model was developed based
on big data technologies to handle large quantities of data includ-
ing smart meter and weather data. This study used the big data
technologies proposed in [27] to introduce an EV charging demand
forecasting model with the real-world traffic distribution data and
weather data. Specifically, the proposed forecasting model is based
on the historical traffic distribution data and weather data in South
Korea which were collected, stored and managed by big data tech-
nologies. These data were processed by the following analyses: (i)
A cluster analysis was used to classify historical traffic distribution
data into clusters which were grouped by their similarities. (ii) The
weather data were used to identify influential factors affecting the
traffic patterns using a relational analysis. (iii) A decision tree was
used to establish the relationship between the formed clusters and
the influential factors to develop classification criteria. These pro-
cesses were used to formulate the forecasting model to predict
the EV charging demand using the month and day to be forecasted,
and the number of EVs for input parameters of an EV charging
demand forecasting program.

This paper contributes to the field of the EV charging demand
forecasting by applying and discussing the following technical
aspects:

(i) This study introduces the effects of both the real-world traf-
fic volume data and the weather conditions that change in
predicting the EV charging demand. The considered vari-
ables and characteristics of the presented EV charging
demand forecasting model include the battery charging
starting time determined by the traffic patterns from the
real-world traffic volume data, its initial SOC, the type of
battery, and its charging characteristics with different charg-
ing power classifications. Compared to previous studies
[5,6,11,15], this paper also determines the charging starting
time from the real data. However, this paper determines the
charging starting time not only based on the formed traffic
pattern from the real-world traffic volume but also based
on the effect of the weather on the traffic volume. Compared
with the previous works [5,6,11,15] that considered the
stochastic nature of the charging starting time, this paper
assumes that the charging starting time follows a Gaussian
distribution. This Gaussian distribution is commonly used
as a probability density model because many real-world
phenomena are normally distributed when their samples
are large enough. Therefore, the Gaussian distribution can
effectively describe the stochastic nature of the charging
starting time of electric vehicles.

(ii) In addition, this paper considers not only electric cars but
also electric buses in forecasting the EV charging demand.
This paper considers both slow and fast charging classifica-
tions although previous studies have only considered either
a slow charging classification [5,11,15] or a fast charging
classification [13,14]. The slow charging classification is con-
sidered for electric cars, and the fast charging classification
is considered for electric buses. Furthermore, this paper con-
siders that electric cars are charged either at home or at the
workplace while electric buses are charged either at bus sta-
tions or their respective parking lots which are equipped
with fast chargers. Therefore, the proposed EV charging
demand model can anticipate the EV charging load profiles
in the residential and commercial sites.

The remainder of the paper is organized as follows: Section 2
introduces the technical architecture and methodology of the pro-
posed EV charging demand forecasting model based on big data
technologies. An EV charging demand forecasting model with the
charging demand analysis is presented in Section 3. Example case
studies with simulation results are presented in Section 4 to dis-
cuss the effectiveness of the proposed EV charging demand fore-
casting model. Finally, Section 5 concludes the paper with
summaries and findings.
2. Technical architecture and methodology of an EV charging
demand forecasting model with big data technologies

This study developed an EV charging demand forecasting pro-
gram of which technical design architecture is based on MATLAB
built-in functions. The technical architecture of this program has
four layers including data sources, data storage, data management,
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and data processing as shown in Fig. 1. As depicted in Fig. 1, the
first layer covers the data sources that are stored by a local disk
on computer. These data are collections of tabular text files which
are composed of the historical traffic volume data and weather
data of different roads in South Korea collected in every hour.
The next layer is the data storage which is programed by the data-
store function in MATLAB. This function is used to access the col-
lections of data from the first layer. It can provide data in a
chunk-wise manner for quick and efficient access to the target
data. This function stores the traffic data and weather data of the
specific road. The third layer manages the data stored in the previ-
ous layer. The MapReduce function in MATLAB which has the abil-
ity to perform calculations on large collections of data is used as
the basis of this method. This function has the following three
phases: map phase, intermediate phase, and reduce phase. The
chunk of data enters the map phase which configures these data
for processing. Then, the intermediate data go through the reduce
phase which combines the intermediate results to generate a final
result [28]. This study only used the map function that structures
the stored traffic volume data and weather data into the desired
format for data processing. The intermediate phase and the reduce
phase were not included in this study because only a specific road
was used in case studies for anticipating EV charging demand in
Section 4 so that there were no similar data to be merged. This sim-
plification for a specific road is not because of the forecasting capa-
bility of the proposed EV charging demand model but because of
the limited space in this paper. However, these two phases are
required to be included in forecasting the EV charging demand in
more complex road cases which are out of the scope in this paper.
The row of the data includes the date of datum, and the column of
the data is the time of datum. The data consist of traffic volume,
temperature, humidity, wind speed, and day types. The last layer
processes these data to formulate an EV charging demand forecast-
ing model. This last layer includes the following technologies: a
cluster analysis, a relational analysis, and a decision tree. Similar
to the methodology used in [27], the first step of the data process-
ing is to apply a machine learning technique to identify typical
traffic patterns of historical traffic volume data. The next step is
to find influential factors in order to establish a decision tree to for-
mulate the EV charging demand forecasting model.

2.1. Cluster analysis

The traffic volume consists of different traffic patterns resulted
from various factors such as weather and day types. In this study, a
hierarchical clustering technique was used to classify historical
traffic data into several patterns. Specifically, this study used an
agglomerative hierarchical method [29] which represents a
bottom-up approach. This study initially gathered as many clusters
as samples which were daily traffic volume for a particular route in
South Korea collected in every hour for a year. The most similar
traffic patterns were first merged as initial clusters among these
Fig. 1. Technical architecture of EV charging demand forecasting program with big
data technologies.
samples. To establish their similarities, the pdist function in
MATLAB was used in this study. This function computes the Eucli-
dean distance between pairs of samples in the input matrix p,
which is composed of rowm(1 � n) vectors x1, x2, . . . , xm. The Eucli-
dean distance between the ith and jth observations (i.e., d(x(i, j)) is
defined in [29] as:

d xði; jÞð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

k¼1
xik � xjk
� �2q

: ð1Þ
The cophenetic correlation coefficient, which is the correlation

between the cophenetic distance matrix and the original matrix,
was determined to know how well a hierarchical clustering fitted
the data. If the cophenetic correlation coefficient is closest to 1, it
can be interpreted that the clustering technique is the most accu-
rate. This paper used an average linkage algorithmwhich treats the
distance between two clusters as an average distance between all
pairs of samples where a member of a pair belongs to each cluster
[30].
2.2. Relational analysis

Traffic volume is affected by many factors such as weather and
day types. A grey relational analysis was used to discover the rela-
tionship of these factors to the traffic volume in this study. This
grey relational analysis can determine important factors that have
a significant influence on the traffic volume. The grey relational
analysis generally consists of the following two main steps: The
first step is to calculate the correlation of each point, and the next
step is to calculate the correlation degree of each comparative ser-
ies to the reference series based on an arithmetical mean. However,
data pre-processing is normally required when the unit in one ser-
ies is different from others. The data should be normalized into a
comparable series before proceeding with the aforementioned
two main steps. The original reference series was represented by
x0(k), and the original comparative series was denoted by xi(k).
In this study, the traffic volume was used as the reference series,
and the factors affecting the traffic volume were used for the com-
parative series. After the data pre-processing, the next step is to
calculate the grey relational coefficient (n0i(k)) between two series
by [31]

n0i kð Þ ¼ DminþfDmax
D0i þ fDmax

; ð2Þ

where D0i ¼ jx0ðkÞ � xiðkÞj jj, Dmin ¼ min
i

min
k

jx0ðkÞ � xiðkÞj jj,
Dmax ¼ max

i
max

k
jx0ðkÞ � xiðkÞj jj, and f is an identification coeffi-

cient which satisfies the following condition, f 2 [0, 1]. In this study,
0.5 was used for f because of its adequate distinguishing effect and
stability [31].

After the grey relational coefficient (n0i(k)) was calculated, the
grey relational grade (c0i) can be determined by the average value
of all the grey relational coefficients as follows [31]:

c0i ¼
1
n

Xn

k¼1

n0i kð Þ: ð3Þ

The grey relational grade (c0i) is the level of correlation between
the reference series and the comparative series [31]. In this study,
the grey relational grade was used to indicate the degree of the fac-
tor’s influence on the traffic volume. The closer the grey relational
grade is to 1, the more effect the factor has on the traffic volume.
Although a factor of which grey relational grade was less than
0.6 was considered to have a negligible influence on the traffic vol-
ume, a factor of which grey relational grade was greater than 0.6
was considered as an influential factor on the traffic volume.



Table 1
Recommended charging classification.

Level Classification Charging power (kW)

Level 1 Slow (Home) 3.7
Level 1 Slow (Workplace) 3.7
Level 3 Fast 115
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2.3. Decision tree

To establish the relationship between the formed clusters of
traffic patterns and influential factors, this study used a decision
tree that is a classification method to predict responses to data.
The responses of the decision tree denote the formed clusters of
cars and buses by the cluster analysis, and the data of the decision
tree indicate the influential factors identified by the relational
analysis. This decision tree that consists of nodes (i.e., decisions)
and leaf nodes (i.e., responses) can be generated by repeatedly par-
titioning data set until the terminal node (i.e., stopping criterion)
that only results in one response is reached. To predict such
response, decisions in the tree should be made from the top node
down to a leaf node. In this study, a fitctree function in MATLAB
was used to construct the decision tree [28]. Based on the decision
trees in the Appendices, the data of the influential factors deter-
mine the specific car and bus clusters in which the forecasting
day belongs. Once the clusters are obtained, the EV charging
demand can be estimated by the analysis presented in the proceed-
ing section.

3. EV charging demand forecasting model

3.1. Considered charging factors for an EV charging demand analysis

EV charging demand is usually influenced by various factors
such as EV battery charging characteristics, charging starting time,
and charging power classification. These three factors which have
effects on the charging load profiles of EVs were considered to ana-
lyze the EV charging demand in this study.

3.1.1. EV battery charging characteristics
In order to determine the charging demand of EVs, this study

considered EV battery charging characteristics including vehicle
types, battery technology, battery capacity, and initial battery
SOC before it is charged. In this paper, vehicles were classified by
two types including a car and a bus. A car denotes a private
light-duty vehicle, and a bus represents a commercial heavy-duty
passenger vehicle. The battery capacity may vary by the type and
size of a vehicle. This study assumed that a car used a lithium-
ion battery with a range of 148 km and a capacity of 27 kW h mod-
eled by a Soul EV manufactured by Kia Motors. A bus was assumed
to use a lithium-ion polymer battery which has a capacity of
85.8 kW h and a range of 69.8 km modeled by a Hankuk Fiber E-
Primus bus. These two EV types were selected because they have
been developed and deployed in Korea [32]. According to Korea
Transportation Safety Authority [33], the average daily traveled
mileages of a car and a bus are 32.6 km and 206.9 km respectively.
Based on these average daily mileages, this study assumed that a
car can be charged once a day although a bus should be charged
two or three times a day during the off-peak hours depending on
traffic patterns and bus clusters. This assumption was based on
the fact that the average daily traveled mileage of an electric bus
exceeds its driving range with a single charge per day.

An initial battery SOC before its charging has also an influence
on EV charging demand. This study assumed that the initial battery
SOC of an electric car before its charging was a random variable
with a Gaussian distribution of which the probability density func-
tion (pdf) is defined as [34]:

f ðsÞ ¼ 1
rs

ffiffiffiffiffiffiffi
2p

p e
�ðs�ls Þ2

2r2s ; ð4Þ

where s is an initial battery SOC, ls is an average initial SOC value,
and rs is its standard deviation. The initial SOC of an electric car bat-
tery was assumed to be between 0.2 and 0.8 because of the protect-
ing algorithm of a battery management system to optimize the
battery’s lifetime. Therefore, the initial SOC of a car before its charg-
ing was generated by the random sampling of a Gaussian pdf with
ls = 0.5 and rs = 0.3 [34]. This study also assumed that an electric
bus is immediately charged at bus stations or its parking lots which
are equipped with fast chargers whenever the SOC of its battery
reaches 0.20 to optimize battery’s life expectancy [34].

3.1.2. Charging starting time
This study determined an EV charging starting time based on

the daily transportation behavior from traffic patterns classified
by the cluster analysis. In this study, a battery charging for an elec-
tric car was assumed to begin when an electric car arrived at the
workplace in the daytime or at home in the evening. This study
assumed that an electric bus can be charged at bus stations or its
respective parking lots which are equipped with fast chargers
whenever the SOC of its battery reaches 0.2 during the off-peak
traffic hours. The charging starting time for these vehicles depends
on the traffic pattern observed on each cluster classified by the
cluster analysis. Moreover, for the charging starting time this study
used a random variable of which distribution is a Gaussian pdf for
each EV cluster, which is specifically discussed in Section 3.6.

3.1.3. Charging power classification
The EV charging demand is also related to its charging power

classification which determines the charging speed and charging
power of an EV. There are three charging classifications according
to the Society Automotive Engineers (SAE) Standard J1772 [35].
However, this study only used slow and fast charging power pre-
sented in Table 1 among the three charging classifications. In other
words, an electric car was assumed to be charged by the level 1
charging power (i.e., slow charging) because an electric car can
be charged at home or workplace for a long period of time. On
the other hand, the level 3 charging power (i.e., fast charging)
was considered for an electric bus because of its long daily mileage
and limited charging time. This study also used a battery charging
profile which was based on the simplified piecewise-linear charg-
ing profile model used in [36]. Fig. 2 shows the battery charging
power and the related battery SOC profiles used for an electric
car (i.e., Fig. 2(a)) and an electric bus (i.e., Fig. 2(b)).

3.2. Description of traffic data set

In order to formulate an EV charging demand forecasting model,
this paper used the historical real traffic data of the entire South
Korea collected by the Traffic Monitoring System (TMS) of the Min-
istry of Land, Infrastructure and Transport (MOLIT) [37]. These traf-
fic data include daily traffic volumes and vehicle mileages by
vehicle types collected in the highway, national route, and local
roads of South Korea in every hour. To formulate the proposed
EV charging demand forecasting model, this study used the train-
ing data that consist of the traffic volume and weather data
observed on a national route particularly from Goyang to Paju cap-
tured in every hour from January 1, 2014 to December 31, 2014. In
addition, although the current EV traffic volume is extremely less
than the conventional vehicle traffic volume, this study assumed
that EV traffic patterns will be identical with the real traffic data
of conventional vehicles because EV penetration grows to signifi-



Fig. 2. Battery charging profiles of a Li-ion battery: (a) (Left) Electric car. (b) (Right) Electric bus.

Fig. 4. Bus distribution from Goyang to Paju.
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cant penetration levels in the future. Figs. 3 and 4 respectively
show the traffic volume distribution of conventional cars and buses
in the chosen route from 1/1/2014 to 12/31/2014 obtained by the
first three layers of the technical architecture of the EV charging
demand forecasting program described in Section 2.

3.3. Classification of traffic patterns by a cluster analysis

As shown in Figs. 5(a)–(d) and 6(a)–(c), four clusters of cars and
three clusters of buses were identified from the vehicle distribu-
tion data set by the aforementioned hierarchical clustering algo-
rithm in Section 2.1. Table 2 summarizes the number of days
associated with each cluster for cars and buses. A car cluster 1
(i.e., C1) is composed of event days such as festivals and interna-
tional conferences. A car cluster 2 (i.e., C2) contains weekdays
and most Saturdays. A car cluster 3 (i.e., C3) contains holidays. A
car cluster 4 (i.e., C4) is mostly composed of Sundays. For bus clus-
ters, a bus cluster 1 (i.e., B1) contains most weekends. A bus cluster
2 (i.e., B2) contains most weekdays. A bus cluster 3 (i.e., B3) con-
sists of event days such as international conferences. This cluster
analysis considered the events and international conferences that
happened in the area nearby the chosen route during the studied
period.

3.4. Identification of influential factors using a relational analysis

The influential factors affecting the traffic volume of cars and
buses were determined by the grey relational analysis in Sec-
tion 2.2. Table 3 shows the grey relational grades of factors affect-
ing the traffic volume of cars and buses. Based on the results in
Fig. 3. Car distribution from Goyang to Paju.
Table 3, the maximum temperature, average temperature, average
humidity, and day type are more influential on the traffic volume
of cars than average wind speed. For buses, the maximum temper-
ature, average temperature, average humidity, and average wind
speed have more influential effect on the traffic volume of buses
than day type. Therefore, the maximum temperature, average tem-
perature, average humidity, and day type were used with parame-
ters for the decision tree analysis of cars. On the other hand, the
maximum temperature, average temperature, average humidity,
and average wind speed were used with parameters for the deci-
sion tree analysis of buses.
3.5. Establishment of a decision tree

The influential factors that affected the traffic volume of cars
and buses and that were identified by the relational analysis were
used to establish a decision tree described in Section 2.3. Using a
fitctree function in MATLAB, the decision trees for cars and buses
were established as shown in Figs. 9 and 10 in the Appendices.
Specific car clusters (i.e., C1 � C4) and bus clusters (i.e., B1 � B3)
can be determined with these decision trees if forecasted temper-
ature, forecasted humidity, forecasted wind speed, and day type
are given.
3.6. Determination of a charging starting time

Once the car and bus clusters were obtained from the decision
trees with the forecasted weather data and day types, a charging
starting time should be determined. To estimate the charging start-
ing time of an EV battery, this study used the traffic patterns of the



Fig. 5. Clustering results of cars from 1/1/2014 to 12/31/2014. (a) Car cluster 1. (b) Car cluster 2. (c) Car cluster 3. (d) Car cluster 4.

Fig. 6. Clustering results of buses from 1/1/2014 to 12/31/2014. (a) Bus cluster 1. (b) Bus cluster 2. (c) Bus cluster 3.
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Table 2
Number of days associated with car and bus clusters.

Day type C1 C2 C3 C4 B1 B2 B3

Monday 2 48 1 1 4 48 0
Tuesday 1 49 1 1 1 50 1
Wednesday 2 48 0 3 3 49 1
Thursday 2 47 0 3 2 49 1
Friday 3 47 1 1 2 50 0
Saturday 0 41 0 11 39 13 0
Sunday 0 0 3 49 47 5 0

Table 3
Grey relational grades of factors affecting the traffic pattern of cars and buses.

MT AT AH WS DT

Cars 0.7585 0.7505 0.7512 0.5738 0.6264
Buses 0.6429 0.6525 0.7041 0.6819 0.5541

MT = maximum temperature, AT = average temperature, AH = average humidity, WS = average wind speed, DT = day type.

Fig. 7. Flowchart of the proposed EV charging demand forecasting model.
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formed clusters acquired from the cluster analysis. Because this
charging starting time of an EV battery is also a random variable
discussed in Section 3.1.2, the Gaussian pdf of the charging starting
time for each cluster was developed based on the traffic patterns
observed in each cluster.

For car clusters, an electric car was assumed to be charged once
a day because the average daily mileage of an electric car does not
exceed its driving range with a single charge. In this study, an elec-
tric car can only be charged at the workplace in the daytime or at
home in the night. To develop the Gaussian pdf of the charging
starting time, the mean charging starting time and its standard
deviation were determined by the traffic patterns formed in each
cluster. There are two possible charging periods in these car clus-
ters. The first charging period may occur in the daytime at the
workplace. Because the morning highest peak traffic volume
occurred in the morning rush hour and the minimum traffic vol-
ume in the daytime happened at the end of morning rush hour,
the midpoint time of these two traffic volumes can be considered
as the mean charging starting time in the daytime. The second
charging period can happen at home in the evening. Because the
evening highest peak traffic occurred in the evening rush hour,
the time in which the traffic volume decreased by the half of the
evening highest peak traffic volume was considered as the mean
charging starting time in the evening. The typical charging starting
time interval was used to determine the standard deviation that is
defined by the half of its starting time interval [38]. Specifically,
this study assumed that the typical charging starting time interval
for electric cars is 2 h in the daytime because a typical electric car
is charged once its user arrives at the workplace. On the other
hand, the typical charging starting time interval for electric cars
in the evening was assumed to be 4 h because an electric car user
may not go to home immediately after he or she left from the office
depending on his or her personal schedule.

3.6.1. Car cluster 1 (see Fig. 5(a))
This cluster is composed of event days such as festivals and

international conferences. It was assumed that all cars in this clus-
ter should be charged at home in the evening because high traffic
volume was observed in the daytime. The Gaussian pdf of a charg-
ing starting time in the car cluster 1 (i.e., fC1(t)) is given as:

f C1ðtÞ ¼
1

rC1

ffiffiffiffiffiffiffi
2p

p e
� t�lC1ð Þ2

2r2
C1 ; ð5Þ

where t is a charging starting time, lC1 = 23 is the time in which the
half of the evening highest peak traffic volume was observed, and
rC1 = 2 was used because the evening standard deviation for electric
cars is the half of the evening charging starting time interval (i.e.,
4 h) as aforementioned.

3.6.2. Car cluster 2 (see Fig. 5(b))
This cluster contains weekdays and most Saturdays. As shown

in Fig. 5(b), two peak traffic volumes (i.e., the morning peak
(between 8:00 and 9:00) and the evening peak (19:00)) were
observed in this cluster. Because this cluster mainly consists of
weekdays, it can be interpreted that there are two charging periods



Fig. 8. Forecasted EV charging demand in the residential and commercial sites with the proposed EV charging demand model: (a) Winter/weekend/residential. (b) Winter/
weekend/commercial. (c) Winter/weekday/residential. (d) Winter/weekday/commercial. (e) Summer/weekday/residential. (f) Summer/weekday/commercial. (g) Summer/
weekend (also holiday)/residential. (h) Summer/weekend (also holiday)/commercial.
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in this cluster. Similar to [11], this study assumed that 50% of elec-
tric cars are charged at the workplace in the daytime and that the
other electric cars are charged at home in the evening. Based on
this assumption, a charging starting time in the car cluster 2 is
given by a Gaussian pdf (i.e., fC2(t)) as follows:
f C2ðtÞ ¼
0:5

rC2a

ffiffiffiffiffiffiffi
2p

p e
� t�lC2að Þ2

2r2
C2a þ 0:5

rC2b

ffiffiffiffiffiffiffi
2p

p e
� t�lC2bð Þ2

2r2
C2b ; ð6Þ

where lC2a = 11 is the time in which the midpoint of the highest
and minimum traffic volumes in the daytime was observed,
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lC2b = 22 is the time in which the half of the evening highest peak
traffic volume was observed, and rC2a = 1 and rC2b = 2 were used
because the standard deviations are the half of the charging starting
time intervals (i.e., 2 h in the daytime and 4 h in the evening) sim-
ilar to the car cluster 1 case.

3.6.3. Car cluster 3 (see Fig. 5(c))
This cluster is composed of holidays. Because high traffic vol-

ume was observed in the daytime as shown in Fig. 5(c), all cars
were assumed to be charged at home in the evening. The Gaussian
pdf of a charging starting time in the car cluster 3 (i.e., fC3(t)) can be
described as follows:

f C3ðtÞ ¼
1

rC3

ffiffiffiffiffiffiffi
2p

p e
� t�lC3ð Þ2

2r2
C3 ; ð7Þ

where lC3 = 22 is the time in which traffic volume decreased by the
half of the evening highest peak traffic volume, and rC3 = 2 was
used because of the same analysis with the car cluster 1.

3.6.4. Car cluster 4 (see Fig. 5(d))
This cluster mostly contains weekends. Because high traffic vol-

ume was observed in the daytime, cars were assumed to be
charged at home in the evening. The Gaussian pdf of a charging
starting time in the car cluster 4 (i.e., fC4(t)) is described as:

f C4ðtÞ ¼
1

rC4

ffiffiffiffiffiffiffi
2p

p e
� t�lC4ð Þ2

2r2
C4 ; ð8Þ

where lC4 = 22 is the time in which the half of the evening highest
traffic volume was observed, and rC4 = 2 was used according to the
same analysis with the car cluster 1.

3.6.5. Bus cluster 1 (see Fig. 6(a))
For bus clusters, all electric buses were assumed to be charged

at their bus stations or respective parking lots as aforementioned.
Because single charge per day cannot meet the average daily trav-
eled mileages of an electric bus, this electric bus will be charged
two or three times a day depending on the traffic patterns of each
cluster. Hence, this study assumed that there are three charging
periods in these clusters: in the daytime, in the evening, and in
the non-operational hours (1:00–4:00). The mean charging starting
time in these charging periods was determined by the midpoint
between the times occurred in the highest peak and the minimum
traffic volumes of each charging period. Similar to car clusters, the
typical charging starting time interval for electric buses was used
to determine the standard deviation of the charging starting time
that is equal to the half of its interval [38]. Specifically, this study
assumed that the charging starting time interval for bus clusters
in the daytime and in the evening is 2 h because electric buses with
various routes may be charged at different bus stations whenever
their SOC reaches 0.2. In addition, the charging starting time inter-
val for bus clusters is 1 h in the non-operational hours because
electric buses are immediately charged at their parking lots at
the end of the operation.

The bus cluster 1 is mainly composed of weekends. It was
assumed that this bus cluster 1 has only two charging periods
including evening and non-operational hours because there was
high traffic volume in the daytime as show in Fig. 6(a). The Gaus-
sian pdf of a charging starting time (i.e., t) in this bus cluster 1
(i.e., fB1(t)) is described as follows:

f B1ðtÞ ¼
1

rB1a

ffiffiffiffiffiffiffi
2p

p e
� t�lB1að Þ2

2r2
B1a þ 1

rB1b

ffiffiffiffiffiffiffi
2p

p e
� t�lB1bð Þ2

2r2
B1b ; ð9Þ

where lB1a = 2.5 was used for the non-operational hours because
the midpoint of the highest and minimum traffic volumes in the
non-operational hours was observed at this time, lB1b = 21 was
determined because the midpoint of the evening highest and min-
imum traffic volumes was observed at this time, rB1a = 0.5 and
rB1b = 1 were used because the standard deviations for bus clusters
are equivalent to the half of the charging starting time intervals (i.e.,
1 h in the non-operational hours and 2 h in the evening) as afore-
mentioned. Contrary to Eq. (6), the numerators of each term in
the right side of Eq. (9) should be one because an electric bus should
be charged two or three times a day depending on the traffic pat-
terns of each cluster as aforementioned.

3.6.6. Bus cluster 2 (see Fig. 6(b))
This cluster mostly contains weekdays. It was assumed that

there were three charging periods in this cluster because two peak
traffic volumes were observed as shown in Fig. 6(b). Therefore, the
Gaussian pdf of a charging starting time in this bus cluster 2 (i.e.,
fB2(t)) is given by:

f B2ðtÞ ¼
1

rB2a

ffiffiffiffiffiffiffi
2p

p e
� t�lB2að Þ2

2r2
B2a þ 1

rB2b

ffiffiffiffiffiffiffi
2p

p e
� t�lB2bð Þ2

2r2
B2b

þ 1
rB2c

ffiffiffiffiffiffiffi
2p

p e
� t�lB2cð Þ2

2r2
B2c ; ð10Þ

where lB2a = 2.5 was used for the non-operational hours because
the midpoint of the non-operational highest and minimum traffic
volumes was observed at this time, lB2b = 11 was used in the day-
time charging starting time because the midpoint of the morning
highest and minimum traffic volumes was observed at this time,
and lB2c = 21.5 was used in the evening because the midpoint of
the evening highest and minimum traffic volumes was observed
at this time. In addition, rB2a = 0.5 and rB2b = rB2c = 1 were used
because the standard deviations for bus clusters are equal to the
half of their respective charging starting time intervals (i.e., 1 h in
the non-operational hours, and 2 h in the daytime and in the eve-
ning) as aforementioned. The numerators of each term in the right
side of Eq. (10) should also be one as stated in the bus cluster 1.

3.6.7. Bus cluster 3 (see Fig. 6(c))
This is a special cluster which is composed of special event days

such as international conferences. Because two peak traffic vol-
umes were observed as shown in Fig. 6(c), it was assumed that
there were three charging periods in this cluster. Therefore, the
Gaussian pdf of a starting charging time in the bus cluster 3 (i.e.,
fB3(t)) is described as:

f B3ðtÞ ¼
1

rB3a

ffiffiffiffiffiffiffi
2p

p e
� t�lB3að Þ2

2r2
B3a þ 1

rB3b

ffiffiffiffiffiffiffi
2p

p e
� t�lB3bð Þ2

2r2
B3b

þ 1
rB3c

ffiffiffiffiffiffiffi
2p

p e
� t�lB3cð Þ2

2r2
B3c ð11Þ

where lB3a = 2.5, lB3b = 11, lB3c = 21.5, rB3a = 0.5, and rB3b = rB3c = 1
were used according to the same analysis with the bus cluster 2.

3.7. Development of an EV charging demand forecasting model

This section describes the overall development procedures of
the EV charging demand forecasting model in this study. Once each
car or bus cluster was identified from the decision trees as dis-
cussed in Sections 3.3–3.5, the charging starting time can be
obtained by the random sampling of pdfs for each cluster as
described in Section 3.6. The initial SOC before charging cars was
also obtained by the random sampling as explained in Section 3.1.1.
However, the initial SOC before charging buses was fixed to 0.20 as
discussed in Section 3.1.1. In order to calculate the EV charging
demand with computer software, this study used discretized
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charging power demand (Pd) and its related discretized SOC (SOCd)
from the charging profile as shown in Fig. 2. Once the initial SOC
was obtained by the random sampling, the corresponding charging
demand profile with the initial SOC can be plotted to a 24-h coor-
dinate to determine single EV charging demand along a day.
Although the single EV charging demand profile does not start
from zero but from the determined initial SOC, it has the same
shape of the battery charging profile as shown in Fig. 2. To obtain
multiple EVs’ charging demand, the aforementioned procedures
were repeated until the total EV charging data were attained. The
total charging demand of n number of EVs at any time t can be
determined by:

Pt tð Þ ¼
Xn

i¼1

PdðtÞ ð12Þ

where Pt(t) is the total EV charging demand at time t, n is the total
number of EVs, and Pd(t) is the charging demand power of an EV at
time t. The charging demand profile of multiple EVs follows the
Central Limit Theorem that a distribution approaches a normal dis-
tribution as the number of samples increases regardless of an actual
distribution. As a result, the charging demand profile of multiple
EVs shows a normal distribution because of the random variables
including the charging starting time and the initial battery SOC.

Fig. 7 shows the flowchart of the proposed EV charging demand
forecasting program. The inputs of the forecasting model include
the month and day to be forecasted, and the total number of EVs.
Once these inputs are passed to the program, the weather data
and day types of the forecasting day can be found from the stored
historical data by the computer program. Based on these weather
data and day types with the decision trees, the corresponding car
and bus clusters can be determined. Then, the charging starting
time can be obtained according to the classified traffic patterns
with the random sampling generated by the Gaussian pdfs of each
cluster. The initial SOC of electric cars can also be determined by
the random sampling as aforementioned in Section 3.1.1. The EV
charging demand in the residential sites is calculated based on
the charging demand of electric cars which are charged at home
in the evening. On the other hand, the EV charging demand in
the commercial sites is the sum of the charging demand of electric
cars to be charged at the workplace in the daytime and the charg-
ing demand of electric buses. The outputs of this forecasting model
include the charging load profiles in the residential and commer-
cial sites.
4. Case studies and discussions

This section provides case studies with simulation results of the
EV charging demand forecasting model presented in Section 3. The
corresponding weather data from 1/1/2015 to 12/31/2015 were
used for testing data. As listed in Table 4, four sample forecasted
days for case studies were chosen to anticipate the EV charging
demand of the weekdays and weekends in winter and summer.
Once the forecasting temperature, forecasting humidity, wind
speed and day types were identified, the car and bus clusters of
the traffic volume was determined based on the decision trees in
Figs. 9 and 10 in the Appendices. For example, the weather on
Table 4
Classification results.

Date Day type Car cluster Bus cluster

1/4/2015 Weekend C4 B2
1/22/2015 Weekday C2 B2
8/6/2015 Weekday C2 B1
8/15/2015 Weekend (also holiday) C3 B1
1/4/2015, Sunday, was the maximum temperature of 3 �C, an aver-
age temperature of �2 �C, an average humidity of 51%, and a wind
speed of 9 km/h. According to the decision trees in Figs. 9 and 10
provided in the Appendices, car and bus clusters in this date belong
to the car cluster 4 (i.e., C4) and the bus cluster 2 (i.e., B2) respec-
tively. Based on the same analysis with the decision trees in Figs. 9
and 10, the corresponding clusters of cars and buses in those four
forecasted day examples are listed in Table 4.

In the case study examples, 1 million EVs were assumed in the
simulation because they are the EV deployment goal in South
Korea by 2020 [32]. Among the 20.12 million registered vehicles
in South Korea in 2014, cars account for 78.3% of the total regis-
tered vehicles while the proportion of buses in the total registered
vehicles are only 4.7% [39]. These statistical proportions of cars and
buses in the conventional vehicles in 2014 were used for anticipat-
ing the charging demand of electric cars and buses in this simula-
tion study. Based on these simulation conditions with the EV
charging demand forecasting model discussed in Section 3, the
EV charging demand was calculated in these four example days
in winter and summer. In addition, this study assumed the follow-
ing conditions: (1) electric cars will be charged once a day either at
the workplace in the daytime or at home in the night with slow
charging speed. On the other hand, electric buses will be charged
two or three times a day either at their bus stations or at their
respective parking lots with fast charging speed; (2) the charging
starting time of electric cars and electric buses follows a Gaussian
distribution based on the formed traffic patterns; and (3) the initial
SOC of electric cars before its charging also follows a Gaussian dis-
tribution while the initial SOC of electric buses before its charging
is 0.20.

Fig. 8 shows the charging demand load profiles of these fore-
casted days in winter and summer. As shown in Fig. 8, the charging
demand was divided into two areas including residential and com-
mercial sites. The charging demand for electric cars charged at
home was considered as EV charging loads in the residential sites.
On the other hand, the charging demand for electric cars charged at
the workplace and for electric buses charged at their respective
parking lots or bus stations accounted for EV charging loads in
the commercial sites.

Fig. 8(a) and (b) shows the forecasted EV charging demand on a
weekend in winter in the residential and commercial sites respec-
tively. Fig. 8(a) shows high EV charging demand during the night
because all cars were charged at home due to high traffic volume
of electric cars on the road in the daytime on a weekend as
depicted in Fig. 5(d). Fig. 8(b) shows only the charging demand of
electric buses because no electric cars were charged at the work-
place on a weekend. As depicted in Fig. 8(b), three charging load
profiles were observed, and high charging demand was observed
during the non-operational hours because there was only 1 h
charging starting time interval during this period.

Fig. 8(c) and (d) shows the EV charging demand on a weekday
in winter. Compared with Fig. 8(a), the charging load profile in
the residential sites shown in Fig. 8(c) shows lower charging
demand because only half of electric cars were charged at home
during the night on a weekday as discussed in Section 3.6. As
depicted in Fig. 8(d), three charging profiles were observed in the
commercial sites. The maximum charging demand in Fig. 8(d)
was also observed during the non-operational hours. The charging
demand in the daytime on a weekday in winter is higher than that
in the evening because the charging demand in the daytime is the
sum of the other half of electric cars charged at the workplace and
electric buses charged at bus stations in the daytime.

Fig. 8(e) and (f) illustrates the EV charging load profiles on a
weekday in summer in the residential and commercial sites
respectively. Compared with Fig. 8(a), lower charging demand dur-
ing the night was also observed in the residential sites as shown in



Fig. 9. Decision tree for cars.

Fig. 10. Decision tree for buses.
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Fig. 8(e) because only 50% of electric cars were charged at home on
a weekday as aforementioned. As depicted in Fig. 8(f), three charg-
ing load profiles were observed in the commercial sites. The com-
mercial EV charging demand in the daytime on a weekday in
summer as shown in Fig. 8(f) accounts for the other half of electric
cars charged at the workplace. The charging load profiles in the
evening and in the non-operational hours in Fig. 8(f) account for
the charging demand of electric buses charged at their bus stations
or respective parking lots. As shown in Fig. 8(f), the maximum
charging demand in the commercial sites resulted from charging
buses during the non-operational hours.

Fig. 8(g) and (h) shows the EV charging demand on a weekend
in summer in the residential and commercial sites respectively. It
is worthy of notice that this fourth case study date (i.e.,
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8/15/2015) is a Korean holiday as well as a weekend. As shown in
Fig. 8(g), the charging load profile in the residential areas shows
high charging demand during the night because all cars were
charged at home in the holiday that is also a weekend. Two charg-
ing demand profiles in Fig. 8(h) were observed in the commercial
sites due to high traffic volume in the daytime as shown in Fig. 6
(a). The maximum EV charging demand in the commercial sites
during the non-operational hours was observed as shown in
Fig. 8(h) because there was only 1 h charging starting time interval.
5. Conclusions

This paper proposed an EV charging demand forecasting model
with big data technologies. The historical real-world traffic distri-
bution and weather condition data processed by big data technolo-
gies were considered in the EV charging demand forecasting
model. These big data handling processes include a cluster analysis
to classify traffic patterns on each cluster, a relational analysis to
identify influential factors affecting the traffic patterns, and a deci-
sion tree to establish classification criteria. The example case stud-
ies to anticipate EV charging demand in the residential and
commercial sites on weekdays and weekends in winter and sum-
mer seasons were presented in Section 4 using the proposed EV
charging demand forecasting model. High EV charging demand in
the residential sites was observed during the night on weekends
because all cars were charged at home on weekends as discussed
in Section 3.6. In the commercial sites, high charging demand
was observed during the non-operational hours due to its lesser
charging starting time interval in this period than that in the other
charging periods. The proposed EV charging demand forecasting
model in this paper may help on the research on the impact of
EV charging demand on the power system. In addition, the pro-
posed EV charging demand forecasting model may allow utility
operators to plan the operation and generation profiles in the
future power systems by predicting the EV charging demand in
the residential and commercial sites. The presented EV charging
demand model can also contribute to deciding investment and
operation plans for adaptive EV charging infrastructures depending
on EV charging demand.
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