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� Stochastic TEA is essential for communicating the riskiness of technologies.
� The breakeven price distribution is informative and easy to communicate.
� We developed two methods to quantify breakeven price distributions in TEA.
� The methods are demonstrated using a pyrolysis biofuel pathway.
� Stochastic TEA can be used to evaluate any emerging technologies.
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Techno-economic analysis (TEA) is a well-established modeling process for evaluating the economic fea-
sibility of emerging technologies. Most previous TEA studies focused on creating reliable cost estimates
but returned deterministic net present values (NPV) and deterministic breakeven prices which cannot
convey the considerable uncertainties embedded in important techno-economic variables. This study
employs stochastic techno-economic analysis in which Monte Carlo simulation is incorporated into
traditional TEA. The distributions of NPV and breakeven price are obtained. A case of cellulosic biofuel
production from fast pyrolysis and hydroprocessing pathway is used to illustrate the method of modeling
stochastic TEA and quantifying the breakeven price distribution. The input uncertainties are translated to
outputs so that the probability density distribution of both NPV and breakeven price are derived. Two
methods, a mathematical method and a programming method, are developed to quantify breakeven price
distribution in a way that can consider future price trend and uncertainty. Two scenarios are analyzed,
one assuming constant real future output prices, and the other assuming that future prices follow an
increasing trend with stochastic disturbances. It is demonstrated that the breakeven price distributions
derived using the developed methods are consistent with the corresponding NPV distributions regarding
the percentile value and the probability of gain/loss. The results demonstrate how breakeven price
distributions communicate risks and uncertainties more effectively than NPV distributions. The stochas-
tic TEA and the methods of creating breakeven price distribution can be applied to evaluating other
technologies.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Techno-economic analysis (TEA) is a well-established modeling
process, in which benefit-cost analysis (BCA) is usually used in
conjunction with a fairly complete specification of the technology
being evaluated. TEA has been used in evaluating emerging tech-
nologies that have not been commercialized but might achieve
commercialization in the near future, such as advanced biofuel
production pathways, solar photovoltaics, wind energy technolo-
gies, and carbon capture and storage technologies [1–4]. Most
previous TEA studies focused on creating reliable cost estimates
for a given technology. They used deterministic analysis that pro-
vides point estimates and in no way communicates the uncertainty
surrounding the point estimate. However, risk and uncertainty are
a major impediment to investments in new technologies. Failing to
communicate the levels of uncertainty does not meet the needs of
potential investors or policymakers. Thus, it is important to
address uncertainties in techno-economic parameters and
translate them into communicable results. The major objective of
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Nomenclature

Abbreviations
BCA benefit-cost analysis
CDD cumulative density distribution
FPH fast pyrolysis and hydroprocessing
GBM geometric Brownian motion
HTL hydrothermal liquefaction
IRR internal rate of return
MSP minimum selling price
NPV net present value
ROI return on investment
TEA techno-economic analysis

Greek abbreviations
a coefficient in the regression of diesel prices on gasoline

prices
b intercept in the regression of diesel prices on gasoline

prices
et disturbance term in geometric Brownian motion price

projection ($/GGE)

Symbols
B j
t benefit or cash inflow from j in period t ($)

Ct cost or cash outflow in period t ($)
DEPt depreciation in period t ($)
Et equity payment in period t ($)
g expected real gasoline growth rate (%)
INTt interest payment in period t ($)
LSt land salvage value in period t ($)
NWCt net working capital in period t ($)
OCt operating cost in period t ($)
P j
t price of j in period t ($)

PMTt loan repayment in period t ($)
Q j

t production of j in period t ($)
Rtax income tax rate (%)
Tt net tax payment in period t ($)
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this paper is to illustrate how this uncertainty analysis can be
accomplished, and, in particular, how obtaining distributions of
breakeven prices provides much richer information than previous
approaches.

The most commonly used profitability indicators for TEA are net
present value (NPV), benefit-cost ratio, internal rate of return (IRR),
and return on investment (ROI). Deterministic TEA also calculates
breakeven price, which is also known as minimum selling price
(MSP). Breakeven price is generally defined as the constant real
fuel price through the entire production period that makes NPV
equal to zero. NPV is the most popular profitability indicator. How-
ever, for emerging technologies, it is often the case that the
expected NPV is negative, and the distribution is sometimes hard
for investors to interpret. Also, differences in NPV across different
technology pathways are difficult to compare because of differ-
ences in scales, capital costs, etc. The IRR function often generates
errors in stochastic analysis. Errors can and do occur when most of
the flows are positive or negative, which is frequent with evalua-
tion of new technologies not yet commercially viable [5]. In con-
trast, the breakeven price distribution does not suffer from any
of these problems. It is a unit price that is independent of scale.
A higher breakeven price implies a higher unit cost and a lower
possibility of profitability.

The Pacific Northwest National Laboratory (PNNL), the National
Renewable Energy Laboratory (NREL) and others conducted a large
number of TEA studies on advanced biofuel production pathways
[1,6–12]. Although these studies used the breakeven price to eval-
uate projects, they mainly used deterministic analysis, which could
not address the risks and uncertainties associated with a project.
The deterministic breakeven price is the price for which there is
about 50 percent probability of earning more or less than the stip-
ulated rate of return. Nevertheless, it is unlikely that investors
would provide financing to a project with a 50 percent probability
of loss. Risks and uncertainties associated with new technologies
are both technical and economic. Common technical uncertainties
are conversion efficiency, capital cost, and costs of key inputs. Eco-
nomic uncertainties originate from any future prices, but in the
energy arena, future fossil fuel prices are key. To account for both
technical and economic uncertainties, several studies developed
stochastic TEA by introducing Monte Carlo simulation into
deterministic TEA. For example, Bittner et al. [13] modeled aviation
biofuel production from corn residues through fast pyrolysis. The
study considered the main uncertainty parameters, such as capital
investment, feedstock price, fuel yield, and oil price. They derived
NPV distributions from Monte Carlo simulations. The study com-
pared two government policies, a reverse auction and a capital
subsidy, based on NPV distributions. Furthermore, Bauer and Hul-
teberg [14] developed a probability distribution for production cost
by using Monte Carlo simulation when evaluating a new thermo-
chemical production process for isobutanol. Apostolakou et al.
[15] derived ROI distributions with respect to plant production
capacity based on a discounted cash flow rate of return tool.
Beyond NPV and cost distributions, some efforts were made on
examining the responsiveness of breakeven prices to uncertainty.
For example, Valle et al. [16] showed how MSPs respond to
�30% uncertainty in fixed capital costs. However, only a few
papers attempted to extend this analysis to include a distribution
of breakeven prices. Zhu et al. [17] selected a sample size of 100
experimental cases to derive a cumulative density breakeven price
distribution when evaluating a woody biomass hydrothermal liq-
uefaction (HTL) upgrading plant. Our work suggests this sample
size is too small to characterize the breakeven price distribution
accurately. Abubakar et al. [18] went a step further and developed
a biodiesel probability density breakeven price distribution, but
they did not present the detailed methodology. The breakeven
price is usually calculated using numerical analysis tools such as
the goal-seek function in Excel. A challenge in deriving breakeven
price distribution is that standard Monte Carlo simulation cannot
be performed directly in conjunction with a numerical analysis
tool. Two recent studies from Yao et al. [19] and Zhao et al. [20]
developed a Macro programming method in which numerical tools
were introduced in Monte Carlo simulation through programming,
but future price trend and uncertainties were not considered in the
breakeven price distributions in either study.

In our experience, a distribution of breakeven prices communi-
cates better to decision makers the potential viability and risks of a
potential project than the NPV distribution. Decision makers can
compare it with their beliefs about future fossil fuel prices. It
allows comparison among different pathways and production sce-
narios. Also, the cumulative distributions can be used to perform
stochastic dominance analysis. The percentile of a breakeven price
in its distribution indicates the probability for private investors of
achieving their stipulated rate of return. It offers policymakers
guidance on the level and type of price supports that might be
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needed. Therefore, it is important to develop a practical method for
deriving breakeven price distribution to fill this gap in the
literature.

This study illustrates two methodologies (mathematical and
programming methods) for estimating breakeven price distribu-
tions based on a case study of converting corn residues to biofuels
using the fast pyrolysis and hydroprocessing (FPH) pathway evalu-
ated by Zhao et al. [20]. Section 2 describes the background of the
FPH biofuel production case and outlines the stochastic TEA
approach. Section 3 demonstrates two methodologies of deriving
breakeven price distributions. In the mathematical approach, it is
possible to derive equations so that the breakeven price can actu-
ally be captured in standard Monte Carlo simulation using the
@Risk add-in in Microsoft Excel [21,22]. Two scenarios with differ-
ent future price projections are explained in Section 3.2. In the case
that the base model is too complicated due to multiple correlations
and tax provisions, the preferred approach to estimating a breake-
ven price distribution is through using a Macro programming
method as explained in Section 3.3. Section 4 provides conclusions
and describes applications of breakeven price distribution analysis
in policy research.

2. Stochastic techno-economic analysis case study

2.1. Case study background

In this paper, a case of cellulosic biofuel production from a fast
pyrolysis and hydroprocessing (FPH) pathway is used to illustrate
the method of stochastic TEA and the breakeven price distribution.
Fast pyrolysis is a thermal process that converts biomass into bio-
oil, char, and non-condensable gas. The bio-oil produced from
pyrolysis is upgraded through hydroprocessing which includes
hydrotreating and hydrocracking to be blended with fossil fuels.
Fig. 1 presents a schematic depicting the FPH production pathway.
Fig. 1. Production flow chart of cellulosic biofuel producti

Fig. 2. Net cash flow chart of cellulosic biofuel production
This study employed the data of FPH pathway mainly from Brown
et al. [1] and Zhao et al. [20] with minor modifications. That study
employed a financial analysis based TEA to calculate net present
values and breakeven prices. They modeled a 22-year project life
plant with a size of 2000 dry metric tons of feedstock per day. Corn
residue was used as a feedstock to produce two drop-in fuels, bio-
gasoline, and biodiesel. Electricity was also produced as a co-
product from the combustion of non-condensable gas and char.
The base year was 2011. A 10-year loan was assumed with 50%
debt fraction and 7.5% nominal interest rate. The inflation rate
and the real discount rate used were 2.5% and 10%, respectively.
Table A.1 presents a summary of technical and economic assump-
tions. Fig. 2 shows the flow chart of net cash flows in the cellulosic
biofuel production using the FPH pathway.

The previous studies incorporated uncertainty for five techno-
economic variables: future fuel prices, capital cost, conversion tech-
nology yield, hydrogen cost, and feedstock cost. Pert distributions
were quantified for the capital cost, hydrogen cost and feedstock
cost, and a Beta general distribution was benchmarked for conver-
sion technology yield. Geometric Brownianmotion (GBM)was used
to project gasoline prices. The formula is shown in Eq. (1):

Pt ¼ Pt�1 � eg þ et ð1Þ
where Pt is the price at period t, Pt�1 is the price in the previous per-
iod, e is the base of the natural logarithm, and g is the expected
growth rate. et was the random component at period t, and e0
was zero since the initial price was certain at $2.87/gal. A 0.27% real
gasoline price growth rate from U.S. Energy Information Adminis-
tration (EIA) was used [23]. In the original study, the price change
random components followed a normal distribution with a mean
of zero and a standard deviation calculated from historical prices.
In this study, instead of using a normal distribution for et , a compa-
rable Pert distribution is employed since the Pert distribution is
bounded so that it returns less extreme values in simulations. A Pert
on using fast pyrolysis and hydroprocessing pathway.

using the fast pyrolysis and hydroprocessing pathway.



Table 1
Parameters used in uncertain variable distributions.

Variables Min Mode Max Parameter1 Parameter2 Distribution Mean Source

Capital investment ($MM) 318 374 486 – – Pert 383.33 [20]
Corn residue cost ($/MT) 55 83 110 – – Pert 82.83 [13]
Hydrogen cost ($/kg) 2.25 3.25 4.25 – – Pert 3.25 [13]
Conversion technology yield(GGE/MT) 57.9 80.4 90.5 10.4 5.2 Beta general 79.60 [20]
et in future prices ($/GGE) �0.52 0 0.52 – – Pert 0 Calculated
Alpha (a)a 1.177 Calculated
Beta (b)a �0.302 Calculated

a Diesel prices were regressed on gasoline price using 20-year historical data. Alpha is the coefficient and Beta is the intercept. Gasoline prices explained 99% of variances in
diesel prices.
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distribution requires parameters for the min, mode, and max values
to define the distribution. A zero mode is used, and the 5th and 95th
percentile values of the original normal distribution are used as the
min and max in the Pert distribution. Diesel prices are projected
based on historical price relationship between diesel and gasoline
with linear regression. The present study highlights the approach
of modeling stochastic TEA and quantifying NPV and breakeven
price distributions, but it does not address the method of quantify-
ing input uncertainties and correlations. Hence, most of the param-
eters employed in the uncertain variable distributions are adapted
from and documented in the previous studies (Table 1). The mean
values of uncertain distributions are used for the deterministic
analysis.

2.2. Net present value distribution

It is important to note the difference between the deterministic
analysis and the stochastic analysis. The deterministic analysis
results in point estimations based on expected values, while the
stochastic analysis involves randomly sampling all the uncertain
probability distributions repeatedly. In other words, for each itera-
tion of the Monte Carlo simulation, an NPV is calculated and stored
based on randomly drawn input values. Hence, the NPV distribu-
tion translates the inherent uncertainty in all the input variables
into NPV uncertainty.

3. Breakeven price distribution

In the present study, a chief objective is to develop the method
of quantifying breakeven price distributions. In regard to calculat-
ing a deterministic breakeven price, the common method is to
employ numerical analysis tools such as the goal-seek tool in
Microsoft Excel [22,24], to drive NPV to zero by changing a target
price. However, for quantifying the breakeven price distribution
in stochastic analysis, the numerical analysis tools cannot be used
directly in the Monte Carlo simulation. In this section, two meth-
ods, a mathematical method and a programming method, are
developed to quantify breakeven price distributions. Section 3.1
demonstrates the basic math of deriving breakeven price. A
detailed analysis of the mathematical method is discussed using
the FPH case as an example in Section 3.2. Section 3.3 explains
the programming method.

3.1. Breakeven price

To approach breakeven price, we started with the NPV, which is
the sum of the present value of each period:

NPV ¼
Xn
t¼0

Bt � Ctð Þ
1þ rð Þt ð2Þ

where t denotes period; n denotes the total number of periods or
plant life; r denotes the real discount rate; Bt and Ct represent the
total benefit and the total cost in period t, respectively.
Rearranging (2):

NPV ¼
Xn

t¼0

Bt

1þ rð Þt �
Xn
t¼0

Ct

1þ rð Þt ð3Þ

Bt here is the total benefit in period t of an output targeted and for
which the breakeven price would be derived; Ct is the total net cost,
which represents the net cash flow without Bt in period t. Bt can be
broken down into Qt and Pt as the production volume and price of
the output in period t. Thus,

NPV ¼
Xn

t¼0

Qt � Pt

1þ rð Þt �
Xn

t¼0

Ct

1þ rð Þt ð4Þ

Breakeven price is usually defined as the price (constant in real
terms over the life of the project) that drives NPV to zero. In that
sense, it is akin to the internal rate of return. When using this def-
inition of breakeven price, future output price uncertainty would
not be included in the breakeven price distribution. In this case,
assuming Pt is not correlated with Ct , by setting NPV to zero, the
breakeven price Pt can be calculated.

Pt ¼
Pn

t¼0
Ct

1þrð ÞtPn
t¼0

Qt
1þrð Þt

ð5Þ

According to Eq. (5), the breakeven price is the ratio of net pre-
sent cost (NPC) over the net present production (NPP), namely, the
sum of the discounted costs divided by the sum of the discounted
production volumes. It may seem strange to discount quantities,
but that is necessary to get the correct timing of production match-
ing the timing of costs. Monte Carlo simulation can be performed
based on Eq. (5). In each iteration, uncertain input variables are
sampled from input distributions, based on which a Ct and a Qt

are derived, and a breakeven price is calculated accordingly. The
breakeven price distribution is the probability density distribution
of all the breakeven prices calculated in the Monte Carlo simula-
tion. Note that Eq. (5) assumes that Pt is not correlated with Ct . If
Pt were correlated with Ct , further work would be necessary to fac-
tor out the output price, as is demonstrated using the FPH example
in Section 3.2. Another assumption in deriving Eq. (5) is that future
prices are constant in real terms. In other words, the breakeven
price distribution resulting from this simple construct is the con-
stant real price with no correlations in the model and no other
complications such as income taxes and co-products. More gener-
alized cases are described in the following section.

3.2. Breakeven price distribution using the mathematical method

In the FPH pathway case, since Pt is correlated with Ct through
income tax, and gasoline price is correlated with diesel price, addi-
tional derivations are necessary to derive breakeven gasoline price.
Two scenarios contingent on future fuel price assumptions are ana-
lyzed. Scenario 1 assumes future fuel prices are constant in real
terms. Hence, the breakeven price distribution in scenario 1 does
not consider the uncertainty or trend in future prices. In scenario
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2, future fuel prices are assumed to follow an unstable trajectory,
the GBM fuel price projection, so that the future price trend and
uncertainty become a part of the breakeven initial price
distribution.

3.2.1. Scenario 1, constant future prices
For the scenario 1 analysis, the equations in Section 3.1 need

some modifications. The total benefit in period t; Bt , and the total
cost in period t; Ct , are in the form of net cash flows, starting with
the net cash inflow in period t,
NPV ¼
Xn
t¼0

Pgas
t � ½ðQgas

t þ a� Qdiesel
t Þ � ð1� RtaxÞ� þ ðb� Qdiesel

t þ Belec
t � OCt � NWCtÞ � ð1� RtaxÞ þ ðDEPt þ INTtÞ � Rtax � ðEt � LSt þ PMTtÞ

ð1þ rÞt
ð15Þ
Bt ¼ Bgas
t þ Bdiesel

t þ Belec
t ð6Þ

where Bgas
t ; Bdiesel

t and Belec
t represent the revenue from gasoline, die-

sel, and electricity in period t, respectively. The capital investment
including land investment, total project investment and the initial
working capital, are financed by a combination of equity and debt.
Denote Et as the equity investment in period t; LSt as the land sal-
vage value in period t; PMTt as the loan repayment in period t. Also
denote NWCt as the net working capital in period t; OCt as the oper-
ating cost in period t and Tt as tax payment in period t. Thus, the
cost in period t; Ct , is:

Ct ¼ Et � LSt þ NWCt þ PMTt þ OCt þ Tt ð7Þ
The net benefit in period t is:

Bt � Ct ¼ Bgas
t þ Bdiesel

t þ Belec
t � Et � LSt þ NWCt þ PMTt þ OCt þ Ttð Þ

ð8Þ
Denote Pgas

t as gasoline price in period t and Qgas
t as gasoline pro-

duction in period t. The gasoline price is the target for breakeven
price calculation. Thus,

Bgas
t ¼ Pgas

t � Qgas
t ð9Þ

Denote Pdiesel
t as diesel price in period t and Qdiesel

t as diesel pro-
duction in period t. Thus,

Bdiesel
t ¼ Pdiesel

t � Qdiesel
t ð10Þ

As stated above, diesel prices are assumed to be linearly corre-
lated with gasoline prices, denoting a as the coefficient and b as the
intercept. Thus,

Pdiesel
t ¼ aPgas

t þ b ð11Þ
Substituting (11) into (10)

Bdiesel
t ¼ aPgas

t þ b
� �� Qdiesel

t ð12Þ
NPV ¼
Xn
t¼0

Pgas
0 etg þPt

i¼0eieðt�iÞg� �� Qgas
t þ a� Qdiesel

t

� �
� 1� Rtaxð Þ

h i

ð1þ rÞt

þ
Xn
t¼0

b� Qdiesel
t þ Belec

t � OCt � NWCt

� �
� 1� Rtaxð Þ þ DEPt þ INð

ð1þ rÞt
Denote DEPt as depreciation in period t; INTt as interest pay-
ment in period t, and Rtax as tax rate. Thus, the tax payment, Tt , is

Tt ¼ ðBgas
t þ Bdiesel

t þ Belec
t � OCt � NWCt � DEPt � INTtÞ � Rtax ð13Þ

Substituting (9), (12) and (13) into (8), rearranging,

Bt � Ct ¼ Pgas
t � ðQgas

t þ a� Qdiesel
t Þ � ð1� RtaxÞ

h i

þ ðb� Qdiesel
t þ Belec

t � OCt � NWCtÞ � ð1� RtaxÞ
þ ðDEPt þ INTtÞ � Rtax � ðEt � LSt þ PMTtÞ ð14Þ

Substituting (14) into (2),
Setting NPV to zero and rearranging, the following equation for
breakeven price is derived,

Pgas
t ¼

Pn
t¼0

�ðb�Qdiesel
t þBelect �OCt�NWCt Þ�ð1�RtaxÞ�ðDEPtþINTt Þ�RtaxþðEt�LStþPMTt Þ½ �

ð1þrÞt
Pn

t¼0
ðQgas

t þa�Qdiesel
t Þ�ð1�RtaxÞ½ �

ð1þrÞt
ð16Þ

Monte Carlo simulation with 10,000 iterations was conducted
based on Eq. (16). In each iteration, a value of capital cost sampled
from its distribution was returned based on which
Et; LSt ; PMTt ; INTt and DEPt were calculated for each period. Sim-
ilarly, uncertain input distributions for conversion technology
yield, hydrogen cost and feedstock cost were sampled, and

Qgas
t ; Qdiesel

t ; Belec
t ; OCt , and WCt were calculated in each iteration.

As a result, a breakeven gasoline price, Pgas
t , was calculated based

on the sampled and calculated values. Thus, the breakeven price
distribution was generated as the probability density distribution
of the 10,000 breakeven prices calculated in the simulation. The
breakeven price distribution result is shown in Fig. 3A. As
expected, the mean of the distribution is around the deterministic
mean of $3.11/GGE. The standard deviation is $0.23/GGE. In this
case, the probability of loss/gain is the probability that the break-
even price is lower/higher than the market price.
3.2.2. Scenario 2, increasing future prices with uncertainty
In the case that future prices follow an unstable trajectory, as

long as future prices are projected based on the initial price, the
breakeven initial price can be derived. In this scenario, it is assumed
that future prices followed the GBM price projection described in
Eq. (1). From GBM price projection, Eq. (1), Pgas

t can be generalized:

Pgas
t ¼ Pgas

0 etg þ
Xt

i¼0

eieðt�iÞg ð17Þ

Substituting (17) into (15),

By setting NPV to zero and rearranging, Pgas
0 can be derived.
TtÞ � Rtax � Et � LSt þ PMTtð Þ
ð18Þ



Pgas
0 ¼

Xn

t¼0

�
Pt

i¼0
eieðt�iÞg� Qgas

t þa�Qdiesel
tð Þ� 1�Rtaxð Þ� b�Qdiesel

t þBelect �OCt�NWCtð Þ�ð1�RtaxÞ�ðDEPtþINTtÞ�RtaxþðEt�LStþPMTtÞ
� �

ð1þrÞtXn

t¼0

etg� Qgas
t þa�Qdiesel

tð Þ� 1�Rtaxð Þ½ �
ð1þrÞt

ð19Þ
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Therefore, the initial gasoline price, Pgas
0 , was simulated based

on Eq. (19) through Monte Carlo simulation, and the breakeven ini-
tial price distribution was derived (presented in Fig. 3B). The mean
of the distribution is $3.04/GGE, and the standard deviation is
$0.52/GGE. Fig. 3C shows the comparison of the breakeven initial
price distribution with and without future price trend and uncer-
tainty. The breakeven initial price distribution shifts to left due
to the increasing future price trend, and the distribution becomes
wider because of future price uncertainty. Fig. 4A and B present
the cumulative density distribution (CDD) of NPV and breakeven
initial price, respectively. A point on the CDDs represents the prob-
ability that NPV or breakeven price is smaller than a given value of
NPV or breakeven initial price. The breakeven initial price CDD was
inverted since a higher breakeven price corresponds to a lower
NPV. It is discovered that NPV distributions and breakeven price
distributions are consistent in terms of percentile value and prob-
ability of gain/loss. In other words, for a given NPV in Monte Carlo
simulation, there is a corresponding breakeven initial price driving
the NPV to zero. Moreover, the probability found in CDDs at the
given NPV and its corresponding breakeven initial price are equal.
This is verified by overlapping the NPV CDD and breakeven initial
price CDD Fig. 4C.

3.3. Breakeven price distribution using the programming method

As shown in Section 3.2, the mathematics involved in deriving a
mathematical solution can become quite involved in complex
Fig. 3. Breakeven price distributions. (A) The breakeven price distribution with no futur
uncertainty. The curves in figure A and B are fitted distributions. The comparison of the
cases. An alternative way to obtain a breakeven price distribution
is to rely on a programming methodology. The followings are steps
make use of both the @Risk add-in [21] and Microsoft Excel Macro
Programming [22], but note that any software or programming
that can perform Monte Carlo simulation and numerical analysis
can be used:

1. Define uncertain variable distributions and correlations. The
programming method uses the same set of uncertain variables
as in the mathematical method.

2. Run a Monte Carlo simulation with a designated number of iter-
ations. 10,000 iterations were used in this study as a rule of
thumb ensuring convergence for small models, but the number
of iterations may depend on the number of uncertain variables
and sampling method [25].

3. Save all simulated values for uncertain variables returned in
each iteration. Uncertainties in future prices can be modeled
by treating random components as members of simulation
inputs. The randomly generated input values of each iteration
are treated as one set of simulated values. 10,000 sets of simu-
lated data are generated.

4. Enter all sets of randomly simulated values in the model. Each
set of simulated values generates one corresponding breakeven
price by applying the Microsoft Excel goal-seek function [24].
Thus, 10,000 breakeven prices are calculated.

5. Probability and cumulative density distributions can be gener-
ated based on the calculated samples of breakeven prices. The
e price trend and uncertainty; (B) the breakeven price with future price trend and
fitted distributions is presented in figure (C).



Fig. 5. Sensitivity analysis of breakeven price. (A) The regression coefficient of
breakeven price on uncertain variables; (B) breakeven price sensitivity on input
percentile of uncertain variables.

Fig. 4. Cumulative density distribution of NPV and breakeven initial price, based on all the uncertain variables. (A) The NPV Cumulative density distribution; (B) the
breakeven initial price cumulative density distribution. (C) The overlap of figure (A and B). The shaded area in figure (C) represents 25th to 75th percentile area.
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resulting breakeven price distributions can be fit to the closest
standard distribution using common statistic methods. The
@Risk software can perform this distribution fitting. The break-
even price at each percentile can be obtained.

The analyses show that programming and mathematical proce-
dure yield the same breakeven price distributions when the num-
ber of iterations is large enough. The programming method can be
a way to examine the accuracy of breakeven price distributions
generated by mathematical methods. The programming method
to calculate the breakeven price is practical and understandable.
When it comes to a complex system with multiple categories of
inputs and outputs, the mathematical transformation of equations
become complicated to derive. The complexity of correlations and
byproducts may require intensive work to derive mathematical
breakeven price expressions. Thus, in the case that mathematical
deductions become too complicated to derive breakeven price
from NPV, the programming method would be a preferred method.

On the other hand, the mathematical method is more conve-
nient for conducting sensitivity analysis, and the programming
method may be time-consuming due to the massive calculations.
In general, a mathematical method is a preferred option for simple
cases, and programming method is universal and is a better fit in
complicated cases. The bottom line is that we have described
methods that will generate breakeven price distributions for any
analysis project case being evaluated.

3.4. Sensitivity analysis

The methods developed in previous sections permit analysis of
measuring how sensitive is breakeven price with regard to impor-
tant uncertain variables. Besides the boundary sensitivity analysis,
we can perform statistic sensitivity analysis by applying simulation
data. Fig. 5A presents the standard deviation scaled regression
coefficients. They are obtained by first regressing breakeven fuel
price on key uncertain variables including capital investment, fuel
yield, hydrogen price and feedstock cost, assuming constant future
fuel prices, and then scale the coefficients by their standard devia-
tions. It indicates how the standard deviation of breakeven price
changes as one standard deviation increase in an uncertain vari-
able. The number of observations equals the total number of itera-
tions in simulations. Fig. 5B shows the sensitivity result of the
mean breakeven price on input percentile of uncertain variables.
Thus, both figures demonstrate how the breakeven fuel price
changes as the sampled input value changes, and the results are
consistent. The breakeven fuel price is most sensitive to corn resi-
due price, followed by fuel yield and hydrogen price. Capital cost is



Table A.1
Technical and economic assumptions.

Pathway Fast Pyrolysis Hydroprocessing

Cost Basis 2011
Feedstock Corn stover
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relatively less influential than the other three variables. From this
analysis, one can see that government policies that aim at reducing
risks in technology conversion yield and reducing feedstock cost
will help lower the breakeven price as well as enhance the proba-
bility of the FPH project.
Operating Hours/Year 7900
Project Life 22 years
Construction Time 2 years
Capital Cost % Spent in Land 1.3%
Capital Cost % Spent in Year 1 8%
Capital Cost % Spent in Year 2 60%
Capital Cost % Spent in Year 3 32%
Startup Period 0.5 years
Startup Production Rate 50%
Startup Variable Expense 75%
Startup Fixed Expense 100%
Feedstock Use (Mg/day) 2000
H2 Use (tons/day) 48.6
Fixed Operating Cost ($MM) 14.23
Other Variable Cost ($MM) 1.75
Blending Rate (Gasoline % wt. of fuel) 50%
Electricity Generation (MW) 39.72
Electricity Usage (MW) 11.49
Electricity Price ($/kW h) 0.057
Inflation Rate 2.5%
Real Discount Rate 10%
Equity Fraction 50%
Loan Term 10-Year
Interest Ratea 7.5%
Income Tax Rateb 16.9%
Depreciation Term 7-Year
Depreciation Methodc,d Double declining balance
Working Capital Factor of Operation 40%
Sources [1,13,20]

a Mean values are presented for the costs and productions that have uncertain
variable involved.

b Interest is capitalized during construction.
c Tax benefits or losses are applied in the year they occur.
d Loan interest and depreciation are deducted from taxes.
4. Conclusions

Breakeven price is an advantageous economic indicator com-
pared with net present value (NPV) or internal rate of return
(IRR) when evaluating emerging technologies with techno-
economic analysis (TEA). This study highlighted the stochastic
techno-economic analysis in which Monte Carlo simulation was
incorporated into traditional TEA. A case of cellulosic biofuel pro-
duction from fast pyrolysis and hydroprocessing (FPH) pathway
was used to illustrate the methodologies for quantifying the break-
even price distributions. A mathematical method and a program-
ming method were developed to quantify breakeven price
distribution in a way that can consider future price trend and
uncertainty. It demonstrated that the breakeven price distributions
derived using methods developed were coherent with the corre-
sponding NPV distributions regarding the percentile value and
the probability of gain/loss. The statistic sensitivity analysis by
applying simulation data also provided useful implications. The
stochastic TEA and the methods of creating breakeven price distri-
bution can be applied to evaluating other technologies.

Our experience suggests that breakeven price distributions
communicate to investors and decision makers much more effec-
tively than the typical NPV or IRR distributions, and users of the
analysis can easily understand it. The distributions can be also used
to conduct stochastic dominance analysis to compare projects from
the perspective of risk-averse investors [20]. In addition, breakeven
price distributions are useful for conducting policy analysis. One
illustration is examining the impact of length of offtake contracts
on likely bid price in a reverse auction. A reverse auction is one
in which the lowest qualified bidder for an offtake contract wins
the contract. Reverse auctions are one policy option being consid-
ered for government procurement of advanced biofuels. In prior
work, it is found that the expected bid level decreases with the
length of the contract because shorter contracts leave the bidder
open to market price uncertainties for a longer period [13]. The
study could have been considerably simplified if breakeven price
distributions were applied. Furthermore, the scope of breakeven
distribution can be broaden to any uncertain factors for the pur-
pose of analysis, such as deriving a breakeven carbon tax distribu-
tion in a carbon mitigation policy analysis and breakeven land use
change emission distribution in a life-cycle analysis.

For all these reasons, we believe that including breakeven price
distributions in stochastic techno-economic analysis provides a
very valuable addition. In this paper, we have explained how this
metric can be included in the analysis.
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