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a b s t r a c t

In recent years there has been an increased interest in the link between financial markets
and oil markets, including the question of whether financial market information helps to
forecast the real price of oil in physical markets. An obvious advantage of financial data
in forecasting monthly oil prices is their availability in real time on a daily or weekly ba-
sis. We investigate the predictive content of these data usingmixed-frequencymodels. We
show that, among a range of alternative high-frequency predictors, cumulative changes in
US crude oil inventories in particular produce substantial and statistically significant real-
time improvements in forecast accuracy. The preferred MIDAS model reduces the MSPE
by as much as 28% compared with the no-change forecast and has a statistically signifi-
cant directional accuracy as high as 73%. This MIDAS forecast is also more accurate than a
mixed-frequency real-time VAR forecast, but is not systematically more accurate than the
corresponding forecast based on monthly inventories. We conclude that there is not typ-
ically much lost by ignoring high-frequency financial data in forecasting the monthly real
price of oil.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The substantial variation in the real price of oil since
2003 has renewed interest in the question as to how
monthly and quarterly oil prices should be forecast.1 The
links between financial markets and the price of oil have
received particular attention, including the question of
whether financial market information may help forecast
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gan, 309 Lorch Hall, 611 Tappan Street, Ann Arbor, MI 48104, United
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E-mail address: lkilian@umich.edu (L. Kilian).
1 A comprehensive review of this body of literature is provided in

the handbook chapter by Alquist, Kilian, and Vigfusson (2013). More
recent contributions not covered in that review include the studies
by Baumeister and Kilian (2014a, 2014b), Baumeister, Kilian, and Zhou
(2013), Bernard, Khalaf, Kichian, and Yelou (2013), and Chen (2014).
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the price of oil in physical markets (e.g., Fattouh, Kilian, &
Mahadeva, 2013). One obvious advantage of financial data
is their availability in real time at high frequency. Finan-
cial data are not subject to revisions and are available on
a daily or weekly basis. Existing forecasting models for the
monthly real price of oil do not take advantage of these rich
data sets. Our objective is to assess whether there is use-
ful predictive information for the real price of oil in high-
frequency data from financial and energy markets, and to
identify which predictors are most useful. The incorpora-
tion of daily or weekly data intomonthly oil price forecasts
requires the use of models for mixed-frequency data.

The development of models for variables sampled at
different frequencies has attracted a substantial amount
of interest in recent years. A comprehensive review is
provided by Foroni, Ghysels, and Marcellino (2013). A
large and growing body of literature has documented the
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benefits of combining data of different frequencies for
forecasting macroeconomic variables such as real GDP
growth and inflation. One approach has been to con-
struct mixed-frequency vector autoregressive (MF-VAR)
forecasting models (e.g., Schorfheide & Song, 2014). An al-
ternative approach involves the use of univariate mixed-
data sampling (MIDAS) models (e.g., Andreou, Ghysels, &
Kourtellos, 2011). The MIDAS model employs distributed
lag polynomials to ensure a parsimoniousmodel specifica-
tion, while allowing for the use of data sampled at different
frequencies. The original MIDAS model requires nonlinear
least squares estimation (see Andreou, Ghysels, & Kourtel-
los, 2010). Foroni, Marcellino, and Schumacher (in press)
propose a simplified version of the MIDAS model (referred
to as unrestricted MIDAS or U-MIDAS) that may be esti-
mated by ordinary least squares, and it has been shown to
produce highly accurate out-of-sample forecasts in many
applications, provided that the data frequencies to be com-
bined are not too different.

Numerous studies have documented the ability of MI-
DAS regressions to improve the accuracy of quarterly
macroeconomic forecasts based on monthly predictors,
and the accuracy of monthly forecasts based on daily or
weekly predictors (e.g., Andreou, Ghysels, & Kourtellos,
2013; Armesto, Engemann, & Owyang, 2010; Clements &
Galvao, 2008, 2009; Ghysels & Wright, 2009; Hamilton,
2008). In practice, the use of high-frequency financial data
is of particular interest, because financial asset prices em-
body forward-looking information. Another reason for this
interest is that financial data are measured accurately and
are available in real time, while lower-frequency macroe-
conomic data tend to be subject to revisions and are avail-
able only with a delay.

These differences in informational structure are partic-
ularly evident when forecasting oil prices. Commonly used
predictors of the real price of oil, such as global oil produc-
tion, global oil inventories, global real activity, or the US
refiners’ acquisition cost for crude oil, only become avail-
able with considerable delays and are subject to poten-
tially large, but unpredictable, revisions that may persist
for up to two years (see Baumeister & Kilian, 2012). Despite
these drawbacks, several recent studies have shown that it
is possible to systematically beat the no-change forecast of
the monthly real price of oil in real time (e.g., Baumeister
& Kilian, 2012, 2014a, 2014b).

The current paper investigates whether the accuracy
of oil price forecasts can be improved by utilizing high-
frequency information from financial markets and from
US energy markets. The set of high-frequency predictors
includes (1) the spread between the spot prices of gaso-
line and crude oil; (2) the spread between the oil futures
price and the spot price of crude oil; cumulative percent-
age changes in (3) the Commodity Research Bureau (CRB)
index of the price of industrial raw materials, (4) US crude
oil inventories, and (5) the Baltic Dry Index (BDI); (6) re-
turns and excess returns on oil company stocks; (7) cu-
mulative changes in US nominal interest rates (LIBOR, Fed
funds rate); and (8) cumulative percentage changes in the
US trade-weighted nominal exchange rate.

Our starting point is a MIDAS model for the monthly
real price of oil. For reasons discussed in Section 2, we
focus initially on predictors measured at weekly intervals
and constructed from daily observations. As is standard in
the oil price forecasting literature, we assess all forecasts
based on their mean-squared prediction errors and direc-
tional accuracy. We consider forecast horizons, h, ranging
from 1 month to 24 months. Our MIDAS models nest the
no-change forecast of the real price of oil, allowing us to
compare the accuracy of MIDAS regressions with those of
competingmodels evaluated against the same benchmark.
We also compare the MIDAS model forecasts to real-time
forecasts from the correspondingmodel based on the same
predictors measured at monthly frequency.

Our results reinforce and strengthen recent evidence
that the monthly real price of oil can be forecast in real
time. We find that the most accurate h-month-ahead fore-
casts are obtained based on the percentage change in
US crude oil inventories over the preceding h months.
For example, the preferred MIDAS forecast has a statisti-
cally significant directional accuracy as high as 56% at the
12-month horizon, and as high as 69% at the 24-month
horizon. It also produces mean-squared prediction error
(MSPE) reductions relative to the no-change forecast of 8%
at the 12-month horizon and of 28% at the 24-month hori-
zon. These improvements in forecast accuracy are large by
the standard of previous work on forecasting oil prices.
However, at horizons shorter than 12 months, the MSPE
reductions of thisMIDASmodel are quitemodest or nonex-
istent.

The way in which the MIDAS model is implemented
matters to some extent. While there is typically little dif-
ference in accuracy between the MIDAS model with equal
weights and theMIDASmodel with estimatedweights, the
unrestrictedMIDASmodel tends to be slightly less accurate
than the other specifications. The success of these MIDAS
forecasts based on US crude oil inventories prompted us
to also investigate the accuracy of the MF-VAR model ob-
tained by including the same weekly inventory data in a
monthly oil market VAR forecasting model of the type ex-
aminedbyBaumeister andKilian (2012).We found that the
latter specification did not perform systematically better
than the original VAR model, and was clearly worse than
the MIDAS model. The MIDAS model for US crude oil in-
ventories does not have systematically lower MSPEs than
the corresponding forecastingmodel based onmonthly US
inventory data, however, and has comparable directional
accuracy.

While the improvements in forecast accuracy are less
substantial for other weekly financial predictors, the pat-
tern of results is similar. Although MIDAS models often
significantly outperform the no-change forecast, the cor-
responding forecasts frommodels based onmonthly finan-
cial predictors do too, and there is little to choose between
these models. Examples include models based on oil fu-
tures prices, returns on oil company stocks and gasoline
price spreads. In some cases, the MIDAS model forecasts
are actually inferior to the forecasts from the correspond-
ing monthly model, or fail to improve on the no-change
forecast.

These conclusions are robust to whether the MIDAS
models are estimated based on daily or weekly data. Even
whenMIDASmodels workwell, therefore, not much is lost
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by ignoring high-frequency financial data in forecasting
the monthly real price of oil. Not only is this finding im-
portant for applied oil price forecasters, it is also interest-
ing from amethodological point of view. It reminds us that,
despite the intuitive appeal of MIDAS models, it is by no
means a foregone conclusion that the use of daily orweekly
predictors will improve the accuracy of monthly fore-
casts: the answer depends on whether the additional sig-
nal contained in the high-frequency data compensates for
the additional noise. Different empirical applications may
produce different results.

The remainder of the paper is organized as follows. In
Section 2, we review our data sources and the conventions
used in transforming the daily data to weekly frequency.
Section 3 provides a brief overviewof themixed-frequency
forecasting models. Section 4 explains our reasons for
selecting the high-frequency predictors and contains the
main empirical results. We also show that our results are
robust to changes in the data frequency and to the use
of forecast combinations. The concluding remarks are in
Section 5.

2. Data

Our objective is to compare the real-time out-of-sample
forecast accuracies for the monthly real price of oil of a set
of models that include high-frequency data from financial
and energy markets. We focus on forecasts of the real US
refiners’ acquisition cost of crude oil imports, which is a
widely used proxy for the global price of oil (see Alquist
et al., 2013). The refiners’ acquisition cost measures what
refiners actually pay for the crude oil they purchase. We
deflate this price by the US consumer price index for all ur-
ban consumers.

2.1. Data construction

For the time being, even if daily data are available, we
focus on data measured at the weekly frequency, for two
reasons. First, in the early part of the sample there are gaps
in the daily data for some of the time series that we con-
sider. By relying on weekly data, we are able to construct
internally consistent time series for longer time spans.
Second, some of our data are available only at weekly
frequency, and the choice of weekly data facilitates com-
parisons across forecasting models.

One complication that arises with weekly data is that
some months consist of five weeks instead of four. We
adapt the approach proposed by Hamilton and Wu (2014)
in order to generate a balancedweekly data setwhere each
month consists of fourweeks.Week 1 ends on the 5th busi-
ness day of the month, week 2 ends on the 10th business
day of the month, week 3 ends on the day when the near-
term contract expires, which is approximately on the 15th
business day of the month, and week 4 ends on the last
business day of the month, which is the date on which the
forecasts are considered to be generated.2 Our weekly pre-
dictors correspond to the log-level, theweekly growth rate

2 For a Bayesian approach to the modeling of irregularly-spaced data,
see Chiu, Eraker, Foerster, Kim, and Seoane (2014). It is unlikely that
there would be gains from having one additional weekly observation
at irregular intervals in our models, because several alternative timing
conventions that we considered generated very similar results.
or the cumulative growth rate of the variable of interest,
observed on the last trading day of the week. If no data are
available for a given day, we use the preceding daily obser-
vation. Cumulative growth rates over hmonths are defined
as the percentage change between the current daily obser-
vation and the corresponding daily observation exactly h
months earlier. Monthly variables are constructed as aver-
ages of daily data over the month (and then transformed
as appropriate), consistent with the construction of the US
Energy Information Administration (EIA) oil price data.

2.2. Data sources

The daily West Texas Intermediate (WTI) spot oil price
is obtained from the Wall Street Journal, and the corre-
sponding daily NYMEX oil futures prices for maturities of
1–18months are obtained from Bloomberg.3 Daily data for
the spot price of regular gasoline for delivery in New York
Harbor are available from the EIA for the period June 1986
to March 2013.4 The daily spot price index for non-oil in-
dustrial raw materials from the CRB is available from June
1981 onwards. Daily data for the BDI are obtained from
Bloomberg starting in January 1985. Data for US crude oil
inventories are reported from August 1982 onwards in the
Weekly Petroleum Status Report issued by the EIA, but con-
sistent weekly time series could only be constructed back
to January 1984, due to gaps in the earlier data. Our analy-
sis takes account of the fact that this report is issued every
Wednesday and contains data extending to the preceding
Friday. The closing price of the price-weighted NYSE Arca
Oil Index is available from Yahoo! Finance from September
1983 onwards. This index is designed to measure the per-
formance of the oil industry through changes in the stock
prices of a cross-section of widely-held corporations in-
volved in the exploration, production, and development of
petroleum.5 Daily data for the closing price of the NYSE
composite index, which measures the performances of all
common stocks listed on theNewYork Stock Exchange, are
obtained from Yahoo! Finance for the period January 1966
to March 2013. Weekly data for the federal funds rate, the
3-month LIBOR rate and the nominal trade-weighted US
dollar index for major currencies are available from the
FRED database from July 1954, January 1986 and January
1973, respectively, onwards.

The monthly real-time data for world oil production,
the Kilian (2009) index of global real economic activity,
the nominal refiners’ acquisition cost of imported crude
oil, the US consumer price index for all urban consumers,
and the proxy for global crude oil inventories are taken
from the real-time database developed by Baumeister and
Kilian (2012), which contains vintages from January 1991
to March 2013.

3 The spot price data start in January 1985, the oil futures price data
for maturities 1–9 months start in June 1984, those for the 12-month
maturity start in December 1988, those for the 15-monthmaturity in June
1989, and those for the 18-month maturity in October 1989.
4 The gasoline spot price is reported in US dollars per gallon, and is

converted to US dollars per barrel by multiplying the price by 42 gal-
lons/barrel tomake it compatible with the crude oil price (see Baumeister
et al., 2013).
5 The index is composed of the following companies: Anadarko

Petroleum, BP plc, ConocoPhillips, Chevron, Hess, Marathon Oil, Occiden-
tal Petroleum, Petr, Phillips 66, Total SA, Valero Energy, and Exxon Mobil.
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3. Real-time forecasting models

In this section, we review the forecasting models con-
sidered in Section 4. The objective is to forecast the
monthly real price of oil using weekly predictors. For ex-
pository purposes, it is useful to focus onmixed-frequency
VAR (MF-VAR) models first, before discussing MIDAS
models.

3.1. MF-VAR forecasts

There are two approaches to estimating the MF-VAR
model. One is to estimate the model in state space repre-
sentation (see, e.g., Schorfheide & Song, 2014), while the
other is to stack the weekly predictors in a vector, depend-
ing on the timing of their release (see Ghysels, 2012). The
main difference between the two is that there are nomiss-
ing observations in the latter, as the model is estimated at
the monthly frequency, and standard estimation methods
can be used. We therefore focus on this approach.

3.1.1. MF-VAR model represented as a stacked-vector system
Denote the releases of the weekly variables in the first,

second, third and fourth week of eachmonth t by x1t , x
2
t , x

3
t

and x4t . Define zt = [xw
t

′, xmt
′
]
′ where xw

t = [x1t
′, x2t

′, x3t
′,

x4t
′
]
′, where xmt is the vector ofmonthly variables, including

the log of the real price of oil. Then, the variables in the
system evolve according to the monthly VAR model

A(L)zt = ut , (1)

where ut is white noise and A(L) denotes the autoregres-
sive lag order polynomial. The model in Eq. (1) can be
estimated by least squares methods, as in the case of a
single-frequency VAR model. Forecasts of the real price of
oil at monthly horizons h = 1, . . . , 24 may be generated
by iterating the recursively estimated VAR model forward,
conditional on the date t information set, and converting
the forecast of the monthly real price of oil from log-levels
to levels.

3.2. Univariate mixed-frequency forecasts

A more parsimonious approach to dealing with mixed-
frequency data involves specifying a univariate MIDAS
regression. There are three alternative MIDAS representa-
tions. Let Xw

t denote a predictor observed in week w ∈

{1, 2, 3, 4} of month t . The weekly predictor may depend
on the horizon h of the forecast, in which case we add an
additional superscript h. For example, we may define Xh,w

t
as the cumulative change in Xw

t between the last day of the
current week and the last day of the same week h months
ago. If the weekly predictor does not depend on h, the su-
perscript h is dropped.

3.2.1. MIDAS regression with estimated weights
The MIDAS model for combining weekly financial

predictorswithmonthly oil price observations is defined as

Rt+h = Rt

1 + βB(L1/w; θ)Xw

t


+ εt+h, (2)

where Rt is the current level of the monthly real price of
oil. The MIDAS lag polynomial B(L1/w; θ) is an exponential
Almon lag weight function

B(L1/w, θ) =

3
j=0

b(j; θ)Lj/w,

where the lag operator is defined as

Lj/w(Xw
t ) = Xw

t−j/w,

and θ ≡ {θ1, θ2}, such that

b(j; θ) =
exp(θ1(j + 1) + θ2(j + 1)2)
3

j=0
exp(θ1(j + 1) + θ2(j + 1)2)

.

Our results are not sensitive to the choice of the expo-
nential Almon lag polynomial. Similar results would be ob-
tainedwith a beta lag polynomial. Themodel parametersβ
and θ are estimated recursively by themethod of nonlinear
least squares, and forecasts are generated as:

Rt+h|t = Rt

1 +βB(L1/w;θ)Xw

t


.

In some cases, there will be a priori reasons to restrict β
to unity, inwhich case only θ has to be estimated.6 Restrict-
ing β to unity makes sense, for example, when using the
oil futures spread to predict changes in the nominal price
of oil (see, e.g., Baumeister & Kilian, 2012). This restriction
amounts to imposing the absence of a time-varying risk
premium.

3.2.2. Equal-weighted MIDAS regressions
An even more parsimonious representation imposes

equal weights on the weekly data, resulting in the MIDAS
model:

Rt+h = Rt


1 + β

3
i=0

1
4
Xw
t−i/4


+ εt+h. (3)

In this case, no estimation is required except for the pa-
rameter β . The model is linear in β and may be estimated
recursively by ordinary least squares. If β is known, no re-
gression is required and the MSPE of this model may be
evaluated using the Diebold and Mariano (1995) test. Our
reasons for using equal weights may be explained by ap-
pealing to the classical bias–variance tradeoff in forecast-
ing. In small samples, the reduction in the forecast variance
from imposing parameters in the MIDAS polynomial may
easily outweigh the effects of any misspecification bias.
Thus, it makes sense to compare this specification to less
restrictive MIDAS specifications.

3.2.3. Unrestricted MIDAS regressions
The issue of whether the added parsimony of the equal-

weighted MIDAS model reduces the MSPE is an empirical
question. An alternative approach is to relax the restric-
tions implied by the original MIDAS model. This yields the

6 Note that the MIDAS model does not include an intercept. This fact
allows us to nest the randomwalk forecast without drift. It can be shown
that the inclusion of an intercept would systematically lower the forecast
accuracy of our MIDAS models.
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unrestricted MIDAS (or U-MIDAS) model:

Rt+h = Rt


1 +

3
i=0

αiXw
t−i/4


+ εt+h, (4)

which is linear in αi and can be estimated recursively by
ordinary least squares.

3.3. Monthly forecasts

For comparison, we also report results for forecasts
from the corresponding monthly forecasting model of the
form

Rt+h = Rt

1 + βXm

t


+ εt+h,

where Xm
t denotes themonthly predictor corresponding to

Xw
t . The parameter β is estimated by recursive ordinary

least squares. As before, β may be restricted to unity.

4. Empirical results

All forecasts are constructed subject to real-time data
constraints. Unknownmodel parameters are estimated re-
cursively. The estimation period starts as early as data
availability allows, and, as a result, differs between mod-
els. The earliest starting date of the estimation period is
February 1973 and the latest starting date is October 1989.
The initial estimation period ends in December 1991, such
that, for example, the initial one-month forecast is for Jan-
uary 1992 and the initial 12-month forecast is for Decem-
ber 1992. The estimation period is updated recursively on
a monthly basis. The forecast evaluation period ends in
September 2012. The use of such a long evaluation period
minimizes the danger of spurious forecast successes.

The real oil price forecasts are evaluated in levels
against the value of the real price of oil realized in the
March 2013 vintage of the real-time data set. We discard
the last six observations of the oil price data, as they are still
subject to revisions. All forecasts are evaluated based on
their MSPE relative to that of the monthly no-change fore-
cast of the level of the real price of oil. MSPE ratios below
one indicate that the model in question is more accurate
than the no-change forecast.We also report the directional
accuracy of the forecasts in the form of the success ratio,
defined as the proportion of times that the model in ques-
tion predicts correctly whether the real price of oil rises or
falls. Under the null hypothesis of no directional accuracy,
one would expect a success ratio of 0.5. Higher ratios indi-
cate an improvement on the no-change forecast.

While there is no valid test for the statistical signif-
icance of the real-time MSPE reductions from models
based on estimatedMIDAS or U-MIDASweights, the equal-
weighted MIDAS specification with β = 1 imposed does
not suffer from parameter estimation uncertainty, thus al-
lowing the use of the conventional DM test of equal MSPEs
(see Diebold &Mariano, 1995).7 The statistical significance
of any gains in directional accuracy is evaluated using the
test of Pesaran and Timmermann (2009).

7 There are two reasons why we can only assess the statistical signif-
icance of the directional accuracy statistics, not of the MSPE reductions.
4.1. MIDAS results

The set of high-frequency predictors includes (1) the
spread between the spot prices of gasoline and crude oil;
(2) the spread between the oil futures price and the spot
price of crude oil; cumulative percentage changes in (3) the
CRB index of the price of industrial raw materials, (4) US
crude oil inventories, and (5) the Baltic Dry Index; (6) re-
turns and excess returns on oil company stocks; (7) cu-
mulative changes in US nominal interest rates (LIBOR, Fed
funds rate); and (8) cumulative percentage changes in the
US trade-weighted nominal exchange rate.

4.1.1. Oil futures prices
Forecasting models based on oil futures prices form a

good starting point. In the absence of a risk premium, arbi-
trage implies that the oil futures price is the conditional ex-
pectation of the spot price of oil (see Alquist &Kilian, 2010).
Equivalently, in logs, this means that

Et(1st+h) = f ht − st , (5)

where h is the forecast horizon and the maturity of the fu-
tures contract in months. For our sample period, the maxi-
mummaturity for which continuous weekly time series of
WTI oil futures and spot prices are available is 18 months.
Eq. (5) suggests that we express the MIDAS forecasting
model for horizon h as a polynomial in Xh,w

t = f h,wt − swt ,
where the spread is measured on the last day of week
w = 1, 2, 3, 4 of a given month t . We also make an adjust-
ment for expected inflation, which is approximated by the
average inflation rate since July 1986, following Baumeis-
ter et al. (2013).

Table 1 shows that the equal-weighted MIDAS forecast
has lowerMSPEs than the no-change forecast at every hori-
zon between onemonth and 18months. The gains in accu-
racy are negligible at horizons under 12 months, but more
substantial at longer horizons. The largest reduction in the
MSPE is 17% at horizon 15. The MSPE reductions at hori-
zons 12, 15, and 18 are statistically significant based on the
DM test. There are no statistically significant gains in direc-
tional accuracy at short horizons. In fact, some of the suc-
cess ratios are well below 0.5. Significant improvements in
directional accuracy are observed at horizons 9, 12, 15, and
18. The largest success ratio is 63%. Similar results are ob-
tained for the model based on estimated MIDAS weights,
and only slightly less accurate results are obtained for the
unrestricted MIDAS model.

One problem is that all standard tests of equal MSPEs are based on the
population MSPE, not the actual out-of-sample MSPE. This means that
these tests are not appropriate for our purpose. This point was first made
by Inoue and Kilian (2004), and has been accepted widely in recent years.
If one uses these tests anyway, one will reject the null of equal MSPEs too
often. This point has been illustrated, for example, by Alquist et al. (2013).
Clark and McCracken (2012) are working to try to address this issue, but
their solutions do not apply in our context. The second problem is that
standard tests for equal predictive accuracy do not apply when using
real-time data. Clark and McCracken (2009) show how this problem
may be overcome in the context of standard tests of no predictability in
population. They focus on special cases under additional assumptions,
but their analysis does not cover our forecast settings, nor does it address
the first problem above.



C. Baumeister et al. / International Journal of Forecasting 31 (2015) 238–252 243
Table 1
Forecasting the monthly real price of oil using the oil futures spread. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.996 0.478 1.000 0.466 1.014 0.466 0.997 0.462
3 0.965 0.530 0.954 0.563 0.941 0.571 0.974 0.498
6 0.975 0.488 0.964 0.508 0.980 0.488 0.975 0.512
9 0.938 0.568* 0.922 0.564 0.939 0.568 0.944 0.589*

12 0.872* 0.592* 0.857 0.601* 0.878 0.601* 0.886** 0.613*

15 0.829* 0.621* 0.829 0.617* 0.890 0.638* 0.860** 0.634*

18 0.848* 0.629* 0.854 0.625* 0.962 0.625* 0.906 0.621*

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 +

3
i=0

1
4 (Xh,w

t−i/4) − Et (πh
t )), equal weights

• Rt+h|t = Rt (1 + B(L1/4; θ̂ )(Xh,w
t ) − Et (πh

t )), estimated weights
• Rt+h|t = Rt (1 +

3
i=0 α̂i(X

h,w
t−i/4) − Et (πh

t )), unrestricted
• Rt+h|t = Rt (1 + Xh

t − Et (πh
t )), monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the difference between the log of the oil futures price for maturity h and the log of the spot price of oil in week w

of month t , Xh
t is the difference between the log of the oil futures price for maturity h and the log of the spot price of oil in month t , and Et (πh

t ) denotes
the expected inflation rate over h periods. The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the no-change
forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann test, and for the equal-weighted MIDAS
model and the monthly model, are indicated by asterisks, as arestatistically significant reductions in the MSPE according to the Diebold–Mariano test.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
Although the MIDAS model compares favorably with
the no-change forecast, so do traditional models based
on the most recent monthly oil futures spread. The last
two columns of Table 1 show the corresponding results
based on the monthly oil futures model, as implemented
by Baumeister and Kilian (2012). That model generates
broadly similar results, in that the MSPE reductions are
statistically significant at horizons 12 and 15, and direc-
tional accuracy at horizons 9, 12, 15, and 18. While the
equal-weighted MIDAS model has slightly lower MSPEs at
all horizons, the monthly forecasting model has slightly
higher and more statistically significant directional accu-
racy at longer horizons. Overall, there is little to choose be-
tween these models.

4.1.2. Gasoline price spreads
Petroleum products such as gasoline and heating oil

are produced by refining crude oil. Many oil market ana-
lysts and financial analysts believe that the prices for these
petroleum products contain useful information about the
future evolution of the price of crude oil. In particular,
changes in the product price spread – defined as the ex-
tent to which today’s price of gasoline or heating oil de-
viates from today’s price of crude oil – are widely viewed
as predictors of changes in the spot price of crude oil. For
example, in April 2013 Goldman Sachs cut its oil price
forecast, citing significant downward pressure on product
price spreads, which it interpreted as an indication of a re-
duced final demand for products, and hence an expectation
of falling crude oil prices (see Strumpf, 2013).

This forecasting approach was formalized and evalu-
ated recently by Baumeister et al. (2013) using monthly
data. Their analysis demonstrates that models of the
gasoline price spread with an intercept of zero but a
freely estimated slope parameter are reasonably success-
ful at predicting the real price of oil at horizons of up to 24
months. In the analysis below,we impose the same restric-
tion. A preliminary analysis with alternative models con-
firmed that all other specifications are inferior.

Table 2 considers theMIDAS analogue of themodel pro-
posed by Baumeister et al. (2013), with Xw

t denoting the
spread between the spot price of gasoline and theWTI spot
price of crude oil, measured on the last trading day of week
w = 1, 2, 3, 4 of a given month t . The parameter β is esti-
mated freely. Table 2 shows that this equal-weighted MI-
DASmodel has lowerMSPEs than the no-change forecast at
every horizon from 1 month to 24 months, but, with a few
exceptions, the MSPE reductions are modest. There are no
statistically significant gains in directional accuracy. Sim-
ilar results hold when estimating the MIDAS weights. The
unrestricted MIDAS model is somewhat less accurate.

Because of the presence of parameter estimation un-
certainty, a proper assessment of the statistical signifi-
cance of the MSPE reductions in Table 2 is not possible,
but we can compare these results with those obtained for
the corresponding monthly model, building on the work
of Baumeister et al. (2013). The latter model has slightly
lowerMSPEs at eight of the nine horizons. Bothmodels’ di-
rectional accuracy is statistically insignificant and erratic.
There is no reason to favor either of these models. As was
the case with oil futures, there are no clear advantages in
the use of the MIDAS model.

4.1.3. CRB index of the spot price of industrial raw materials
There is a long tradition of modelling oil prices jointly

with other industrial commodities (e.g., Barsky & Kilian,
2002; Frankel, 2008). The CRB provides a widely used in-
dex of the spot price of industrial raw materials excluding
crude oil. Alquist et al. (2013) first made the case that cu-
mulative percentage changes in this CRB price index can be
viewed as a proxy for the expected cumulative percentage
change in the price of oil. The rationale for this statement
is that, often, fluctuations in industrial commodity prices
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Table 2
Forecasting the monthly real price of oil using the gasoline-crude oil spot price spread. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.993 0.578 0.998 0.590 1.071 0.554 0.989 0.562
3 0.996 0.583 1.004 0.583 1.019 0.534 0.990 0.583
6 0.991 0.574 0.984 0.582 0.997 0.533 0.978 0.545
9 0.984 0.490 0.987 0.494 1.011 0.485 0.963 0.436

12 0.963 0.441 0.961 0.483 0.964 0.555 0.934 0.521
15 0.956 0.532 0.950 0.540 0.945 0.591 0.931 0.516
18 0.973 0.504 0.970 0.543 0.966 0.582** 0.971 0.470
21 0.976 0.541 0.972 0.563 1.003 0.546 0.986 0.454
24 0.935 0.588 0.927 0.566 0.953 0.540 0.934 0.500

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4) − Et (πh
t )), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t ) − Et (πh

t )), estimated weights
• Rt+h|t = Rt (1 +

3
i=0 α̂i(X

h,w
t−i/4) − Et (πh

t )), unrestricted

• Rt+h|t = Rt (1 + β̂Xh
t − Et (πh

t )), monthly model
where Rt is the real price of oil, Xh,w

t−i/4 is the difference between the log of the gasoline spot price and the log of the spot price of oil in week w of month
t , Xh

t is the difference between the log of the gasoline spot price and the log of the spot price of oil in month t , and Et (πh
t ) denotes the expected inflation

rate over h periods. The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the no-change forecast. Statistically
significant improvements in directional accuracy according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
Table 3
Forecasting the monthly real price of oil using the CRB spot price index of industrial raw materials. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.929 0.558** 0.927 0.562 0.978 0.546 0.934 0.546**

3 0.862 0.628* 0.831 0.636* 0.861 0.632* 0.863 0.628*

6 1.113 0.611* 1.112 0.623* 1.085 0.570* 1.107 0.598*

9 1.163 0.573 1.158 0.564 1.085 0.469 1.143 0.593*

12 1.132 0.546 1.131 0.546 1.131 0.454 1.100 0.592*

15 1.150 0.574** 1.144 0.574 1.131 0.451 1.118 0.617*

18 1.254 0.539 1.252 0.539 1.154 0.418 1.232 0.578*

21 1.382 0.528 1.382 0.528 1.139 0.445 1.376 0.528
24 1.377 0.513 1.380 0.509 1.172 0.451 1.394 0.443

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 +

3
i=0

1
4 (Xh,w

t−i/4) − Et (πh
t )), equal weights

• Rt+h|t = Rt (1 + B(L1/4; θ̂ )(Xh,w
t ) − Et (πh

t )), estimated weights
• Rt+h|t = Rt (1 +

3
i=0 α̂i(X

h,w
t−i/4) − Et (πh

t )), unrestricted
• Rt+h|t = Rt (1 + Xh

t − Et (πh
t )), monthly model

where Rt is the real price of oil, X
h,w
t−i/4 is the percentage change in the CRB spot price index of industrial rawmaterials over the preceding hmonths in week

w of month t , Xh
t is the percentage change in the CRB spot price index of industrial raw materials over the preceding h months in month t , and Et (πh

t )

denotes the expected inflation rate over h periods. The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the
no-change forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann test, and for the equal-weighted
MIDAS model and the monthly model are indicated by asterisks, as are statistically significant reductions in the MSPE according to the Diebold–Mariano
test.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
are driven by persistent, and hence predictable, variation
in global real economic activity. Several studies have elab-
orated on this insight and demonstrated that such models
have statistically significant directional accuracy and yield
statistically significant MSPE reductions for the real price
of oil (see Baumeister & Kilian, 2012, 2014a, 2014b).

The CRB index is also available on a daily basis, which
allows us to incorporate weekly observations of the cumu-
lative percentage change in this index into aMIDASmodel.
Consistent with the analysis of Alquist et al. (2013), the
MIDAS model is estimated with β = 1 imposed. Table 3
shows that the equal-weighted MIDAS model has direc-
tional accuracy at all horizons and statistically significant
directional accuracy at some horizons. This model also re-
duces the MSPE at short horizons by as much as 14%, but
the reductions are never statistically significant based on
the DM test. At longer horizons, there are no reductions in
theMSPE. Similar results are obtained for theMIDASmodel
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Table 4
Forecasting the monthly real price of oil using the Baltic Dry Index. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.950 0.502 0.947 0.498 0.991 0.442 0.952 0.546**

3 1.049 0.470 1.079 0.466 1.078 0.482 1.109 0.462
6 1.015 0.504 1.023 0.512 1.083 0.520 1.056 0.492
9 1.030 0.502 1.025 0.498 1.033 0.490 1.124 0.548

12 1.087 0.445 1.094 0.445 1.166 0.441 1.447 0.500
15 1.123 0.383 1.136 0.387 1.203 0.391 1.544 0.426
18 1.297 0.435 1.308 0.414 1.327 0.397 2.112 0.474
21 1.399 0.341 1.393 0.332 1.397 0.358 2.214 0.411
24 1.391 0.363 1.407 0.363 1.464 0.442 2.185 0.327

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4)), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t )), estimated weights

• Rt+h|t = Rt (1 +
3

i=0 α̂i(X
h,w
t−i/4)), unrestricted

• Rt+h|t = Rt (1 + β̂Xh
t ), monthly model

where Rt is the real price of oil, X
h,w
t−i/4 is the percentage change in the BDI over the preceding hmonths inweekw ofmonth t , and Xh

t is the percentage change
in the BDI over the preceding h months in month t . The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the
no-change forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
with estimated weights. The unrestricted MIDAS model is
somewhat less accurate.

The last entries in Table 3 allow us to compare the per-
formance of theMIDASmodel with that of the correspond-
ing model based on the monthly CRB predictor. The MSPE
results are very similar and again statistically insignificant,
but, overall, themonthlymodel has a somewhat higher and
more statistically significant directional accuracy. We con-
clude that, in this case, there is no gain from switching to
MIDAS models, and the monthly model is preferred.

4.1.4. Baltic Dry Index
The central idea behind using the CRB spot price index

for industrial raw materials in forecasting the price of oil
is that the real price of oil is predictable, to the extent
that the global business cycle is predictable. This is also
the motivation for the inclusion of measures of global real
economic activity such as the Kilian (2009) index in VAR oil
price forecastingmodels. One limitation of the latter index,
and of all other measures of global real economic activity,
is that it is not available at daily frequency.While there are
daily real-time indices of US real economic activity, such as
the business cycle conditions index of Aruoba, Diebold, and
Scotti (2009), there are no similar indices with the same
global coverage as the monthly Kilian (2009) index.

An alternative business cycle indicator that is used
widely by practitioners is the Baltic Dry Index (BDI), which
is quoted on a daily basis by Bloomberg. This index is avail-
able starting in 1985. The name of this index derives from
the fact that it is maintained by the Baltic Exchange in Lon-
don. The BDImeasures the cost ofmoving bulk dry cargo on
representative ocean shipping routes in theworld. Because
dry bulk cargo consists primarily of materials that serve as
industrial raw materials, such as coal, steel, cement, and
iron ore, this index is seen in the business world to be an
indicator of future industrial production. In short, the BDI is
viewed as a real-time leading indicator for the world econ-
omy, and is used to predict future economic activity (e.g.,
Bakshi, Panayotov, & Skoulakis, 2011). This fact also makes
it a potentially useful predictor for the real price of oil.

Despite its popularity among practitioners, the BDI dif-
fers from other measures of real economic activity based
on dry cargo shipping rates, such as the Kilian (2009) in-
dex, in several ways. Without further transformations, the
BDI is at best a crude proxy for changes in global real eco-
nomic activity. For the purpose of exploring its predictive
contentwithin theMIDAS framework,we focus on the per-
centage change in the BDI over the last h months, rather
than transforming the BDI into a business cycle index. The
β parameter is estimated freely.

Table 4 shows that there is little gain in accuracy from
including the BDI data. Apart from a negligible reduction
in the MSPE at the 1-month horizon, the first two MIDAS
models tend to have higher MSPEs than the random walk,
and lack directional accuracy at all horizons. The unre-
stricted MIDAS model is even less accurate. We conclude
that there does not appear to be useful predictive infor-
mation in the BDI data. This result is confirmed by the
corresponding monthly regression models. Our findings
underscore the importance of transforming the BDI data
prior to constructing oil price forecasts.

4.1.5. US crude oil inventories
Economic theory suggests that changes in expectations

about the real price of oil, all else equal, are reflected
in changes in crude oil inventories (see Alquist & Kilian,
2010). This line of reasoning has led to the development of
structural oil market models that model changes in global
crude oil inventories explicitly (see Kilian & Lee, 2014,
Kilian & Murphy, 2014, Knittel & Pindyck, 2013). Monthly
changes in global crude oil inventories have also been
shown to have predictive power for the real price of oil (see
Alquist et al., 2013). Although such data are not available
at weekly frequency, US crude oil inventories are. This fact
suggests the inclusion of percentage changes in weekly US
crude oil inventories over the most recent h months in
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Table 5
Forecasting the monthly real price of oil using US crude oil inventories. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 1.000 0.530 0.998 0.550* 1.003 0.478 1.001 0.414
3 1.004 0.599* 1.008 0.587* 1.018 0.579* 0.998 0.575**

6 1.007 0.463 1.010 0.463 1.021 0.451 1.018 0.537
9 0.964 0.506 0.961 0.523 0.985 0.523 0.981 0.519

12 0.922 0.559 0.910 0.584 0.929 0.588 0.926 0.534
15 0.886 0.609** 0.881 0.613** 0.884 0.566 0.886 0.630**

18 0.835 0.621* 0.828 0.625* 0.836 0.599** 0.835 0.629**

21 0.688 0.712* 0.686 0.729* 0.690 0.734* 0.681 0.716*

24 0.720 0.686* 0.706 0.695* 0.714 0.712* 0.695 0.708*

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4)), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t )), estimated weights

• Rt+h|t = Rt (1 +
3

i=0 α̂i(X
h,w
t−i/4)), enrestricted

• Rt+h|t = Rt (1 + β̂Xh
t ), monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the percentage change in US crude oil inventories over the preceding h months in week w of month t , and

Xh
t is the percentage change in US crude oil inventories over the preceding h months in month t . The benchmark model is the monthly no-change

forecast. Bold entries indicate improvements on the no-change forecast. Statistically significant improvements in directional accuracy according to the
Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
a MIDAS forecasting model for the real price of oil. This
approach can be shown to generate slightly more accurate
forecasts than expressing crude oil inventories as a fraction
of world crude oil production, as per Hamilton (2009),
and much more accurate forecasts than constructing the
deviation of inventories from a time series trend, as per Ye,
Zyren, and Shore (2005).

Table 5 summarizes the results. The MIDAS model
based on equal weights with β estimated freely is es-
sentially tied with the no-change forecast at horizons 1,
3 and 6, but reduces the MSPE by up to 28% compared
with the no-change forecast at longer horizons. Very sim-
ilar, but marginally more accurate, results are obtained
when the MIDAS weights are estimated. The unrestricted
MIDAS model also performs well. Moreover, all MIDAS
models have high and statistically significant directional
accuracy, especially at longer horizons. The directional ac-
curacy may be as high as 73% in some cases. We conclude
that MIDAS models based on weekly observations of cu-
mulative changes in US oil inventories are promising tools
for applied oil price forecasters, relative to the no-change
forecast.

Compared with the corresponding models based on
monthly US inventory data, however, the conclusion is less
clear.8 Table 5 shows that the MIDAS model has slightly
higher or slightly lower MSPEs than the monthly model,
depending on the horizon. Likewise, there is little to choose
between themonthlymodel and theMIDASmodel when it
comes to directional accuracy. Both models perform quite
well, especially at longer horizons. It is clear that the im-
proved forecast accuracy of the MIDAS model at longer
horizons has less to do with the imposition of the MIDAS
structure than with the choice of predictor.

8 The monthly forecasting models are estimated recursively on the
same estimation period as the MIDAS models.
4.1.6. Oil-company stock prices
Chen (2014) recently showed that oil-sensitive stock

price indices, particularly the stock prices of oil companies,
can help to forecast the real price of crude oil at short hori-
zons. Such information is available readily at a daily fre-
quency. Building on the work of Chen (2014), we explore
this insight using a MIDAS regression, with Xw

t denoting
the weekly return on the NYSE Arca Oil Index, measured
on the last day of week w = 1, 2, 3, 4 of a given month t .
This index includes 13 major international oil and natural
gas companies. The parameter β is estimated freely.

The upper panel of Table 6 shows that theMIDASmodel
with equal weights systematically reduces the MSPE rel-
ative to the no-change forecast for horizons of up to 15
months. The largestMSPE reduction is 6% at the one-month
horizon. There is also some evidence of directional accu-
racy, but only the one-month-ahead success ratio is statis-
tically significant. However, when estimating the weights
and when estimating the MIDAS model in its unrestricted
form, the MSPE ratios deteriorate. Although the MIDAS
model with equal weights performs better than the no-
change forecast, it is not systematicallymore accurate than
the monthly real-time forecast.9 There is no reason to pre-
fer one specification over the other.

The lower panel of Table 6 shows that the same rank-
ing of models applies when defining Xw

t as the weekly

9 These reductions in the MSPE are considerably lower than those
reported by Chen (2014). For example, Chen reported a 22% MSPE
reduction at the one-month horizon. These results can be traced to a
number of differences. First and most importantly, we are forecasting
the real US refiners’ acquisition cost for crude oil imports, which is
subject to real-time delays and revisions, whereas Chen (2014) focused
on the real WTI price, which for the most part is not. This accounts for
about two-thirds of the difference in results. The remainder is accounted
for largely by the fact that we focus on the monthly average price, as
reported by the US Energy Information Administration, rather than the
end-of-month price that Chen focuses on.
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Table 6
Forecasting the monthly real price of oil using returns on oil stocks. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

Returns on the NYSE Oil Index

1 0.943 0.586* 0.987 0.570** 0.999 0.590 0.945 0.518
3 0.952 0.567 0.970 0.575** 0.972 0.567 0.951 0.547
6 0.986 0.529 0.991 0.545 0.998 0.537 0.984 0.504
9 0.986 0.523 1.000 0.531 1.022 0.560 0.989 0.531

12 0.986 0.576 1.004 0.571** 1.032 0.563 0.983 0.588*

15 0.991 0.515 0.999 0.528 1.024 0.536 0.990 0.506
18 1.004 0.496 1.008 0.435 1.026 0.453 1.018 0.483
21 1.003 0.476 1.015 0.463 1.017 0.463 1.007 0.459
24 0.994 0.447 1.007 0.509 0.995 0.496 1.002 0.465

Excess returns of the NYSE Oil Index relative to the NYSE Composite Index

1 0.968 0.554* 1.007 0.538** 1.010 0.530** 0.973 0.530
3 0.982 0.518 0.998 0.518 1.001 0.522 0.985 0.526
6 0.993 0.496 0.999 0.537 1.003 0.520 0.996 0.508
9 1.002 0.469 1.023 0.502 1.033 0.535 1.002 0.486

12 1.000 0.500 1.019 0.534 1.046 0.521 0.998 0.517
15 0.999 0.485 1.011 0.532 1.048 0.489 1.001 0.502
18 1.004 0.478 1.015 0.483 1.037 0.427 1.001 0.500
21 1.000 0.502 1.015 0.441 1.026 0.450 0.997 0.520**

24 1.003 0.482 1.019 0.491 1.019 0.434 1.001 0.447
Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4)), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t )), estimated weights

• Rt+h|t = Rt (1 +
3

i=0 α̂i(X
h,w
t−i/4)), unrestricted

• Rt+h|t = Rt (1 + β̂Xh
t ), monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the 1-week return (or excess return) on the NYSE Oil Index in week w of month t , and Xh

t is the 1-month return
(or excess return) on the NYSE Oil Index in month t . The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the
no-change forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
excess return on the NYSE Arca Oil Index relative to the
NYSE Composite Index, except that the reductions in the
MSPE and the improvements in directional accuracy are
negligible.

4.1.7. US interest rates
There is an impression among many observers that

lower interest rates are associated with looser economic
policies, and hence a higher demand for crude oil, and pos-
sibly also a lower supply of crude oil. Either way, this argu-
ment suggests a predictive relationship between changes
in interest rates and changes in the price of oil. This per-
ception has been boosted by studies suggesting that low
real interest rates lead to high real commodity prices (see,
e.g., Barsky & Kilian, 2002; Frankel, 2008).10 We investi-
gate this proposition by fitting a MIDAS model for the dif-
ference between the interest rate on the last day of the
current week and the interest rate h months earlier. We
consider two alternative measures of US interest rates: the
US federal funds rate and the LIBOR rate. The parameter β
is estimated freely.

Table 7 indicates that the approach yieldsmodestMSPE
reductions at horizons of 6–18 months for all MIDAS

10 This argument is distinct from the implications of theHotelling (1931)
model of exhaustible resources that the price of oil should growat the rate
of interest. The latter proposition was evaluated and rejected by Alquist
et al. (2013).
specifications involving the federal funds rate, but typ-
ically lacks directional accuracy. The corresponding re-
sults for the LIBOR rate are even less favorable, regardless
of the specification. A comparison with the correspond-
ing monthly forecasting model shows that very similar or
worse results are obtained using monthly data only. Nei-
ther forecasting approach appears to be superior to the no-
change forecast. This evidence reinforces the skepticism
regarding the empirical content of models linking oil price
fluctuations to variations in US interest rates. While there
is no doubt about the theoretical link in question, its quan-
titative importance has yet to be established.

4.1.8. Trade-weighted US exchange rate
Another popular view is that fluctuations in the value

of the dollar relative to other currencies predict changes
in the real price of oil, as it becomes more or less expen-
sive for importers of crude oil abroad to purchase crude
oil. Previous studies of this question have found no evi-
dence in monthly data to support this view (see Alquist
et al., 2013). Here, we return to this question using MI-
DAS regression specifications that allow the use of high-
frequency measures of cumulative percentage changes in
the trade-weighted US nominal exchange rate.

Table 8 shows that none of the MIDAS models produce
reductions in theMSPE, although there is some evidence of
directional accuracy at selected horizons. Exactly the same
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Table 7
Forecasting the monthly real price of oil using US interest rates. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

Federal funds rate

1 0.998 0.510 0.999 0.534** 1.001 0.502 0.998 0.470
3 1.004 0.530 1.004 0.538 1.005 0.526 1.004 0.530
6 0.969 0.459 0.971 0.504 0.967 0.520 0.966 0.459
9 0.960 0.506 0.963 0.510 0.964 0.515 0.953 0.506

12 0.952 0.504 0.947 0.475 0.946 0.483 0.952 0.496
15 0.961 0.515 0.954 0.502 0.946 0.502 0.963 0.498
18 0.986 0.491 0.982 0.487 0.977 0.487 0.987 0.500
21 1.011 0.480 1.009 0.472 0.997 0.480 1.012 0.489
24 1.032 0.434 1.032 0.442 1.024 0.438 1.032 0.434

LIBOR

1 1.006 0.522 1.010 0.526 1.013 0.530 1.037 0.534**

3 1.017 0.538** 1.018 0.506 1.018 0.571* 1.023 0.547
6 0.996 0.463 0.996 0.475 1.033 0.496 1.014 0.385
9 0.994 0.436 0.992 0.461 0.992 0.461 1.086 0.486

12 0.980 0.458 0.979 0.454 0.986 0.483 1.050 0.382
15 0.995 0.485 0.994 0.481 0.993 0.485 1.033 0.430
18 1.011 0.457 1.011 0.461 1.008 0.470 1.050 0.457
21 1.033 0.459 1.034 0.454 1.034 0.480 1.083 0.389
24 1.058 0.429 1.060 0.434 1.064 0.460 1.088 0.358

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4)), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t )), estimated weights

• Rt+h|t = Rt (1 +
3

i=0 α̂i(X
h,w
t−i/4)), unrestricted

• Rt+h|t = Rt (1 + β̂Xh
t ), monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the change in the interest rate over the preceding h months in week w of month t , and Xh

t is the change in the
interest rate over the preceding hmonths inmonth t . The benchmarkmodel is themonthly no-change forecast. Bold entries indicate improvements on the
no-change forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
Table 8
Forecasting the monthly real price of oil using the nominal trade-weighted US exchange rate. Evaluation period: 1992.1–2012.9.

MIDAS
Horizon (months) Equal weights Estimated weights Unrestricted Monthly model

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 1.005 0.466 1.006 0.514 1.018 0.514 1.007 0.466
3 1.081 0.502 1.078 0.486 1.084 0.490 1.068 0.494
6 1.006 0.426 1.016 0.418 1.038 0.434 1.000 0.480
9 1.061 0.622* 1.070 0.548 1.097 0.523 1.069 0.618*

12 1.174 0.618* 1.188 0.613* 1.199 0.592* 1.176 0.626*

15 1.149 0.591* 1.147 0.600* 1.176 0.600* 1.146 0.600**

18 1.157 0.565 1.163 0.547 1.175 0.543 1.153 0.560
21 1.143 0.459 1.146 0.472 1.163 0.472 1.140 0.463
24 1.079 0.482 1.079 0.451 1.078 0.465 1.078 0.478

Notes: The forecasts are constructed as:
• Rt+h|t = Rt (1 + β̂

3
i=0

1
4 (Xh,w

t−i/4)), equal weights

• Rt+h|t = Rt (1 + β̂B(L1/4; θ̂ )(Xh,w
t )), estimated weights

• Rt+h|t = Rt (1 +
3

i=0 α̂i(X
h,w
t−i/4)), unrestricted

• Rt+h|t = Rt (1 + β̂Xh
t ), monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the percentage change in the exchange rate over the preceding h months in week w of month t , and Xh

t is the
percentage change in the exchange rate over the preceding h months in month t . The benchmark model is the monthly no-change forecast. Bold entries
indicate improvements on the no-change forecast. Statistically significant improvements in directional accuracy according to the Pesaran–Timmermann
test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
pattern applies to the corresponding monthly model in
Table 8. There is some evidence of modest statistically sig-
nificant directional accuracy at intermediate horizons, but
again theMIDASmodel has no advantage over themonthly
model. We conclude that these models are effectively in-
distinguishable.
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Table 9
Forecasting the monthly real price of oil using daily predictors. Evaluation period: 1992.1–2012.9.

Equal-weighted daily MIDAS models
Horizon (months) Oil futures spread Gasoline-crude oil spot spread CRB spot price Baltic Dry Index

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.997 0.522 0.995 0.578 0.934 0.554** 0.995 0.514
3 0.976 0.534 0.997 0.583 0.864 0.623* 1.045 0.466
6 0.978 0.492 0.993 0.557 1.119 0.607* 1.017 0.504
9 0.938 0.564 0.985 0.473 1.165 0.568 1.031 0.502

12 0.870* 0.580* 0.964 0.450 1.129 0.546 1.089 0.437
15 0.829* 0.621* 0.958 0.528 1.147 0.583 1.125 0.391
18 0.846* 0.638* 0.975 0.530 1.253 0.543 1.300 0.435
21 NA NA 0.976 0.559 1.381 0.528 1.401 0.336
24 NA NA 0.936 0.580 1.378 0.509 1.391 0.367

Nominal trade-weighted
Horizon (months) Returns on the NYSE Oil Index Federal funds rate LIBOR US exchange rate

MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio

1 0.896 0.614* 0.998 0.514** 1.006 0.522 1.009 0.466
3 0.928 0.571 1.004 0.567* 1.016 0.538** 1.061 0.498
6 0.973 0.549 0.973 0.471 0.996 0.471 1.012 0.430
9 0.980 0.527 0.962 0.519 0.994 0.423 1.032 0.602*

12 0.979 0.576** 0.952 0.492 0.981 0.454 1.106 0.630*

15 0.987 0.485 0.962 0.502 0.995 0.485 1.088 0.596*

18 1.002 0.496 0.987 0.496 1.011 0.453 1.091 0.560
21 1.000 0.450 1.012 0.493 1.034 0.450 1.084 0.467
24 0.989 0.518 1.032 0.429 1.059 0.425 1.044 0.478

Notes: By analogy to Tables 1–8, the forecasts are constructed from the models:
• Rt+h|t = Rt (1 +

19
i=0

1
20 (Xh,d

t−i/20) − Et (πh
t ))

• Rt+h|t = Rt (1 + β̂
19

i=0
1
20 (Xh,d

t−i/20) − Et (πh
t ))

• Rt+h|t = Rt (1 + β̂
19

i=0
1
20 (Xh,d

t−i/20))

where Rt is the real price of oil, the daily predictor Xh,d
t−i/20 is defined by analogy to the predictor Xh,w

t−i/4 for the last day of the week, and Et (πh
t ) denotes

the expected inflation rate over h periods. The benchmark model is the monthly no-change forecast. Bold entries indicate improvements on the no-
change forecast. Statistically significant reductions in the MSPE according to the Diebold–Mariano test, where appropriate, and statistically significant
improvements in directional accuracy according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
Moreover, neithermodel can be recommended for fore-
casting oil prices, especially compared with some of the
models discussed earlier. This result reinforces the conclu-
sions of Alquist et al. (2013) about the lack of predictive
content of exchange rates for oil prices. The notion that
fluctuations in the trade-weighted US exchange rate lead
fluctuations in the real price of oil lacks empirical support.

4.2. Sensitivity analysis

We now show that our main results for the MIDAS
model based on predictors measured at weekly frequency
are robust to a number of extensions and modifications.

4.2.1. MIDAS models based on daily predictors
With the exception of the US inventory data, many of

the predictors used in this paper are also available at daily
frequency. A natural question, therefore, is whether our
results are robust to applying the MIDAS framework to
daily data rather than weekly data. Consider the example
of forecasting the price of oil based on cumulative changes
in the BDI. The key difference is that the dailyMIDASmodel
is based on cumulative percentage changes in the BDI,
measured on each of the 20 business days of a givenmonth,
whereas the weekly MIDAS models in Section 3 are based
on cumulative percentage changes in the BDI, measured
on the last trading day of each week of the month. Table 9
demonstrates that our results are remarkably robust to this
change in the MIDAS model specification. For expository
purposes, we focus on the equal-weighted MIDAS model.
There is no evidence that including all daily observations
rather than only the daily observations at the end of
each week provides a systematic improvement in forecast
accuracy.

4.2.2. Pooling MIDAS forecasts based on weekly data
So far, we have focused on the performance of indi-

vidual MIDAS models one model at a time. One might
expect forecast pooling to provide a further increase in
the accuracy of the MIDAS approach. Table 10 illustrates
that this is not the case in general. The table summarizes
the forecast accuracy of equal-weighted combinations of
equal-weighted MIDAS models and of MIDAS models with
estimated weights. We focus on equal-weighted fore-
cast combinations, because an additional analysis showed
that equal weights generate systematically more accurate
pooled forecasts than inverse MSPE weights that are based
on recent forecast performances.

Table 10 shows that pooled forecasts generate system-
atic MSPE reductions relative to the benchmark model at
horizons of up to 18 months, but the MSPE reductions are
usually quite small. More importantly, the MSPE reduc-
tions do not exceed those of the best individual MIDAS
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Table 10
Pooled MIDAS forecasts of the monthly real price of oil. Evaluation period: 1992.1–2012.9.

Equal-weighted forecast combination
Horizon (months) Equal-weights MIDAS models Estimated-weights MIDAS models

MSPE ratio Success ratio MSPE ratio Success ratio

1 0.949 0.570* 0.952 0.562**

3 0.962 0.615* 0.959 0.611*

6 0.983 0.516 0.982 0.557
9 0.981 0.560 0.980 0.544

12 0.971 0.563 0.969 0.563
15 0.963 0.545 0.961 0.553
18 0.986 0.603* 0.985 0.599*

21 1.018 0.528 1.017 0.524
24 1.023 0.478 1.022 0.482

Notes: The forecasts underlying the forecast combination are obtained from Tables 1–8. Statistically significant improvements in directional accuracy
according to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
models systematically. For example, the equal-weighted
MIDAS forecast based on returns on oil company stocks in
Table 6 tends to be slightly more accurate than the corre-
sponding pooled forecast in Table 10 at most horizons. Fi-
nally, the pooled forecast lacks forecast accuracy at longer
horizons. Beyond a horizon of nine months, the MIDAS
model based on US inventories is systematically more ac-
curate than the pooled forecast. We conclude that forecast
pooling is of limited use in this context.

4.3. MF-VAR results

Despite the availability of numerous high-frequency
predictors of the real price of oil, we conclude that only the
weekly data on US crude oil inventories stand out as use-
ful predictors of the real price of oil. The surprisingly good
performance of theMIDASmodel based on US crude oil in-
ventories raises the question of whether even more accu-
rate real-time forecasts could be obtained by incorporating
the same weekly inventory data into an MF-VAR model.

Our baseline VAR model includes the percentage
change in global crude oil production, a measure of global
real activity that was proposed by Kilian (2009), the real
price of oil, and the change in global crude oil inventories.
This choice of variables is motivated by economic theory
(see Kilian & Lee, 2014, Kilian &Murphy, 2014). The model
specification is identical to that employed by Baumeister
and Kilian (2012), except that the lag order is restricted to
two lags, compared to 12 lags in the original analysis. The
reason for this is that the MF-VAR model becomes compu-
tationally intractable for higher lag orders. By construction,
in the MF-VAR(2) model there will be two months’ worth
of lags of the weekly predictor.

The results shown in Table 11 are obtained based on
the stacked vector representation of the mixed-frequency
VAR model. Estimating the state space representation of
the model as per Schorfheide and Song (2014) yields sim-
ilar results (which are not shown here, to conserve space).
Table 11 illustrates that including weekly US crude oil in-
ventory data in the VAR(2)model does not improve the ac-
curacy of the recursive real-time VAR forecast. In fact, the
MF-VAR(2) forecast is slightly less accurate than the origi-
nal VAR(2) forecast. Either way, the MSPE reductions rela-
tive to the no-change forecast are small and do not extend
beyond the one-month horizon.
This evidencemay seem to suggest that the information
conveyed by the US inventory data is already contained
in the baseline VAR because of the inclusion of monthly
global crude oil inventories. However, the corresponding
MIDAS model in Table 5 which does not contain informa-
tion about global crude oil inventories is much more accu-
rate than the VAR(2) model, especially at longer horizons,
which indicates that the more parsimonious MIDASmodel
structure is what makes the difference. In fact, regard-
less of which high-frequency predictor is included in the
MF-VAR(2) model, the MF-VAR(2) forecasts rarely outper-
form those of the randomwalk even at horizon 1, andnever
beyond horizon 3.11 Our results demonstrate that MF-VAR
models are systematically less accurate than MIDAS mod-
els in forecasting the real price of oil in real time.

5. Conclusion

We conclude that the best way of modelling mixed-
frequency data in our context involves the use of MI-
DAS models rather than MF-VAR models. In general, the
equal-weighted MIDAS model and the MIDAS model with
estimated weights generate the most accurate real-time
forecasts based onmixed-frequency data.We foundno evi-
dence that unrestrictedMIDASmodel forecasts are as accu-
rate as or more accurate than forecasts from other MIDAS
specifications.

Based on these MIDAS models, we reviewed a wide
range of high-frequency financial predictors of the real
price of oil. The results can be classified as follows:

• In many cases, the equal-weighted MIDAS model fore-
casts improve on the no-change forecast, but so does
the corresponding forecast from amodel including only
lagged monthly data, and there is little to choose be-
tween the MIDAS model forecast and the forecast from
the monthly model. Examples include models that in-
corporate weekly oil futures spreads, weekly gasoline
product spreads, weekly returns on oil company stocks,
and weekly US crude oil inventories.

11 These results are not shown here, to conserve space.
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Table 11
VAR and MF-VAR forecasts of the monthly real price of oil. Evaluation period: 1992.1–2012.9.

Horizon (months) VAR(2) MF-VAR(2) with weekly US crude oil inventories
MSPE ratio Success ratio MSPE ratio Success ratio

1 0.915 0.566* 0.950 0.530
3 1.007 0.543 1.090 0.522
6 1.108 0.553 1.244 0.459
9 1.224 0.539 1.479 0.436

12 1.309 0.563 1.630 0.458
15 1.362 0.549 1.735 0.447
18 1.426 0.539 1.908 0.427
21 1.487 0.533 2.064 0.450
24 1.482 0.518 2.071 0.465

Notes: The four variables in the VARmodel are the growth rate of world oil production, the log of the real price of oil, the Kilian (2009) global real economic
activity index, and the change in global crude oil inventories. The weekly US crude oil inventories are expressed as the percentage change over the
preceding h months. The benchmark model is the monthly no-change forecast. Statistically significant improvements in directional accuracy according
to the Pesaran–Timmermann test are indicated by asterisks.

* Denotes significance at the 5% level.
** Denotes significance at the 10% level.
• In some cases, the MIDAS forecast improves on the
no-change forecast somewhat, but is inferior in its turn
to the corresponding monthly real time forecast. One
example is the model incorporating cumulative per-
centage changes in the weekly CRB spot price index for
non-oil industrial raw materials.

• In yet other cases, the MIDAS forecast is about as ac-
curate as the corresponding monthly forecast, but nei-
ther is systematicallymore accurate than theno-change
forecast. Examples includemodels based on cumulative
percentage changes in the trade-weighted nominal US
exchange rate, in US interest rates, or in the Baltic Dry
Index.

Although many MIDAS models improve on the no-
change forecast, the only case in which we have docu-
mented large and systematic improvements in forecast
accuracy involves the inclusion of weekly data on US crude
oil inventories in the MIDAS model. The latter specifica-
tion yields not only impressive reductions in the MSPE at
horizons of between 12 and 24 months, but also an un-
usually high directional accuracy. The largest reduction in
theMSPEwe observedwas 28%, and the largest success ra-
tio was 73%. These gains in real-time forecast accuracy are
large compared with those reported in any previous study
on forecasting oil prices.

While our analysis has produced strong new evidence
that the monthly real price of oil is predictable at hori-
zons beyond one year, this success cannot be attributed
to the use of the MIDAS model, because the corresponding
forecasting model based on monthly US crude oil inven-
tory data produces similar gains in accuracy. Our analysis
suggests that, unlike in many other studies, typically not
muchwill be lost by ignoring high-frequency financial data
when forecasting the monthly real price of oil. This is true
whether one relies on daily or weekly predictors in theMI-
DAS model, and even when using forecast combinations.

Throughout the paper, we focused on MIDAS models
for one high-frequency predictor at a time. An alternative
strategy would have been to impose a factor structure on
the set of high-frequency financial predictors, as per An-
dreou et al. (2013). The latter approach is natural in the
context of macroeconomic forecasting, but less appealing
in our context, given themuch smaller number of potential
predictors that can be proposed on economic grounds. The
reason for this is that the real price of oil is determined in
global oil markets, and the set of relevant global predictors
is much smaller.

There are a number of potential extensions of our anal-
ysis. For example, although we focused on monthly oil
price forecasts, it would have been straightforward to ex-
tend our analysis to quarterly horizons. Baumeister and
Kilian (2014a, 2014b) show that the best way to generate
quarterly forecasts is usually to average monthly forecasts
by quarter. One could also extend the analysis to include
other oil price measures such as the WTI price. Doing so
would raise additional complications, given the instability
in the relationship between global oil prices and the WTI
price in recent years (see Baumeister & Kilian, 2014a). We
therefore focused on the real US refiners’ acquisition costs
for crude oil imports in this paper, because that price is a
widely used proxy for the global price of oil.
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