
International Journal of Forecasting 29 (2013) 548–562
Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

A zero-adjusted gamma model for mortgage loan loss
given default
Edward N.C. Tong ∗, Christophe Mues, Lyn Thomas
University of Southampton - Southampton Management School, Southampton, United Kingdom

a r t i c l e i n f o

Keywords:
Regression
Finance
Credit risk modelling
Mixture models
LGD
Basel II

a b s t r a c t

The Internal Ratings Based (IRB) approach introduced in the Basel II Accord requires
financial institutions to estimate not just the probability of default, but also the Loss Given
Default (LGD), i.e., the proportion of the outstanding loan that will be lost in the event of
a default. However, modelling LGD poses substantial challenges. One of the key problems
in building regression models for estimating the loan-level LGD in retail portfolios such as
mortgage loans relates to the difficulty of modelling their distributions, as they typically
contain extensive numbers of zeroes. In this paper, an alternative approach is proposed
where amixed discrete-continuousmodel for the total loss amount incurred on a defaulted
loan is developed. The model accommodates the probability of a zero loss and the loss
amount given that a loss occurs simultaneously. The approach is applied to a large dataset
of defaulted home mortgages from a UK bank and compared to two well-known industry
approaches. Our zero-adjusted gamma model is shown to present an alternative and
competitive approach to LGD modelling.

© 2013 International Institute of Forecasters. Published by Elsevier B.V. Open access under 

CC BY-NC-ND license.
er
1. Introduction

The advanced Internal Ratings Based (IRB) approach
outlined in the Basel II and Basel III Accords allows banks to
calculate their own regulatory capital requirements based
on internal credit risk model estimates (Basel Committee
on Banking Supervision, 2005).

It requires banks to develop suitable methods for
estimating three key parameters for each segment of their
loan portfolios: PD (probability of default in the next 12
months), LGD (loss given default, i.e., the proportion of the
outstanding loan that will be lost in the event of a default)
and EAD (exposure at default).

For consumer credit, probability of default modelling
has been a main objective of credit scoring for several
decades. However, the additional IRB requirement of hav-
ing to model LGD has posed substantial challenges, partly
because of the properties of its distribution. Datasets of
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defaulted loan observations for residential mortgage port-
folios or other retail portfolios usually exhibit a large prob-
ability mass at zero where no losses have been incurred,
either because the account has cured and returned to per-
forming status, or, in the case of mortgage loans, because
the property has subsequently been repossessed and the
sale price covered the loan balance at default adequately
(Leow & Mues, 2012; Loterman, Brown, Martens, Mues, &
Baesens, 2012; Thomas, Matuszyk, & Moore, 2012). Also,
whereas the actual LGD observations of some individ-
ual loan defaults may fall outside the (0, 1) range, as
LGD is supposed to include all economic costs (e.g., addi-
tional collection costs) and recoveries (e.g., penalties paid),
the model estimates themselves are expected to be con-
strained to this interval.

Although the LGD research literature has traditionally
focused more on corporate loan portfolios, LGD modelling
for residential mortgages is a growing research area, given
the impact of the new Accords on consumer lending,
and the importance of mortgage loss estimation in the
current financial context. One published approach for
mortgages involvedmodelling LGD directly using ordinary
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least squares regressions (Qi & Yang, 2009). Their approach
was developedusing data fromprivatemortgage insurance
companies for a set of high loan-to-value loans, and
although the ordinary least squaresmodelwas used, its use
could be criticized because of the non-normal distribution
of LGD.

Alternatively, a two-stage approach has been intro-
duced in industry by Lucas (2006) and further investigated
in the academic literature by Leow and Mues (2012). The
method incorporates a probability of repossession (fore-
closure) model developed with logistic regression and a
haircut model using an OLS regression. The haircut rep-
resents the discount factor to be applied to the estimated
sale price of the property, given that repossession occurs.
The twomodels are then combined to produce an expected
loss percentage given default. They showed the two-stage
approach to perform better than the single-stage approach
with a standard OLS regression.

There has also been interest recently in using quantile
regressions or quantiles of model estimates to obtain LGD
predictions (Somers & Whittaker, 2007; Zhang & Thomas,
2012). Somers and Whittaker (2007) have argued that
using the low tail of the property value is more predictive
of probable losses than the average value estimates in
those settings where no loss is incurred in most accounts.

Where censored approaches to LGD modelling are
concerned, Tobit regressions have been suggested as one of
the methods to be used for modelling the restricted range
of the LGD distribution (Bellotti & Crook, 2012). In a Tobit
regression, the observed range of the response variable has
a Gaussian distribution; however, Sigrist and Stahel (2012)
introduced a censoredmodel which allows the response to
be Gamma distributed. For LGD data fitted with the Tobit
model, the Gaussian assumption may not be suitable, and
therefore the censored Gamma regression was developed
to overcome the skewed nature of this interval. They also
proposed a zero-inflated Gamma model for excess zeroes
which were dealt with in probit regression.

Most of the existing literature on LGD modelling in the
consumer and corporate credit risk domains has focused
on modelling the LGD distribution directly. However, this
distribution is known to be challenging to model accu-
rately, due partly to its strongly unimodal or sometimes
bimodal nature and lack of predictive characteristics.
Therefore, in this paper, rather thanmodelling LGD (i.e. the
loss as a proportion of the exposure) directly, we propose to
model the incurred financial loss amount. Once an estimate
of the amount has been obtained, one can then simply in-
fer the LGD parameter by dividing the predicted loss by the
loan balance or exposure.

In our proposed approach, the loss amount is mod-
elled as a continuous response variable using a semi-
parametric discrete-continuous mixture model approach
with the zero-adjusted gamma distribution. Firstly, since
the non-zero or positive loss amount exhibits heavy
right-skewness, it is modelled using the gamma distri-
bution. Both the mean and the dispersion of the posi-
tive loss amount are modelled explicitly as functions of
explanatory variables. Secondly, the probability of the
(non-)occurrence of a zero loss amount is modelled using
a logistic-additive model. All of the mixture model compo-
nents, i.e., the logistic-additive component for the proba-
bility of a zero loss and the log-additive components for
the mean and dispersion of the loss amount conditional
on there being a positive loss, are estimated using loan-
level application andbehavioural characteristics andhouse
price index (HPI) covariates. The LGD parameter is then es-
timated by dividing the predicted loss amount by the loan
balance.

Whenmodelling the relationship between the response
variable and continuous covariates, past credit risk re-
search has focused on categorizing such covariates using
binning methods. Such techniques can be arbitrary and re-
sult in a loss of information and precision for the estimated
coefficients (Harrell, 2001; Royston, Altman, & Sauerbrei,
2006). Categorization also assumes that the relationship
between the response and the covariate is flat within in-
tervals, which may be unreasonable. Another common
methodwould be to assume that continuous covariates are
related to the response variable linearly, which would be
incorrect for non-linear relationships. For example, such a
method would not allow either the magnitude or the sign
of coefficients to vary according to the range of covariate
values. Our approach adopts a semi-parametric route by
allowing non-linear relationships with the loss amount re-
sponse variable through the use of regression splines (Eil-
ers &Marx, 1996). Exploiting such non-linear relationships
will reduce the bias in the estimates, improve the pre-
dictive performance of the model, and offer additional in-
sights into the effects of covariates, while still retaining a
fair level of model interpretability (Harrell, 2001; Hastie,
Tibshirani, & Friedman, 2009).

Although the proposed approach has not yet been
attempted in the context of consumer lending (to the
best of our knowledge), the concept of estimating the
expected loss amount for the exposures in a portfolio
has been proposed previously in insurance modelling for
policy claim amounts. Heller, Stasinopoulos, Rigby, and
De Jong (2007) developed a discrete-continuous mixture
model for estimating the total claim amount at a policy
level from a portfolio of motor insurance policies. They
used two components—the negative binomial distribution
for modelling the number of claims for individual policies,
and the inverse Gaussian for the claim amount given that a
claim occurred. With the risk factors for prospective policy
holders, the expected total claim size is then obtained from
the product of the expected number of claims and the
expected claim size for an individual claim.

Other discrete-continuous mixture models which use
a mixture of Bernoulli and beta random variables have
also been developed for the recovery rate modelling of
corporate loans by Calabrese (2010) and Calabrese and
Zenga (2010). They propose two logistic regressionmodels
for the recovery rates at the 0 and 1 end-points. For the
(0, 1) interval, a joint beta regression model is developed
to accommodate skewness and heteroscedastic errors
by modelling the mean and dispersion of the response
variable jointly. However, note that these methods can
only be used to model LGD directly, not to model the loss
amount itself.

To validate our approach empirically, the zero-adjusted
gamma model is applied to a large dataset of defaulted
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home mortgages from a UK bank. The results are com-
pared to the ordinary least squares (OLS) with beta trans-
formation method, which is the parametric regression
approach adopted by LossCalc (Gupton & Stein, 2005), a
well-known industry model developed by Moody’s KMV.
The LossCalc approach has also been used or referred to in
other comparative studies reported in the literature (Bel-
lotti & Crook, 2012; Hlawatsch & Reichling, 2010; Loter-
man et al., 2012; Qi & Zhao, 2011; Thomas et al., 2012).
In addition, the results are also compared to the Tobit re-
gression, a model that treats any LGD values which are
below zero or above one as censored (Greene, 1997; To-
bin, 1958). Tobit regressions or variants thereof have been
used both in LGD benchmarking studies and in industry
(Bellotti & Crook, 2012; Sigrist & Stahel, 2012). The pre-
dictive performances of the three approaches are assessed
using walk-forward validation with out-of-sample and
out-of-time testing. A series of discrimination and cali-
bration measures are presented for comparison. The zero-
adjusted gamma model is shown in order to present an
alternative and competitive approach to LGD modelling.

The novel aspects of our study are that we: (1) consider
modelling of the loss amount directly for estimating the
LGD parameter; (2) consider the use of regression splines
for modelling non-linear effects between the response
variable and covariates for LGD modelling; (3) benchmark
the results of our model with two well-known approaches
which are used in industry; and (4) develop our models on
a very large sample of defaulted residential mortgages and
evaluate their performances using an out-of-sample and
out-of-time validation process. The remainder of the paper
is organized as follows. In Section 2, an overviewof the data
is presented, along with the application and behavioural
characteristics used. The statistical and validationmethods
used in our experiments are discussed in Section 3. Next,
the results of the statistical models are discussed in
Section 4. Section 5 will conclude the paper and suggest
some areas for further research.

2. Data

Our LGD dataset, provided by a UK bank, contains
account-level observations of defaulted loans from a res-
idential mortgage portfolio between 1988 and 2000 (see
also Leow & Mues, 2012). Observations were collected
from all parts of the United Kingdom. The total sam-
ple contained over 113,000 accounts, with 21 application,
behavioural and house price index (HPI) predictor vari-
ables in the dataset. The dataset consisted of observations
through to the year 2002, but we allowed a two-year expo-
sure window to give time for possible repossessions, and
analyzed default events up to 2000.

Fig. 1 shows the distribution of LGD for the entire
sample, with a large proportion of zeroes. Please note that
some of the scales on the figures in the present study have
been removed for data confidentiality reasons.

After a mortgage loan defaults, one potential outcome
is that the property undergoes repossession by the bank,
and legal, administrative and holding costs are incurred.
The process of repossession and sale of the property
may take a few years to complete. The present analysis,
Fig. 1. Distribution of observed LGD on the entire sample of residential
mortgages.

however, considers only the nominal LGD, which does not
include discounting. Any extra costs and interest which are
incurred are also excluded from the analysis, because the
dataset did not contain any information on such costs at an
account level.

Table 1 lists the 21 candidate predictors which are
considered for use in the analysis for modelling the
loss amount and LGD. The time on books variable was
computed as the time between the start date of the loan
and the approximate date of default.1

The Basel II Accord requires financial institutions to
estimate the risk of default and the corresponding losses
over a 12-month horizon from a given time point (termed
the observation time). Thus, LGD models should not
contain information that is only available at the time
of default. However, the dataset had limitations, in that
information on the state of the account in the months
prior to default (e.g., the loan balance at the observation
time) was unavailable, as the data were cross-sectional.
Hence, we observed behavioural data at the (approximate)
default time instead of at the observation time, provided
that a reasonable forward-looking adjustment could be
used to convert the current value of a variable, such as the
outstanding balance, to an estimate at the time of default.

Table 1 contains several variables that include the in-
dexed valuation at default in their definition. As reassess-
ing the value of each property through various time points
would be a costly process, an approximate valuation at
default was derived by updating the initial security value
(which was available in our dataset) using the publicly
available Halifax House Price index2 (all houses, all buy-
ers, non-seasonally adjusted, quarterly, regional). The in-
dexed valuation of the property at default was computed

1 The date of default was estimated by the bank using the arrears status
and the amount of cumulated arrears at the end of each year for each
account. The exact default date was not provided in the dataset.
2 Available from: http://www.lloydsbankinggroup.com/media1/

economic_insight/halifax_house_price_index_page.asp.

http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
http://www.lloydsbankinggroup.com/media1/economic_insight/halifax_house_price_index_page.asp
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Table 1
List of application, behavioural and house price index predictor variables
for modelling the loss amount and LGD.

Variable Type

Balance at default (exposure at default) Continuous
Original loan amount Continuous
Original property valuation Continuous
Indexed valuation of property at default quarter Continuous
HPI growth rate at start quarter (%) Continuous
HPI growth rate at default quarter (%) Continuous
HPI index at start quarter (non-seasonally

adjusted, quarter, region)
Continuous

HPI index at default quarter (non-seasonally
adjusted, quarter, region)

Continuous

Additional mortgage security cover value (AMS) Continuous
AMS as a percentage of indexed valuation at
default (%)

Continuous

Time on books (years) Continuous
Initial loan to value (LTV) Continuous
Debt to value (DTV) Continuous
Indexed valuation at default quarter to average
valuation for region

Continuous

Previous default indicator Binary
Second applicant indicator Binary
Insurance indicator Binary
Loan term (years) Discrete
Property age Categorical
Security type (flat, detached, semi-detached,
terraced, other)

Categorical

Geographical region (13 levels) Categorical

as follows:

Valuation of securitydefault

=
HPIdef yr,def qtr,region
HPIstart yr,start qtr,region

× Valuation of securitystart. (1)

The valuation at default was then used to calculate
some of the variables in Table 1, such as the debt to value
ratio (DTV) at default and the ratio of indexed valuation at
the default quarter to the average valuation for the region.

3. Statistical models

The three types of models which are fitted to the data
are outlined in Sections 3.1–3.3. In order to set up the
model for the zero-adjusted gamma approach, an investi-
gation into the loss amount distribution was considered.
The loss amount distribution has excess zeroes and a posi-
tively skewed distribution. One way of dealing with excess
zeroes and positive skewness is to apply a mixed discrete-
continuous model for the total loss amount.

Such an approach would involve the assumption that
the portfolio is stratified into two groups: the first group
has zero loss amounts, and the second group has non-zero
losseswhich are assumed tohave a continuous distribution
that accommodates heavy right skewness.

Let yi be the loss amount on the ith account, i =

1, . . . , n. The mixed discrete-continuous probability func-
tion of y can then be written as:

f (y) =


π if y = 0
(1 − π) g(y) if y > 0, (2)
where g(y) is the density of a continuous, right skewed
distribution, and π is the probability of zero loss.

Candidate distributions for the non-zero loss amounts,
g(y), are given in Fig. 2. Three right-skewed distribu-
tions were considered: the gamma, inverse Gaussian and
log normal distributions. The inverse Gaussian has been
shown to be a suitable fit for total claim sizes in motor
insurance policies (Heller et al., 2007). The normal distri-
bution was also presented as a baseline comparison for
the other, right skewed distributions. All of the candidate
distributions were subsequently fitted on a training set
of a random two-thirds sub-sample. Fig. 2 suggests that
the gamma distribution had the best fit for the histogram
of non-zero loss amounts. There was also support for the
fitted gamma distribution, as it produced a lower Akaike
Information Criterion (AIC) than either the inverse Gaus-
sian or log normal distribution (Akaike, 1974). The zero-
adjusted gamma distribution was therefore considered for
modelling f (y); i.e., the gamma distribution was selected
for modelling g(y) and a binomial distribution was used to
model π .

3.1. Zero adjusted gamma model

The probability function of the zero-adjusted gamma
distribution, denoted by ZAGA (µ, σ , π), is defined by
Rigby and Stasinopoulos (2010):

f (y|µ, σ , π)

=


π if y = 0

(1 − π)

 1
σ 2µ

1/σ 2

y
1

σ2 −1e−y/(σ 2µ)

Γ

1/σ 2




if y > 0
for 0 ≤ y < ∞, where 0 < π < 1,
mean µ > 0, dispersion σ > 0, (3)

with:

E(Y ) = (1 − π) µ and

Var (Y ) = (1 − π) µ2 
π + σ 2 .

(4)

The ZAGAmodel is implemented using the Generalized
Additive Models for Location, Scale and Shape (GAMLSS)
framework (Rigby & Stasinopoulos, 2005). This method al-
lows for a wide range of skewed and kurtotic distributions
by explicitly modelling various distributional parameters,
which may include the location/mean, scale/dispersion,
skewness and kurtosis as functions of predictor variables.
Such an approach allows for the fitting of distributions that
do not belong to the exponential family, as featured in the
Generalized Linear Model (GLM) (Nelder & Wedderburn,
1972) and Generalized Additive Model (GAM) (Hastie &
Tibshirani, 1990; Wood, 2006) frameworks.

The GAMLSS approach is also a semi-parametric
method that allows the relationship between the predictor
variables and the response variable to be modelled
either parametrically or non-parametrically using spline
smoothers, the latter of which are a key feature of the GAM
approach.
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Fig. 2. Candidate continuous distributions for non-zero loss amounts on the training set.
3.1.1. Modelling the probability of zero loss and expected
non-zero loss in terms of predictor variables

The ZAGAmodel includes three components. Themean,
µ, and dispersion, σ , of a non-zero loss amount, and the
probability of a zero loss, π , are modelled in terms of
predictor variables using suitable link functions:

log (µ) = η1 = XT
1 β1 +

J1
j=1

hj1

xj1


log (σ ) = η2 = XT

2 β2 +

J2
j=1

hj2

xj2


logit (π) = η3 = XT

3 β3 +

J3
j=1

hj3

xj3


,

(5)

where XT
k βk denote parametric terms, hjk(xjk) are non-

parametric terms such as smoothing splines, and the
distribution parameters are k = 1, 2, 3. The dispersion
of the non-zero loss amount is the squared coefficient
of variation, δ2/µ2, from the exponential family for the
gamma density function (McCullagh & Nelder, 1989),
where δ2 denotes the variance of the non-zero loss amount
distribution.

The predictor variables Xk and xjk may differ based
on the parameter being modelled. This allows for other
predictors to have an impact on whether or not there is
a loss (cf. the model component for π ), the size of that
loss (µ), and the precision of the corresponding estimate
(cf. the model part for dispersion σ ). Also, the hjk(xjk) term
allows the predictors to be modelled non-parametrically.
The log link functions imply the existence of multiplicative
effects on the response variable of the non-zero loss
amount, and also ensure that the predictions will be non-
negative.

The hjk(xjk) functions in this study are modelled using
penalized B-splines (Eilers & Marx, 1996). The inclusion of
such non-parametric smoothing terms has several advan-
tages, including the ability to identify non-linear relation-
ships between the response and predictor variables (Hastie
et al., 2009). Penalized B-splines were chosen because they
are able to select the degree of smoothing automatically
using penalized maximum likelihood estimation. This se-
lection was done by minimizing the Akaike Information
Criterion, i.e., AIC = −2L + kN , with L being the log (pe-
nalized) likelihood, k the penalty parameter of 2, andN the
number of parameters in the fitted model (Akaike, 1974).

3.1.2. Maximum likelihood estimation
According to themodel, each account is associatedwith

a probability of zero loss,π , and a loss amount, y, given that
a loss occurs, which produces a pair (1−π, y). These pairs
are then used to form the following log-likelihood function
term:

ln f (y) = ln f (π) + ln f (y| (1 − π)) . (6)

The log-likelihood is then the sum of Eq. (6) over all
accounts. The maximization of the likelihood proceeds in
two separatemaximizations, one for the component based
on f (π) andone for the component based on f (y| (1 − π)).
We used an algorithm which was described by Rigby
and Stasinopoulos (2005) and is based on penalized
likelihood estimation. The estimates of the probability of
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zero loss, and of the mean and dispersion of g(y), are
used to compute an estimate of f (y) which combines
the probability of loss with the loss amount given that
there is a loss. The independent estimation for f (π) and
f (y| (1 − π)) avoids the difficulty of having to estimate
f (y) directly.

3.1.3. LGD prediction from loss amount
Finally, the predicted value of LGD for each observation

is defined by:

LGD =
E(Y )

EAD
, (7)

where E(Y ) is the account-level fitted value of the loss
amount from the ZAGA model, and EAD is the exposure at
default, or final loan balance.

3.1.4. Variable selection and goodness of fit
Aparsimonious ZAGAmodelwas soughtwhere variable

selection was performed through stepwise selection with
backward elimination. The minimization of the AIC
statistic (Akaike, 1974) was used during this backward
elimination.

To assess the goodness-of-fit of the model, the inde-
pendence of the normalized quantile residuals and their
normality were assessed, in order to verify whether the
model described the systematic part, with the remaining
information being independent and identically distributed
random noise. The residuals were checked by observing
themean, variance, skewness and kurtosis, and by inspect-
ing the residual versus fitted value plots, residual density
plots and qq-plots, as described by Rigby and Stasinopoulos
(2007). In addition, a series of discrimination and calibra-
tion measures were computed, with the results shown in
Section 4.

The model was developed and implemented using
gamlss package (Rigby & Stasinopoulos, 2007) in the
R 2.13.1 software (R Development Core Team, Vienna,
Austria).

3.2. Ordinary least squares with beta transformation model

As another reference model against which to compare
the ZAGA model, an ordinary least squares with beta
transformation model (OLS-beta) was also fitted (Gupton
& Stein, 2005).3 This is awell-known technique that is used
in industry for LGD modelling, and which has also been
used for comparison purposes in the academic literature
(Bellotti & Crook, 2012; Loterman et al., 2012; Qi & Zhao,
2011; Thomas et al., 2012).

This approach assumes that LGD is beta distributed. The
α and β parameters of the beta distribution are derived
from the empirical LGD response variable distribution,

3 A comparison with a standard OLS regression was also considered.
However, the OLS model produced an excess of negative predictions
for LGD (28%–39% of negative predictions, depending on the validation
year used). The OLS method may therefore be more useful with LGD
distributions that are strongly bimodal, such as those observed in credit
card portfolios (Bellotti & Crook, 2012).
and are then used to compute cumulative probabilities.
Subsequently, the inverse standard normal transformation
is used to convert these cumulative probabilities from a (0,
1)-scale to (−∞, ∞) in order to meet the OLS normality
assumption better. Next, OLS regression is performed on
this transformed dependent variable. The values fitted by
the OLS model can be transformed back from (−∞, ∞) to
(0, 1) using the normal distribution; these probabilities are
finally transformed back to the starting distribution using
the inverse beta distribution.

The beta transformation of LGD is given by:

Z = Φ−1 [Beta (LGD, α, β, ε)] , (8)

where Φ−1 is the inverse standard normal distribution,
α and β are positive shape parameters, and ε is a small
adjustment for zero LGD values.

For the OLS-beta approach, an adjustment was neces-
sary, where a small value ε was added to observed zero
values of LGD before the first transformation step. This was
essential because the inverse normal and beta transforma-
tions are undefined at zero. However, we found that the fit
of the OLS regression was quite sensitive to the choice of
ε. Hence, following an approach similar to that of Qi and
Zhao (2011), a sensitivity analysis was performed to select
an optimal value of ε; further details are provided in the
results reported in Section 4.

Note that we chose to model the transformed response
variable using a polynomial OLS regression, which allowed
quadratic and cubic effects for continuous variables. Such
an approach allows non-linear effects to be estimated and
tested. Variable selectionwas performed through stepwise
selection, with backward elimination based onminimizing
the AIC. The OLS-beta model was also developed in R
software.

3.3. Tobit regression model

The LGD distribution is bounded by zero and one, and
a large proportion of accounts for residential mortgages
have zero LGDs. It has been suggested that the Tobit
modelmay bemore appropriate for such data, because any
values below zero or above one are treated as censored.
The LGD response is only observed in the interval [0, 1].
The standard Tobit model assumes a latent variable y∗,
for which the residuals conditional on covariates x are
normally distributed. The two-sided Tobit model is then
given by:

y∗ = βx + ε, where y ∗ |x ∼ N

µ, σ 2 , (9)

and

y = 0, if y∗ ≤ 0,
= y∗, if 0 < y∗ < 1,
= 1, if y∗ ≥ 1.

(10)

Maximum likelihood estimates can be obtained for the
β coefficients; for further details, refer to Greene (1997).
Similar to the previous models, variable selection was
performed through stepwise selection. The model was
implemented in Stata 10.1 software (StataCorp, College
Station, TX, USA).
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3.4. Model validation and testing

The method of walk-forward validation (Gupton &
Stein, 2005) was used to evaluate model performances in
terms of discrimination and calibration. This procedure
involves repeatedly fitting a model on one time period and
testing its performance on a subsequent time period. This
can be considered a special case of cross validation which
features both out-of-sample and out-of-time validation.
Out-of-time validation allows one to assess whether the
modelling approach (as opposed to an individual model) is
robust throughout time and credit cycles. The method also
helps to prevent overfitting, and could be used to check
how reliable the models were.

For the three approaches (ZAGA, OLS-beta and Tobit),
a model was initially fitted to data from the years 1988
to 1993 and validated on the year 1994, which provided
the first validation fold. Next, the training sample was
extended to the period 1988–1994 and the resulting
models were validated on the year 1995. This process was
repeated, moving forward one year at a time, until the last
validation year of 2000 was reached, thus providing seven
years’ worth of validation folds. Using this procedure,
the data used to train the model were never used
to validate the model, which guaranteed proper out-
of-sample and out-of-time testing. Discrimination and
calibration measures were then computed for these seven
years of validation folds in order to test for model
performance differences between the ZAGA, OLS-beta and
Tobit approaches.

A series of discrimination measures for assessing the
risk rankings of accounts were used. In addition to the
Area Under the Receiver Operating Characteristic Curve
(AUC), an industry standard measure, we also report
Spearman’s ρ, a ranked correlation coefficient, Pearson’s
r correlation coefficient, and the H measure, proposed
more recently by Hand (2009). Hand (2009) argues that
the H measure is superior to the AUC, because it is a
coherent estimator of the discrimination performance.
Unlike the AUC, it is not sensitive to the empirical score
distributions of the default and non-default groups in
the sample. The AUC has a deficiency, in that it uses
different misclassification cost distributions for different
classifiers, which implies that the AUC uses different
metrics to evaluate different classification algorithms.
However, theH measuremaintains coherence, because the
misclassification cost distribution functions are given by a
pre-specified beta distribution, for which the symmetric
beta(x; 2, 2) has been proposed as a default. If there
are any disagreements between these discrimination
measures, Hand (2009) argued that the H measure should
be considered the measure of choice for comparing
the performances of the various methods. Note that a
dichotomous response or gold standard variable was
necessary for computing the AUC and the H-measure; this
was created using the average of the validation year as the
cutoff. In other words, both metrics indicate the extent to
which the models are able to distinguish between higher
and lower than average losses in the validation fold.

As a calibration measure, the concordance correlation
(Lin, 1989, 2000) was used to assess the agreement be-
tween the predicted LGD from a given model and the
observed LGD. The concordance correlation, being a mea-
sure of agreement, is different to the Pearson r correlation,
which is a measure of linear association. If the observed
LGD were plotted against the model-based LGD estimates,
a well-calibrated model would produce estimates that fall
on a 45° line through the origin. The Pearson correlation
would fail to detect departures from the 45° line, but agree-
ment measures such as the concordance correlation will
correct for this. Finally, the rootmean square error (RMSE),
a measure commonly used in benchmarking studies, was
also provided to assess the calibration performance further
(Bastos, 2010).

4. Results

The following subsections describe the results of our
experiments. Section 4.1 outlines and discusses a model
fitted to a two-thirds training sample. The subsequent
model validation and testing were done using walk-
forward validation over the entire dataset, producing
seven years’ worth of validation folds, as was described in
Section 3.3.

4.1. Zero-adjusted gamma model

Table 2 lists the ZAGAmodel parameter results obtained
from the training set. Backward elimination resulted in
a total of 14 predictors being selected across the three
components of the ZAGA model. In Figs. 3–5, partial
effects plots are shown for a selection of predictors fitted
with smoothing splines (denoted by s() in Table 2).
The solid lines denote the penalized B-spline smoothing
estimates and the dashed lines represent the point-by-
point standard errors. The smoothing splines estimated
non-linear relationships between the response of the
respective model component (µ, σ , π ) and predictor, and
as such, there was no single regression coefficient or
slope associated with the splines. The splines themselves
represent the ‘slope’. The fitted values for each predictor
capture the average changes in the response variable of
the model component as a result of small changes in a
predictor. In Table 2, the p-values associated with the
smoothing splines denoted by s() were a test of their non-
linearity (Hastie et al., 2009; Rigby & Stasinopoulos, 2005).

As the partial effects plots shown in Fig. 3 are on a
logit scale, and considering that the logit link function
was chosen for the occurrence of a zero loss (π ) model
component, these plots can also be used to identify
potential non-linear relationships between the predictor
and response. Hence, Fig. 3 clearly indicates that several
of the predictors are non-linearly related to the response.

The debt-to-value (DTV) ratio was one of the stronger
predictors for the occurrence of a zero loss, exhibiting
a non-linear negative relationship with the response;
i.e., higher values of DTV result in lower odds of zero
losses. This is an intuitive result, since the risk of having
to repossess and subsequently sell the property at a value
that is lower than the remaining loan amount is expected
to be greater when the loan size is close to or greater
than the estimated market value of the property. The HPI
growth rate at default also had a non-linear but positive
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Table 2
The zero adjusted gamma model for the occurrence of loss and the loss
amount based on a two-thirds training sample.

Model component Estimate SE p-value

logit(π) for occurrence of zero loss

Intercept 3.618 0.100 <0.001
s(HPI growth at default) 0.019 0.001 <0.001
s(AMS to valuation at default) −0.723 0.148 <0.001
s(HPI at start quarter) 0.005 <0.001 <0.001
s(Time on books) 0.098 0.004 <0.001
s(Debt-to-value) −3.783 0.064 <0.001
s(Valuation at default to average

valuation for region)

−0.277 0.022 <0.001

Previous default indicator (yes vs. no) 0.183 0.041 <0.001
Security type (detached vs. flat) 0.737 0.042 <0.001
Security type (semi-detached vs. flat) 0.648 0.029 <0.001
Security type (terraced vs. flat) 0.434 0.025 <0.001
Security type (other vs. flat) 0.808 0.155 <0.001
Loan term (16–25 years vs. 0–15 years) −0.775 0.060 <0.001
Loan term (26–40 years vs. 0–15 years) −0.217 0.072 0.003
Property age (1919–45 vs. <1919) 0.126 0.029 <0.001
Property age (1945+ vs. <1919) 0.082 0.022 <0.001
Property age (missing vs. <1919) 0.185 0.297 0.534
Region (Northern Ireland vs. England
and Wales)

0.801 0.102 <0.001

Region (Scotland vs. England and
Wales)

0.298 0.051 <0.001

log(µ) of loss amount given loss occurred

Intercept −0.367 0.130 0.005
s(log[Balance at default]) 0.851 0.014 <0.001
s(HPI growth at default) −0.005 0.001 <0.001
s(AMS to valuation at default) 0.146 0.055 <0.001
s(HPI at start quarter) 0.001 <0.001 <0.001
s(Time on books) −0.015 0.002 <0.001
s(Debt-to-value) 0.785 0.031 <0.001
s(Valuation at default to average
valuation for region)

0.119 0.013 <0.001

Previous default indicator (yes vs. no) −0.058 0.021 0.006
Security type (detached vs. flat) −0.193 0.015 <0.001
Security type (semi-detached vs. flat) −0.230 0.010 <0.001
Security type (terraced vs. flat) −0.176 0.008 <0.001
Security type (other vs. flat) 0.015 0.062 0.806
Second applicant indicator (yes vs. no) −0.020 0.007 0.005
Property age (1919–45 vs. <1919) −0.100 0.010 <0.001
Property age (1945+ vs. <1919) −0.171 0.008 <0.001
Property age (missing vs. <1919) −0.050 0.132 0.703
Region (Northern Ireland vs. England
and Wales)

0.168 0.074 0.024

Region (Scotland vs. England and
Wales)

−0.165 0.028 <0.001

log(σ ) of loss amount given loss occurred

Intercept −0.697 0.008 <0.001
s(HPI growth at default) 0.019 0.001 <0.001
s(Time on books) 0.035 0.002 <0.001
Insurance policy at default (yes vs. no) 0.079 0.016 <0.001
Region (Northern Ireland vs. England
and Wales)

0.393 0.050 <0.001

Region (Scotland vs. England and
Wales)

0.155 0.025 <0.001

s() is a penalized B-spline smoothing function.

relationship with the response, indicating that zero losses
are more common in time periods where the housing
market is doing well. The time on books predictor had
a positive relationship with the response (which again is
intuitive, as a larger part of the loan will have been paid
off by the time of default); the effect wasmost pronounced
for the shorter periods, with a being plateau observed after
a certain time point. The indexed property valuation at
default over the average valuation for the region had a
negative relationship. This suggests that relatively higher
priced properties had greater chances of incurring losses
after default. The bumpiness observed in some of the plots
was due to the small numbers of observations in certain
ranges of the covariates.

Next, Fig. 4 shows a selection of partial effects plots
on a log scale for the mean component, µ, of the gamma
distribution, i.e. the loss amount given that a loss occurs.
The solid line again represents the penalized B-spline
smoothing estimate, while the dashed lines represent the
point-by-point standard errors. As the mean component
was developed using the log link function, these plots
can be used to check for possible non-linear relationships
between the predictor and the response. Please note that
other partial effects plots of predictors from Table 2 have
been omitted for the sake of brevity.

The plots in Fig. 4 suggest that the four predictors
again had non-linear relationships with the response. The
indexed debt-to-value ratio (DTV) exhibited a positive re-
lationship with the response, with larger DTVs contribut-
ing greater factor changes to the mean. As expected, the
final loan balance was one of the most important predic-
tors for the mean component, and had a positive relation-
ship with the response (i.e., larger loan balances implied
greater losses), with the effect being more pronounced for
the lower range of loan balances. The plot for the time on
books predictor suggests a bathtub relationship, with the
lowest and highest values yielding somewhat larger losses,
whilst the plot is relatively flat for the middle part of the
range. Overall, the predictor for the valuation at default
relative to the average valuation for the region also had
a positive relationship with the response. However, there
appeared to be two distinctmodes at the range limits. Such
an effect may be observed because the lowest and highest
priced properties were more difficult to sell, thus resulting
in larger loss amounts.

Fig. 5 displays another selection of partial effects plots
on a log scale, this time for the dispersion component (σ )
of the gamma distribution for loss amount given that a
loss occurred. For example, similarly to Leow and Mues
(2012), we observe that the dispersion for time on books
is shown to mostly have a positive effect on the dispersion
(i.e., the exact loss is harder to estimate the longer an
account has been on the books prior to default—this is
intuitive, as a valuation based on market information may
be less accurate for properties sold a fairly long time ago),
until the dispersion seemed to reduce again after a certain
point.

4.2. Ordinary least squares with beta transformation model

In order to develop the OLS-beta model, an adjustment
ε for zero LGDs was necessary. The sensitivity of ε was
investigated by fitting the model on a wide range of
ε values from 1e−11 to 0.06 for each available year.
Results are shown in Table 3 for three representative years.
The bootstrapped standard errors were computed on 100
bootstrapped samples, and suggested that the in-sample
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Fig. 3. Occurrences of zero loss amounts for the zero adjusted gamma model.
Fig. 4. Mean of the loss amount given that a loss occurred for the zero adjusted gamma model.
Fig. 5. Dispersion of the loss amount given that a loss occurred for the zero adjusted gamma model.
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Table 3
Model diagnostics of the ε values for representative years.

Year ε R2 Bootstrap SE RMSE Bootstrap SE

1997 1.00E−11 0.301 0.002 1.391 0.003
0.0001 0.310 0.002 0.815 0.002
0.0005 0.312 0.002 0.731 0.002
0.001 0.312 0.002 0.693 0.001
0.005 0.314 0.002 0.610 0.001
0.01 0.313 0.002 0.583 0.001
0.05 0.305 0.002 0.593 0.002
0.06 0.301 0.002 0.606 0.002

1998 1.00E−11 0.295 0.002 1.385 0.003
0.0001 0.304 0.002 0.811 0.002
0.0005 0.305 0.002 0.728 0.002
0.001 0.306 0.002 0.691 0.002
0.005 0.307 0.002 0.608 0.002
0.01 0.307 0.003 0.581 0.002
0.05 0.298 0.003 0.593 0.002
0.06 0.295 0.003 0.606 0.002

1999 1.00E−11 0.293 0.002 1.367 0.003
0.0001 0.301 0.002 0.801 0.002
0.0005 0.303 0.002 0.719 0.002
0.001 0.303 0.002 0.682 0.002
0.005 0.304 0.002 0.601 0.002
0.01 0.304 0.003 0.575 0.002
0.05 0.294 0.003 0.591 0.002
0.06 0.291 0.003 0.604 0.002

estimates of R2 and RMSE were reasonably precise. The
findings indicated that the optimal value of ε was 0.01,
as this was consistently the value at which the R2 was
arguably maximized and the RMSE was minimized.

Given this optimal value of ε, the estimated parameters
of an OLS-beta polynomial regression model based on
a random two-thirds training sample are displayed in
Table A.1 of the Appendix. The fitted OLS-beta model
achieved an adjusted R2 value of 0.298. Walk-forward
validation results were also produced using the same ε
value of 0.01 and are discussed further in the following
subsection.

4.3. Tobit regression model

The fitted parameters of a Tobit regressionmodel based
on a random two-thirds training sample are listed in
Table A.2 of the Appendix. The resulting model achieved
a McFadden’s Pseudo R2 of 0.338, and its walk-forward
validation results are discussed in the next section.

4.4. Discrimination and calibration measures based on walk-
forward validation

Walk-forward validation was performed and discrimi-
nation and calibration measures were computed for each
validation year from 1994 to 2000 (see Fig. 6). The perfor-
mance of the ZAGA approach was measured as a whole for
predicting LGD (not the loss amounts). The discrimination
results (i.e., the Pearson r and Spearman’s ρ, the AUC and
theH-measure) indicated that the ZAGAmodels fairly con-
sistently showed better discrimination performances than
the OLS-beta models. Only in 1996 did the OLS-beta ap-
proach discriminate marginally better according to Spear-
man’s ρ and the AUC. Tobit performed similarly to ZAGA
according to Spearman’s ρ measure, and according to the
Pearson r for some years. The AUC and the H-measure in-
dicated that ZAGA discriminated better than Tobit formost
years.

Calibration results (which included the concordance
correlation rc and RMSE) suggested that the ZAGA model
also showed a superior calibration performance for most
of the validation years relative to OLS-beta. The year
2000 was the only year in which OLS-beta had a similar
calibration performance to ZAGA in terms of RMSE. The
Tobit model displayed a poorer concordance correlation
for most years, but was competitive with the ZAGA model
according to the RMSE measure.

In addition to the statistical measures of discrimination
and calibration, Fig. 7 also shows the mean LGD of the
observed and expected values, grouped into 10 risk bands
of equal frequency for four representative years. If the
expected values were perfect, the plotted points would lie
on the 45° line of perfect prediction. For the years shown,
the ZAGA model had average expected LGD values which
were closer to the line of perfect prediction, suggesting
a higher calibration ability than the OLS-beta model. The
competitive calibration of the Tobit model is apparent
in Fig. 7, where ZAGA provides a modest improvement
in calibration performance. In 1994, all three models
appeared to underestimate LGD, with the underestimation
beingmost noticeable for the OLS-betamodel, where there
were more predictions near zero (ε). Generally, the ZAGA
model discriminated well between the lower and higher
risk bands.

Finally, Fig. 8 plots the mean observed minus the fore-
cast (expected) LGD for the validation years 1994–2000. If
the models were perfect, the plotted values would lie on
the horizontal line where y = 0. Again, the ZAGA model
was calibrated better than the OLS-beta for all seven years,
and was improved upon modestly for a majority of years
by the Tobit model. All three of the models showed larger
mean errors in 1997. The Tobit model was calibrated bet-
ter than the ZAGAmodel in 1996 and 1997, whereas ZAGA
had higher calibrations for 1998, 1999 and 2000.

5. Conclusions and future research

This paper develops and empirically validates a zero-
adjusted gamma (ZAGA) model with a semi-parametric
formulation for estimating loss given default amounts in
a residential mortgage loan portfolio. The model includes
log-additive components for the mean and dispersion of
loss amounts given that a loss occurs, as well as a logistic-
additive component for the probability of a zero loss. These
model components are estimated independently, and can
be fitted with either the same set of covariates or different
selections. The relationship between the response variable
and the covariates can be modelled either parametrically
or non-parametrically. In order to estimate LGD, we then
take the predicted loss amount values from the model
and divide them by the exposure or loan balance at the
observation time. In that sense, we estimate LGD through
a direct estimate of the loss amount.

One of the benefits of the suggested approach is that
the three components of the mixture model provide the
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Fig. 6. Discrimination and calibration measures with walk-forward validation for LGD model performance.
analyst with a three-way interpretation, by estimating
(i) the factors that predict the occurrence of a loss, (ii) the
factors that influence the size of the resulting loss amount,
and (iii) the factors that influence the dispersion of the loss
amount. The dispersion estimates could be used to provide
more conservative estimates where the parameters are
less certain, which would be useful for managing model
risk in a banking environment. The ZAGA model allows
further insights into the factors that predict LGD than the
interpretations offered by the OLS-beta and Tobit models,
which may not be as intuitive.

Another advantage of the semi-parametric nature of the
model is that the method does not imply a ‘black box’
approach for interpreting the effects of individual covari-
ates. The relationships between the response variable and
the covariates are modelled using flexible non-parametric
splines, and the interpretation of the effect size remains
explicit. This transparent feature of the method may be
useful when explaining or defending an implemented
model to regulators.

When tested empirically on a large dataset of UK mort-
gage defaults using a walk-forward validation procedure,
the proposed method was shown to perform favourably,
in terms of both discrimination and calibration, relative to
two well-known industry methods, namely the OLS-beta
approach adopted by LossCalc (Gupton & Stein, 2005) and
the Tobit regression model (Greene, 1997; Tobin, 1958).
We therefore conclude that the zero adjusted gamma
model presents a powerful alternative to existing LGD
modelling approaches, by allowing one to produce LGD es-
timates, not by modelling the often inconvenient distribu-
tion of the LGD rate itself, but instead bymodelling the loss
amount using a semi-parametric mixture model.
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Fig. 7. Mean LGD by decile risk bands with walk-forward validation for four representative years.
Fig. 8. Difference between the mean observed and forecast LGD with
walk-forward validation.

One limitation of our study is that it is possible that
the model’s estimate of the loss amount will exceed the
actual loan balance, and hence predict LGD values beyond
the value of 1 if left untruncated. If such a situation would
be expected to occur regularly, unlike in our experiments,
and the model developer considers it to be an issue, the
choice of the distribution for the loss amount should be
re-examined, because the gamma distribution may not be
suitable for such datasets. Instead, other types of skewed
distributions could be considered, for example the inverse
Gaussian or log normal.

We suggest several opportunities for future research.
In the Basel II Accord, a downturn and stressed LGD
estimate is required for regulatory capital requirements.
One approach to the computation of downturn estimates
for our model would be to provide stressed values of
key covariates that enter the model. For example, loan-
to-value, Halifax HPI growth and HPI index values may
be scaled to appropriate downturn economic conditions
prior to model estimation. As the gamma component
for positive loss amounts estimates the conditional mean
and dispersion, the variance and quantiles of the total
loss amounts can be computed from the fitted mixture
density. Hence, quantiles or percentiles of predicted
LGD can be produced, which may also be useful for
conservative, downturn or stressed estimates of LGD for
Basel regulations. In addition, the conditional quantiles
of the loss amount may be better estimates of LGD than
the conditional mean which we have focussed on. Indeed,
there has been research in credit risk modelling that has
suggested that quantilesmay bemore useful for prediction
(Somers & Whittaker, 2007; Zhang & Thomas, 2012).

Another possible extensionwould be to explorewheth-
er the performance of the zero-adjusted gamma model
could be improved further by including a more compre-
hensive set of macroeconomic variables, as our current
study has only included house price index covariates. Due
to limitations in the data, we did not have a panel dataset
structure. Hence, lagged covariates were not used in the
models, although they would be expected to improve the
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predictive performance further. Also, a fourth avenue for
research would be to estimate the total loss arising from
accounts at the portfolio level, at various time points. Such
an approach was considered by Heller et al. (2007), who
estimated the total claim size for a portfolio of Australian
motor insurance policies using their discrete-continuous
mixture model.

Finally, our study has used a logistic-additive model
to develop the model component for the occurrence of
zero loss. There are further opportunities to develop
potentially superior models by considering other types of
binary classification methods, perhaps based on data min-
ing or ensemble methods such as regression trees (Bastos,
2010), support vector machines, neural networks (Baesens
et al., 2003), or random forests (Breiman, 2001). However,
it should be noted that several of these methods are ‘black
box’ approaches, where the effects of individual explana-
tory variables cannot be interpreted conveniently.
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Appendix
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Table A.1
Ordinary least squares regressions with a beta transformation on LGD,
based on a two-thirds training sample.

Predictor Estimate SE p-value

Intercept 1.698 0.135 <0.001
Indexed valuation at default −1.92E−06 1.35E−07 <0.001
Indexed valuation at default2 6.79E−13 6.90E−14 <0.001
Indexed valuation at default3 −6.33E−20 9.00E−21 <0.001
Balance at default 2.57E−06 1.91E−07 <0.001
Balance at default2 −1.40E−12 1.45E−13 <0.001
Balance at default3 1.87E−19 2.47E−20 <0.001
HPI growth at default −0.003 3.70E−04 <0.001
HPI growth at default2 −3.27E−04 3.17E−05 <0.001
HPI growth at default3 6.59E−06 6.83E−07 <0.001
AMS to valuation at default 0.768 0.053 <0.001
AMS to valuation at default2 −3.053 0.610 <0.001
HPI at start quarter −0.015 0.002 <0.001
HPI at start quarter2 7.23E−05 1.19E−05 <0.001
HPI at start quarter3 −1.12E−07 2.05E−08 <0.001
Time on books (years) −0.240 0.005 <0.001
Time on books (years)2 0.033 0.001 <0.001
Time on books (years)3 −0.001 4.45E−05 <0.001
Debt-to-value (DTV) −1.245 0.057 <0.001
Debt-to-value (DTV)2 1.807 0.053 <0.001
Debt-to-value (DTV)3 −0.505 0.015 <0.001
Valuation at default to average
valuation for region

−0.202 0.028 <0.001

Valuation at default to average
valuation for region2

0.117 0.014 <0.001

Valuation at default to average
valuation for region3

−0.015 0.002 <0.001

Previous default (yes vs. no) −0.028 0.008 <0.001
Security type (detached vs. flat) −0.215 0.009 <0.001
Table A.1 (continued)

Predictor Estimate SE p-value

Security type (semi-detached
vs. flat)

−0.234 0.007 <0.001

Security type (terraced vs. flat) −0.173 0.006 <0.001
Security type (other vs. flat) −0.209 0.028 <0.001
Loan term (16–25 years vs.
0–15 years)

0.117 0.009 <0.001

Loan term (26–40 years vs.
0–15 years)

0.018 0.012 0.151

Second applicant (yes vs. no) −0.018 0.005 <0.001
Geographical region (Northern
Ireland vs. England and
Wales)

−0.067 0.018 <0.001

Geographical region (Scotland
vs. England and Wales)

−0.090 0.011 <0.001

R2
= 0.298; Adj. R2

= 0.298; AIC = 129,912; BIC = 130,236.

Table A.2
Tobit regression on LGD based on a two-thirds training sample.

Predictor Estimate SE p-value

Intercept 0.905 0.150 <0.001
Indexed valuation at default −3.20E−06 1.77E−07 <0.001
Indexed valuation at default2 1.96E−12 1.41E−13 <0.001
Indexed valuation at default3 −2.86E−19 2.60E−20 <0.001
Balance at default 3.04E−06 2.29E−07 <0.001
Balance at default2 −2.40E−12 2.35E−13 <0.001
HPI growth at default −0.001 0.000 0.031
HPI growth at default2 −0.0004 0.000 <0.001
HPI growth at default3 7.05E−06 6.82E−07 <0.001
AMS to valuation at default 1.421 0.117 <0.001
AMS to valuation at default2 −5.320 0.796 <0.001
AMS to valuation at default3 6.762 1.589 <0.001
HPI at start quarter −0.017 0.002 <0.001
HPI at start quarter2 0.0001 0.0000 <0.001
HPI at start quarter3 −1.20E−07 2.08E−08 <0.001
Time on books (years) −0.181 0.005 <0.001
Time on books (years)2 0.026 0.001 <0.001
Time on books (years)3 −0.001 0.000 <0.001
Debt-to-value (DTV) 1.948 0.095 <0.001
Debt-to-value (DTV)2 −0.696 0.074 <0.001
Debt-to-value (DTV)3 0.061 0.018 0.001
Valuation at default to
average valuation for region

−0.204 0.026 <0.001

Valuation at default to
average valuation for region2

0.128 0.013 <0.001

Valuation at default to
average valuation for region3

−0.015 0.002 <0.001

Previous default (yes vs. no) −0.032 0.008 <0.001
Security type (detached vs. flat) −0.162 0.008 <0.001
Security type (semi-detached
vs. flat)

−0.171 0.006 <0.001

Security type (terraced vs. flat) −0.110 0.005 <0.001
Security type (other vs. flat) −0.112 0.025 <0.001
Loan term (16–25 years vs.
0–15 years)

0.144 0.011 <0.001

Loan term (26–40 years vs.
0–15 years)

0.043 0.013 0.001

Second applicant (yes vs. no) −0.012 0.004 0.001
Geographical region (Northern
Ireland vs. England and Wales)

−0.168 0.019 <0.001

Geographical region (Scotland
vs. England and Wales)

−0.092 0.010 <0.001

Pseudo R2
= 0.338; AIC = 56,079; BIC = 56,393; σ (SE) = 0.356

(0.002).
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Table A.3
R code for fitting a zero adjusted gammamodel with penalized B-splines.

library(gamlss)
mzaga < - gamlss(Loss2 ∼ pb(x1, method =‘‘GAIC′′) +

pb(x2, method =‘‘GAIC′′) + · · · + factor(x5),
sigma.fo = ∼

pb(x1, method =‘‘GAIC′′) + · · · + factor(x5),
nu.fo = ∼ pb(x2, method =‘‘GAIC′′) + · · ·,
data = train, family = ZAGA)

summary(mzaga)

Table A.4
R code for fitting an ordinary least squares with beta transformation
model.

# Add epsilon to LGD values of zero or less
LGD_adj[LGD<=0] <- 0.01

# Compute alpha and beta for beta distribution
Mu <- mean(LGD_adj)
Var <- var(LGD_adj)
Alpha < - (Mu∧2∗(1-Mu)/Var)-Mu
Beta <- Alpha*(1/Mu-1)

# Transform LGD to beta distributed variable and
then transform to a normal distributed variable
LGD_cumBeta = pbeta(LGD_adj, shape1=Alpha,
shape2=Beta)
LGD_invNorm = qnorm(LGD_cumBeta, mean=Mu,
sd=sqrt(Var))
LGD_invstdNorm = qnorm(LGD_cumBeta)

mols_beta < - lm(LGD_invstdNorm ∼

x1 + x2 + ... + factor(x5), data = train)
summary(mols_beta)

Table A.5
Stata code for fitting a two-sided Tobit regression model.

xi: tobit lgd x1 x2 x3... i.x5 i.x6, ll(0) ul(1)
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