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a b s t r a c t

We investigate alternative robust approaches to forecasting, using a new class of robust
devices, contrasted with equilibrium-correction models. Their forecasting properties are
derived facing a range of likely empirical problems at the forecast origin, including mea-
surement errors, impulses, omitted variables, unanticipated location shifts and incorrectly
included variables that experience a shift. We derive the resulting forecast biases and error
variances, and indicate when the methods are likely to perform well. The robust methods
are applied to forecasting US GDP using autoregressive models, and also to autoregressive
models with factors extracted from a large dataset of macroeconomic variables. We con-
sider forecasting performance over the Great Recession, and over an earliermore quiescent
period.
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1. Introduction

In recent times, there has been increased interest in
forecasting with diffusion indices and factor models: see
e.g., Castle, Clements, and Hendry (2013), Forni, Hallin,
Lippi, and Reichlin (2000), Peña and Poncela (2004), Schu-
macher and Breitung (2008) and Stock and Watson (1989,
1999, 2009).3 In Castle, Clements, and Hendry (2013), we
investigated which approach to forecasting output levels
and growth using factors, variables, both, or neither per-
formed best on quarterly data over the Great Recession
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to 2011. After updating and extending the dataset from
Stock and Watson (2009), we used Autometrics (as de-
scribed inDoornik (2009), andDoornik andHendry (2013))
for in-sample modeling, which allowed all the principal
components of the variables as well as the original vari-
ables to be included jointly, while also tackling multi-
ple breaks by impulse-indicator saturation (IIS: see Cas-
tle, Doornik, & Hendry, 2012, and Johansen & Nielsen,
2009). Forecasting US GDP growth over 1-, 4- and 8-step
horizons showed that factor models were somewhat more
useful for short-term forecasting, but their relative per-
formance declined as the forecast horizon increased. We
found (like many other investigators) that it was difficult
to beat scalar autoregressions: Fildes and Stekler (2002)
provide a survey of macroeconomic forecasting before the
Great Recession, which the follow up in Stekler and Talwar
(2011) showwas not well predicted. Our own forecasts for
GDP levels highlighted the need for robust strategies (such
as intercept corrections) when location shifts (i.e., shifts in
the previous unconditional mean) occurred. The empirical
results were consistent with the forecast-error taxonomy
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for factor models, which highlighted the impacts of loca-
tion shifts on systematic forecast-error biases.

In this paper, we develop the theory of forecasting for
members of a robust class of forecasting model motivated
by Hendry (2006). The robust approach proposed is
applicable to factor models and models with variables
(as well as hybrids), almost all of which are variants of
equilibrium-correctionmodels (EqCMs), but seeks to avoid
the systematic forecast failure symptomatic of EqCMs after
a location shift. The class of robust forecasting devices
we introduce includes that proposed in Hendry (2006)
as the most flexible, and hence the most volatile, at
one end, with the least flexible, conventional full-sample
vector equilibrium-correctionmodel (VEqCM) at the other,
having recursive updating, rollingwindows, and smoothed
robust devices as intermediate cases. We then compare
and contrast findings for forecasting US GDP over both a
quiescent period (2000(1)–2006(4)) and a period including
the Great Recession (2007(1)–2011(2)) to see how well
robust forecasting devices motivated by Hendry (2006)
perform in the face of breaks.

The structure of the paper is as follows. Section 2 re-
views the problems confronting VEqCMs as non-robust
forecasting models when unanticipated location shifts oc-
cur at or near the forecast origin. Section 2.1 considers
changes in dynamics to show they will not by themselves
generate systematic forecast failure. Section 3 describes
the new class of robust forecasting devices, explains why
they can avoid systematic forecast failure, then investi-
gates two members that differ in their smoothness, and
compares how they react under: (i) constant parameters in
Section 3.1, then to (ii) measurement errors in Section 3.2,
(iii) unknown impulses in Section 3.3, (iv) unanticipated
location shifts at the forecast origin in Section 3.4, (v) un-
knowingly omitted variables in Section 3.5, (vi) changing
forecast origins after shifts in Section 3.6 and (vii) making
longer-horizon forecasts in Section 3.7: Section 3.8 draws
some conclusions on robustifying VEqCMs. Section 4 ap-
plies that analysis to factor-based models for forecasting
facing a location shift. Section 4.1 considers location shifts
induced by changes over time in the relevance of ‘explana-
tory variables’. Section 5 presents the empirical analysis
forecasting US GDP over the period 2000(1)–2011(2), di-
vided as noted above. Section 6 concludes.

2. Vector equilibrium-correction models

This section introduces our notation and establishes a
benchmark by showing that VEqCMs are not robust when
forecasting after an unanticipated location shift, so can suf-
fer systematic forecast failure (see e.g., Clements &Hendry,
1999, 2006). Explaining why equilibrium-correction mod-
els are susceptible to forecast failure in such circumstances
leads us to introduce the new class that is robust.

Consider a data generation process (DGP) given by the
first-order open VEqCM for an n-dimensional time series
{xt , t = 0, . . . , T }, integrated of first order, denoted I(1):

1xt = γ + α

β′xt−1 − µ


+ φ′(zt−1 − κ) + ϵt (1)

where ϵt ∼ INn [0,�ϵ], denoting an independent normal
random vector with mean E [ϵt ] = 0 and variance V [ϵt ] =
�ϵ . In addition to lags of the xt ’s, we allow that xt may
depend on a set of k explanatory variables zt , whichmay be
I (0) individual variables and/or factors. As indicated by (1),
1xt responds to disequilibria between zt−1 and its mean
E [zt−1] = κ, so the DGP is also equilibrium-correcting
in the zt ’s. However, the omission of zt−1 is not known
to the investigator. In (1), both 1xt and β′xt are I (0),
with equilibrium mean E


β′xt


= µ and average growth

E [1xt ] = γ in-sample. Then (1) is incorrectly estimated
as:

1xt =γ +α β′

xt−1 −µ (2)

where E [γ] = γe and E [µ] = µe, and usually γe ≠ γ
and µe ≠ µ because of the model mis-specification. In
general, there will also be small-sample biases in these
estimates, but we ignore these to sharpen the analysis. We
also ignore biases and variances in estimating α and β, as
well as changes therein (as discussed in Section 2.1).

Location shifts are the most pernicious problem for
forecasting, since when γ,µ and κ shift to γ∗,µ∗ and κ∗

at time T , the DGP becomes:

1xT+1 = γ∗
+ α


β′xT − µ∗


+

φ∗
′

(zT − κ∗) + ϵT+1 (3)

where we have allowed the coefficient of the omitted
vector to change aswell, so the 1-step ahead forecast errors
from:

1xT+1|T =γ +α β′

xT −µ (4)

have a mean of:
γ∗

− γe


− α


µ∗

− µe

−

φ∗
′

(κ∗
− κ). (5)

The extent of forecast failure depends on themagnitudes of
themean shifts in (5), but can be very large (see e.g., Castle,
Fawcett, & Hendry, 2010). In fact, using (4) when the DGP
is (3) leads to all of the following errors:

(ia) ‘deterministic shifts’ of (γ, µ, κ) to (γ∗,µ∗ κ∗);
(ib) ‘stochastic breaks’ of φ to φ∗, although shifts in α

and β are also perfectly possible;
(iia,b) inconsistent parameter estimates γe and µe (and

potentially also in α and β) from the unknown
omission of zt−1;

(iii) forecast origin uncertainty whenxT ≠ xT (consid-
ered later though not explicitly included above);

(iva,b) estimation uncertainty from V[γ, α, β, µ];
(v) omitted variables, zT ;
(vi) innovation errors, ϵT+1.

When (4) is still used to forecast the outcomes from (3)
even after several periods, so that:

1xT+h|T+h−1 =γ +α β′

xT+h−1 −µ (6)

then the forecast errorϵT+h|T+h−1 = 1xT+h −1xT+h|T+h−1
has a persistent bias (even assuming E [zT+h−1] = κ∗) of:

E
ϵT+h|T+h−1


=

γ∗

− γe


− α


µ∗

− µe


(7)

so the first two components in (5) continue to cause sys-
tematic mis-forecasting into the future until the estimated
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model is revised. The problem is that equilibrium cor-
rection always corrects back to the old equilibrium, de-
termined by γ, µ, irrespective of whether or not the
equilibrium has shifted. Even in the absence of model mis-
specification, systematic mis-forecasting will occur when
there is a break: using the pre-break, in-sample DGP with
the population values of the parameters, the equivalent of
(6) becomes:

1xT+h|T+h−1 = γ + α

β′xT+h−1 − µ


(8)

with a forecast error of:

E
ϵT+h|T+h−1


=

γ∗

− γ

+ α


µ∗

− µ


(9)

which is of the same form as (7). Consequently, (4) is a
hazardous basis for forecasting after location shifts, even
when it is a ‘good’ in-samplemodel, as the DGP is bound to
be (compare Allen & Fildes, 2005).

2.1. Changes in dynamics

There are other possible shifts than changes in γ andµ.
If instead, α in0 = (In +αβ′) changes at time T to α∗, with
γ,µ and β constant, the new DGP in levels is:

xT+h = γ − α∗µ+ 0∗xT+h−1 + ϵT+h (10)

which seems to involve a shift. However, (10) can be writ-
ten as:

1xT+h = γ + α∗

β′xT+h−1 − µ


+ ϵT+h.

This formulation entails no permanent changes in either
E [1xT+h] or E


β′xT+h


so there is no impact on the

long-run of a change in dynamics when no location shift
occurs. Consequently, the change in αwill be nearly unde-
tectable. Similar considerations apply to changes inβwhen
the equilibriummean shifts accordingly to maintain a zero
expected equilibrium deviation. Consequently, we take α
and β as constant with known population values in the re-
mainder of the paper.

3. A class of robust forecasting devices

There are a number of possible solutions to the failure
of VEqCMs to converge to a new equilibrium after a lo-
cation shift, including rapid estimation updating (e.g., re-
cursive or rolling windows) and intercept corrections. In
this section, we develop then analyze a new class of robust
forecasting devices that can avoid some of the systematic
forecast failure described in the previous section. We in-
vestigate twomembers that differ in their smoothness, and
compare how they react (i) under constant parameters in
Section 3.1, then (ii) to measurement errors (Section 3.2),
(iii) unknown impulses (Section 3.3), (iv) unanticipated lo-
cation shifts (Section 3.4) at the forecast origin and (v) un-
knowingly omitted variables (Section 3.5). Then Section 3.6
considers the consequences of shifting the forecast origin
through time, and Section 3.7 discusses the corresponding
longer horizon forecasts of levels and growth rates. Sec-
tion 3.8 summarizes the results on robustifying VEqCMs.
The basis of the approach can be illustrated by using the
first difference of (2) for 1-step forecasts:

1xT+h|T+h−1 = 1xT+h−1 +αβ′

1xT+h−1 (11)

as differencing eliminates the ‘deterministic shifts’ for the
included variables, and converts location shifts to im-
pulses. However, there is a deeper reason why such a dif-
ferencing strategy might work. Eq. (11) is also:

1xT+h|T+h−1 =


In +αβ′


1xT+h−1 (12)

where from (1), h > 2 periods after the break, 1xT+h−1 is
in fact generated by:

1xT+h−1 =

γ∗

+ α

β′xT+h−2 − µ∗


+φ∗′(zT+h−2 − κ∗)


+ ϵT+h−1 (13)

so that:1xT+h|T+h−1 =


In +αβ′

 
γ∗

+ α

β′xT+h−2 − µ∗


+ (φ∗)′(zT+h−2 − κ∗)


+ ϵT+h−1


. (14)

Then the term in brackets [· · ·] in (14) contains everything
you ever wanted to knowwhen forecasting—and you don’t
even need to ask. Specifically, without knowing anything
about the location shifts or the omitted variables, the fore-
cast given by (14):

(Ia) has the correct γ∗,µ∗ and κ∗, so adjusts to the new
equilibrium;

(Ib) had α and β also shifted, (14) would still have the
right adjustment speeds and cointegration;

(IIa,b) the correct population parameter values in [· · ·] are
incorporated without any estimation biases;

(III) but forecast origin uncertainty due to xT+h−2 ≠

xT+h−2 could be a problem (discussed below);
(IV) there is no estimation uncertainty in [· · ·];
(V) zT+h−2 is included despite the omitted variables in

the VEqCM;
(VI) innovation errors, ϵT+h−1 remain.

Robust devices are a formof automatic ‘learning device’,
in that later forecasts reflect location shifts when forecast-
ing after they have occurred, even when the modeler is
unaware of their occurrence. Although (14) usesα andβ,
where α and β need to be estimated and could shift, they
are well-determined full-sample estimates. This analysis
helps explain the past ‘success’ of random-walk type fore-
casts, 1xT+h|T+h−1 = 1xT+h−1 whereαβ′

= 0.
An alternative expression for (11) complements this

explanation, writing it as:1xT+h|T+h−1 = 1xT+h−1 +α β′

xT+h−1 −β′

xT+h−2


= γ +α β′

xT+h−1 −µ . (15)

In (15), 1xT+h−1 can be interpreted as the highly adaptive
estimatorγ of the growth rate γ in (1), and the previous
value of the cointegrating combination, β′

xT+h−2 = µ,
estimates µ. We use γ and µ as shorthand for these
estimates, although they both depend on T and h. In this
interpretation, both γ andµ are replaced by instantaneous
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estimators that are unbiased both before and some time
after the population parameters have shifted, since for h >
2, E


β′xT+h−2


≃ µ∗ and E [1xT+h−1] ≃ γ∗.

This reinterpretation of the approach in Hendry (2006)
to robustifying forecasting models after location shifts
defines a class of forecasting devices given by:

1xT+h|T+h−1 =
1
r

r
i=1

1xT+h−i

+αβ′

xT+h−1 −
1
m

m
i=1

β′

xT+h−1−i


(16)

where the instantaneous estimatesγ and µ are replaced
by local averages when r > 1 and m > 1, and we do not
require r = m. Then r = m = 1 gives (11). The adapta-
tion to unanticipated location or growth shifts is slowed by
higher values of r andm, but the forecastswill be smoother,
less inclined to overshoot at the end of a break, and conse-
quently behave better when there are no further location
shifts.

Four well-known forecasting devices are special cases
of (16). First, the recursively updated full-sample esti-
mated model in (1) essentially uses (for r = m = T +

1, . . . , T + h − 1, and K = 2):

γ (r) =
1

(r − K + 1)

r
t=K

1xt and

µ(m) =
1

(m − K + 1)

m
t=K

β′

xt−1. (17)

The full-sample VEqCM will deliver the ‘smoothest’ fore-
casts, andwill be bestwhen there are no location shifts, but
is the least robust to location shifts as noted in the previous
section. Moreover, updating the estimates of α and β after
a location shift can lead to the loss of cointegration (see
Castle et al., 2010), as the estimate of α is driven towards
zero to eliminate the adverse impact of the shift in µ.

Second, rolling windows use (17) with K = r − s for
a fixed s > 1, and m = r , so are more or less smooth or
robust after a location shift depending on the length of the
window, again noting that estimates of α and β may also
be updated. Third, and at the other extreme to the VEqCM,
(11) with r = m = 1 is the most robust after location
shifts, but also produces the noisiest forecasts, with esti-
mates of α and β unchanged. Finally, with quarterly data, a
natural intermediate choice in (16) is r = m = 4. When
1xt is the quarterly growth rate, then

4
i=1 1xT+h−i =

∆4xT+h−1 where ∆4 = 1 − L4, which is the year-on-year
growth rate. Although data are often seasonally adjusted,
such a formulation should also be robust to seasonal vari-
ation.

To facilitate the choice between members of the class
in (16), we analytically investigate the 1-step ahead fore-
casts of (16) for r = m = 1 and r = m = 4 when: (i) the
data generation process is unchanged, so that robustifica-
tion of the forecasts is unnecessary; (ii) there are measure-
ment errors; (iii) there is an impulse unbeknown to the
forecaster; (iv) there is an unanticipated location shift; and
(v) there are unknown omitted variables as in (1). For
(i)–(iv) the in-sample DGP is given by:

1xt = γ + α

β′xt−1 − µ


+ ϵt

where ϵt ∼ INn [0,�ϵ] . (18)

We then consider (vi) shifting forward the forecast origin
after a location shift, and (vii) longer horizon forecasts after
the impact of a location shift.

3.1. Unchanged DGP

Although one would not need to use a robust forecast-
ing devicewhen theDGP is constant, the following analysis
will nevertheless prove useful below. First, forecast errors
from (18) are distributed as INn [0,�ϵ], although that is an
infeasible baseline.

When r = m = 1, and α and β are taken as known
at their population values for analytical simplicity, (11)
becomes:1xT+1|T =


In + αβ′


1xT (19)

leading to a forecast error for (18) ofϵT+1|T = 1xT+1 −1xT+1|T :ϵT+1|T = γ + α

β′xT − µ


+ ϵT+1

−

In + αβ′

 
γ + α


β′xT−1 − µ


+ ϵT


= αβ′


1xT − α


β′xT−1 − µ


− ϵT


+ 1ϵT+1

= 1ϵT+1 (20)

noting that β′γ = 0. Then E
ϵT+1|T


= 0, but V

ϵT+1|T


=

2�ϵ , so that robustification has doubled the innovation-
error variance.

Next, for r = m = 4, (16) is:

1xT+1|T =
1
4

3
i=0

1xT−i

+α


β′xT −

1
4

3
i=0

β′xT−1−i


(21)

so whenϵT+1|T = 1xT+1 −
1xT+1|T :

ϵT+1|T =


γ −

1
4

3
i=0

1xT−i



−α


µ−

1
4

3
i=0

β′xT−1−i


+ ϵT+1. (22)

The first term can be evaluated from (18) as:

1
4

3
i=0

1xT−i =
1
4

3
i=0

γ + α


1
4

3
i=0

β′xT−i−1 −
1
4

3
i=0

µ



+
1
4

3
i=0

ϵT−i

= γ + α


1
4

3
i=0

β′xT−i−1 − µ


+ ϵT (23)
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where ϵT =
1
4

3
i=0 ϵT−i, and substituting from (23) in (22)

gives:ϵT+1|T = ϵT+1 − ϵT . (24)

Thus, E
ϵT+1|T


= 0 with variance V

ϵT+1|T


= 1.25�ϵ ,
so smoothing helps in this setting as expected. These
outcomes compare to an error variance of�ϵ when the in-
sample DGP is used, so there is only a relatively small cost
to this ‘insurance policy’ for r andm greater than unity.

3.2. Measurement errors at the forecast origin

National accounts data are subject to revision, so that
the data on which forecasts are conditioned at the fore-
cast origin will be measured with error, whereas assum-
ing a relatively short revision process, the majority of the
observations underlying the estimation of the model will
constitute fully-revised or mature data.4 A number of au-
thors have tackled this problem, including Clements and
Galvão (2013a,b), Garratt, Lee, Mise, and Shields (2008),
Kishor and Koenig (2012) and Koenig, Dolmas, and Piger
(2003), either by: estimating the revised values of recent-
release data; using only lightly-revised data; or modeling
the multiple-vintages available for any observation. Mea-
surement error ismost likely to be problematic in real-time
forecasting exercises, when considering forecasts from a
number of forecast origins, each time making use only of
the vintage of data available at that forecast origin (see e.g.,
Patterson, 2003). Hence the data relating to the forecast
origin observations will of necessity be first estimates. Our
empirical forecasting exercise will be pseudo-real time, in
that all observations are drawn from the same (recently-
released) data vintage.5 Nevertheless, we consider the per-
formance of the robust class of model when there are
measurement errors.

To begin with, suppose that only the latest observation
is measuredwith error, so that xT = xT +vT , but vT−1 = 0.
Then forecasting from (18) delivers:1xT+1|T = γ + α


β′xT − µ


= γ + α


β′xT − µ


+ αβ′vT

with a forecast error for (18) ofϵT+1|T = 1xT+1 − 1xT+1|T
so:ϵT+1|T = ϵT+1 − αβ′vT
where any additional bias depends on E [vT ], and the
variance is increased by V


αβ′vT


= αβ′�vβα

′.

4 See e.g., Fixler and Grimm (2005, 2008) and Landefeld, Seskin, and
Fraumeni (2008) on the nature of the US Bureau of Economic Analysis
(BEA) data releases and revisions.
5 This is true of virtually all studies of factor model forecasting, partly

due to the costs of assembling real-time data sets on the large numbers
of variables typically employed in constructing factors. An exception is
Bernanke and Boivin (2003), who calculate inflation forecasts based on
factors constructed from the restricted set of variables for which they
have real-timedata. They show that theproperties of the forecasts depend
on the number of variables underlying the factors (more variables lead to
more accurate forecasts) rather than whether real or pseudo-real-time
data are used.
Next, consider forecasting with r = m = 1. Then the
forecast is directly conditioned on the mis-measured ob-
servation, and (11) becomes:1xT+1|T =


In + αβ′


1xT = 01xT + 0vT

where 0 =

In + αβ′


, again taking α and β as known

for simplicity, leading to a forecast error (18) of ϵT+1|T

= 1xT+1 − 1xT+1|T :ϵT+1|T = γ + α

β′xT − µ


+ ϵT+1

−

In + αβ′

 
γ + α


β′xT−1 − µ


+ ϵT + vT


= 1ϵT+1 − 0vT

which augments (20) by −0vT , so the bias depends on
E [vT ] and the variance is increased by V [0vT ] = 0�v0

′.
When the smoothed forecast device (21) is used with

r = m = 4, the impact of the measurement error becomes
−
 1
4 In + αβ′


vT , so averaging attenuates both any bias

due to themeasurement error, and its variance component.
Suppose, however, that the previous observation was

also mis-measured by an independent error with the same
variance, so xT−1 = xT−1 + vT−1 but the impact of both
measurement errors on parameter estimates can be ig-
nored. For the VEqCM here, there is no additional impact,
whereas when r = m = 1:1xT+1|T =


In + αβ′


1xT = 01xT + 01vT

leading to:

ϵT+1|T = 1xT+1 − 1xT+1|T = 1ϵT+1 − 01vT (25)

so the forecast-error variance is increased by V [01vT ] =

20�v0
′, the doubling being due essentially to mis-

estimating µ by using β′xT−1. Although we have assumed
serially uncorrelated measurement error, it is clear from
(25) that positive correlation in the measurement errors
will reduce the overall impact on forecast error variance,
whereas negative correlation will have the opposite effect.

The smoothed forecasting device (21) is affected by the
combined measurement errors:

1
4
vT + αβ′


vT −

1
4
vT−1


(26)

which augments the innovation-error variance of 1.25�ϵ

(in the absence of measurement error) by the variance of
(26), which is:

1
4
In + αβ′


�v


1
4
In + βα′


+

1
16
αβ′�vβα

′. (27)

Smoothing over r = m = 4, therefore, again leads to a very
small increase in the total error variance from the impact
of the previousmeasurement error, and even over the DGP
forecast error variance of αβ′�vβα

′.
The above expressions assume that the aim of the

exercise is to forecast the true value.When data are subject
to multiple regular and benchmark revisions a case can
be made for targetting an earlier-vintage ‘actual’ value, as
discussed in some of the references at the beginning of this
section.
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3.3. An unknown impulse at the forecast origin

Unlike a measurement error which only contaminates
a model and not the underlying mechanism, an impulse at
T + 1 impacts on the DGP, which becomes:

1xT+1 = γ + δ1{T+1} + α

β′xT − µ


+ ϵT+1 (28)

leading to a forecast error ofϵT+1|T = δ1{T+1} + ϵT+1.
Next, still using (19) to forecast, withϵT+1|T = 1xT+1−1xT+1|T delivers:

ϵT+1|T = δ1{T+1} + 1ϵT+1 (29)

adding a bias of δ, but no additional variance component.
In fact, the smoothed forecast will also have the additional
error of δ1{T+1} so all three forecasting devices suffer the
same additional error. Thus, in the first period after the
forecast origin, the impacts of impulses differ from those
of measurement errors, as impulses affect the DGP but not
the model, whereas measurement errors do the opposite.

However, outcomes will differ in the second period,
when the DGP reverts to:

1xT+2 = γ + α

β′xT+1 − µ


+ ϵT+2.

The in-sample VEqCM is now unaffected, whereas the
robust forecast (r = m = 1) of:1xT+2|T+1 =


In + αβ′


1xT+1

leads to the forecast error:ϵT+2|T+1 = 1ϵT+2 − δ1{T+1} (30)

which is increased by the full amount of the impulse at
T + 1, but with the opposite sign, as against the second-
period doubling of the measurement error impact seen in
(25).

In contrast, r = m = 4 will only partly reflect the im-
pulse, for reasons similar to why it was less distorted by
the measurement error, since:

1xT+2|T+1 =
1
4

3
i=0

1xT+1−i + α


β′xT+1 −

1
4

3
i=0

β′xT−i


so using:

1
4

3
i=0

1xT+1−i = γ +
1
4
δ1{T+1}

+α


1
4

3
i=0

β′xT−i − µ


+ ϵT+1 (31)

thenϵT+2|T+1 = 1xT+2 −
1xT+2|T+1 is:

ϵT+2|T+1 = ϵT+2 − ϵT+1 −
1
4
δ1{T+1}.

Although the smoothing entailed by larger values of r and
m is beneficial in all these cases, that advantage is not
maintained for an unanticipated location shift at the fore-
cast origin, as we now show.
3.4. Location shift at the forecast origin

In all three cases above, the smoothed robust predictor
dominates that using r = m = 1, and is not much worse
than the in-sample DGP. The outcomes differ considerably
when an unanticipated location shift persists over the
forecast horizon. The case of r = m = 1 above prompted
the creation of the class, but we did not establish its
benefits explicitly compared to using the in-sample DGP
when h > 2 and 1xT+h is generated by:

1xT+h = γ∗
+ α


β′xT+h−1 − µ∗


+ ϵT+h. (32)

The robust forecasts h-steps ahead are given by:

1xT+h|T+h−1 =


In +αβ′


1xT+h−1

= 0 γ∗
+ α


β′xT+h−2 − µ∗


+ ϵT+h−1


.

Simplifying with known α and β,ϵT+h|T+h−1 = 1xT+h −1xT+h|T+h−1 = 1ϵT+h, as in Section 3.1, precisely because
the new DGP is unchanged from T + h − 1 to T + h for
h > 2. Thus, the robust device dominates the in-sample
DGP provided the squared combined shift is larger than the
error variance.

The slower adjustment of r = m = 4 is not now ben-
eficial, even taking the more favourable case of h = 3 to
illustrate:

1xT+3|T+2 =
1
4

3
i=0

1xT+2−i

+α


β′xT+2 −

1
4

3
i=0

β′xT+1−i



so whenϵT+3|T+2 = 1xT+3 −
1xT+3|T+2:

ϵT+3|T+2 =


γ∗

−
1
4

3
i=0

1xT+2−i



−α


µ∗

−
1
4

3
i=0

β′xT+1−i


+ ϵT+3

=
1
2


γ∗

− γ

−

3
4
α

µ∗

− µ

+ ϵT+3 − ϵT+3 (33)

as:

1
4

3
i=0

1xT+2−i =
1
2


γ∗

+ γ

+ α


1
4

3
i=0

β′xT+1−i

−
1
4


µ∗

+ 3µ
 

+ ϵT+3

because1xT+2−i is generated by the post-shift parameters
γ∗ and µ∗ for i = 0, 1, whereas for i = 2, 3 the pre-shift
values prevail. Although only a part of the shift is offset,
that becomes increasingly so as h increases, and (33) will
then dominate the in-sample DGP.
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3.5. Unknown omitted variables

Reverting to a constant DGP, but where a set of k vari-
ables zt is unknowingly omitted both in-sample and over
the forecast horizon so:
1xT+h = γ + α


β′xT+h−1 − µ


+ φ′(zT+h−1 − κ) + ϵT+h

the main difference between the two robust devices is
that for r = m = 1, φ′1zT+h−1 is omitted as against
φ′∆4zT+h−1 when r = m = 4, and φ′zT+h−1 for the
VEqCM, so the impactwill depend on the time-series prop-
erties of the {zt}. Within a general-to-specific automatic
model selection strategy, searching over all variables and
factors, problems related to omitted variables should be of
secondary importance.

3.6. Shifting the forecast origin

Irrespective of the values of r and m in (16), all the
forecasts made immediately after an unanticipated loca-
tion shift will suffer from the same biases. However, when
forecasting from origins sufficiently long after the shift has
occurred, the results for a constant parameter DGP will
again hold, assuming the earlier in-sample breaks have
been modeled and no further shifts occur. For forecast ori-
gins shortly after the break, the outcomes for the different
approaches are less clearcut, especially for the smoothed
robust forecasting device. The relevance of these origins for
our understanding of the outcomes of empirical forecast
exercises, where forecasts are produced from a relatively
large number of origins, and forecast accuracy is estimated
by averaging errors across origins, will depend on the fre-
quency of shifts over the forecast period.We next illustrate
this for forecasts of levels and growth rates made at time
T + 2 and later, when the DGP is (18).

3.7. Longer horizon forecasts of levels and growth rates

First, VEqCMs like (6) continue to cumulate the error
in (5) when forecasting levels. Let 0 =


In + αβ′


and

ψ = (γ − αµ), then the forecast of T + h from T + 2 for
h ≥ 3 using the in-sample DGP, even for known in-sample
parameter values and correct initial conditions, is:xT+h|T+2 = 0xT+h−1|T+2 + ψ

= 02xT+h−2|T+2 + ψ + 0ψ = · · ·

=

h−3
i=0

0iψ + 0h−2xT+2 (34)

leading to ever larger forecast errors since the post-shift
DGP generates:

xT+h =

h−3
i=0

0iψ∗
+ 0h−2xT+2 +

h−3
i=0

0iϵT+h−i. (35)

Because 0hα = α

Ir + β′α

h
= α3h where 3 has all its

eigenvalues inside the unit circle, and 0hγ = γ,0hγ∗
=

γ∗ then:
E

xT+h −xT+h|T+2


= (h − 2)


γ∗

− γ


−α

h−3
i=0

3i µ∗
− µ


. (36)
Although 3i
→ 0 as i → ∞, so the second terms eventu-

ally converges, the sum continually increases.
However, for forecasting growth rates, since:

xT+h−1|T+2 = 0h−3xT+2 +

h−4
i=0

0iψ

then for h > 4:

1xT+h|T+2 =

0h−2

− 0h−3 xT+2 +


h−3
i=0

0i
−

h−4
i=0

0i


ψ

= 0h−3 γ + α

β′xT+2 − µ


.

The conditional expectation of the outcome from the DGP
is:

E

1xT+h|T+2|xT+2


= 0h−3 γ∗

+ α

β′xT+2 − µ∗


so the forecast error ofϵT+h|T+2 = 1xT+h|T+2 − 1xT+h|T+2
in the growth rate from using the pre-shift DGP has an
expected value of:

E
ϵT+h|T+2


= 0h−3 γ∗

− γ

− α


µ∗

− µ


=

γ∗

− γ

− α3h−3 µ∗

− µ


(37)

indicating a persistent error from the shift in γ , whereas
the effect of the shift in µ on the forecast growth rate dies
out as h increases. Consequently, it matters considerably
whether forecast errors are evaluated for levels or growth
rates.

Consider now the robust forecast device with r = m =

1. The growth-rate forecast is given by:1xT+h|T+2 = 01xT+h−1|T+2 = · · · = 0h−21xT+2 (38)

so whenϵT+h|T+2 = 1xT+h|T+2 − 1xT+h|T+2:

E
ϵT+h|T+2|xT+2


= 0h−3 γ∗

+ α

β′xT+2 − µ∗


− 01xT+2


= 0h−3 γ∗

+ α

β′xT+2 − µ∗


−0


γ∗

+ α

β′xT+1 − µ∗


. (39)

Consequently, assuming β′γ∗
= 0 as above:

E
ϵT+h|T+2


= 0h−3αβ′E


1xT+2 − α


β′xT+1 − µ∗


= 0.

Hence forecasting later than two periods after the break,
when there are no further location shifts, the robust device
returns unbiased longer-run forecasts of the growth rate,
compared to the recurring biases of the non-robustmodel’s
forecasts in (37). Moreover, this robust method will then
deliver unbiased forecasts of the levels. For example:xT+4|T+2 = xT+3 + 01xT+3 =


In + 0+ 02 xT+2

−0 (In + 0) xT+1 (40)

whereas:

xT+4 = ψ∗
+ 0xT+3 + ϵT+4 = (In + 0)ψ∗

+02xT+2 + 0ϵT+3 + ϵT+4

so using xT+2 = ψ∗
+ 0xT+1 + ϵT+2:

xT+4 −xT+4|T+2 = ϵT+4 + 0ϵT+3 − (In + 0) ϵT+2 (41)
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which has an unconditional expectation of zero, but a large
variance.

The smoothed device with r = m = 4 will only deliver
unbiased growth rate forecasts once h > 5, but will con-
verge on that outcome as h increases from 2. The forecasts
of the levels will be biased, but not increasingly so once the
growth forecasts are unbiased, andwith a smaller forecast-
error variance than (41).

3.8. Further discussion on robustifying VEqCMs

All the robust devices keep the in-sample VEqCM esti-
mates, and would not work well if directly estimated, as
such devices are manifestly non-congruent. Consequently,
Autometrics style selection for r and m is also unlikely to
workwell, but ‘in-sample forecast’ evaluation of the extent
that smoothing helps is possible. Equally, the lack of con-
gruence from deliberately ‘over-differencing’ makes it dif-
ficult to calculate forecast standard errors. When data are
poorly measured or are volatile, larger r and m seem
advisable (the simplest case in Section 3.2 shows this);
similarly for longer horizon forecasts when forecast-origin
estimates are unreliable. Thus, trade-offs remain between
robustness facing breaks and increased variance when
there are no breaks. Moreover, we have omitted any ef-
fects from parameter estimation biases and variances, and
treated each potential problem in isolation, although noth-
ing precludes combinations thereof occurring empirically.
Importantly, there is no need to robustify till after a fore-
cast failure, because robust devices suffer the same initial
forecast failure as non-robust. Improving on that per-
formance would require such devices to be augmented
by some method for forecasting shifts, although Castle,
Fawcett, and Hendry (2011) show the difficulties in doing
so.

There are other strategies available for improving the
robustness of forecasting devices when location shifts oc-
cur, including both rolling windows and recursive updat-
ing, noted above as other members of the class in (16), as
well as intercept corrections and averaging over a set of
reasonable models. Castle et al. (2010) show that recur-
sive updating in a VEqCM after a location shift can lead to
the elimination of the equilibrium-correction terms,which
are the source of the forecast failure, so the outcome ends
close to an estimated robust device. We expect a simi-
lar outcome from rolling windows, so both would then
lose any policy implications from equilibrium corrections,
which can be recovered from (16) knowing its origins. Con-
versely, Castle et al. (2010) also show that both rollingwin-
dows and recursive updating help when previously high
collinearities between explanatory variables are reduced
by an ‘external’ break that nevertheless leaves the VEqCM
constant. Since the above analysis shows that the impacts
of the various problems differ and also affect each of the
three exemplars in different ways, averaging over a num-
ber of these devices merits consideration.

The next section considers the application of robust
methods to forecasting using factors. Note that forecasting
models with factors are equilibrium-correction models
when, as in (1)with the zt interpreted as factors, the factors
enter as I(0) variables with well-defined means.
4. Robust factor-based models for forecasting

In this section, we adapt the approach to allow for dy-
namic scalar equations dependent on factors estimated by
the principal components of large numbers of unmodeled
variables. Let 1yt be the relevant transform of the depen-
dent variable when the postulated factor model is:

1yt = θ + ρ (1yt−1 − θ) + δ′ (ft−1 − µ) + ϵt (42)

where θ is the in-sample equilibrium mean, E [1yt ] = θ ,
and ft denotes a vector of I(0) factors or principal compo-
nents with E [ft ] = µ, usually based on first or second dif-
ferences of the original variables. The in-sample parameter
estimates of (42) are denotedθ,ρ,µ andδ.

From the analysis in Section 3, the robust device for
forecasting h = 1 step ahead over a horizon k = 1, . . . , K
from an origin at T is:

1yT+k+1|T+k = 1yT+k +ρ∆2yT+k +δ1fT+k

= 1yT+k +ρ (1yT+k − 1yT+k−1)

+δ (fT+k − fT+k−1) (43)

where 1yT+k is the ‘instantaneous estimator’ of the mean
of 1yT+k+1, and 1yT+k−1 is regarded as the ‘estimator’
of the mean of 1yT+k, both of which are denoted ‘θ ’ in
the assumed constant-parameter model (42), and fT+k−1
‘estimates’µ. Correspondingly, the 1-step ahead smoothed
robust variant becomes:

1yT+k+1|T+k =
1
r

r−1
i=0

1yT+k−i

+ρ 1yT+k −
1
s

s
i=1

1yT+k−i



+δ′ fT+k −
1
m

m
i=1

fT+k−i


(44)

so short moving averages are used to estimate the poten-
tially changing values of θ and µ. When r = s = m = 4
say, 1

r

r−1
i=0 1yT+k−i =

1
4∆4yT+k denoted ∆(4)yT+k below,

so is in the same units as θ (i.e., quarterly growth below).
As future values of large numbers of factors may be too

difficult to forecast, direct multi-step estimation (DMS) is
needed for (42) when h > 1, leading to (see e.g., Chevillon,
2007):

1yT+h+k|T+k =θh +ρh

1yT+k −θ+δ′h (fT+k −µ) (45)

whereθh,ρh andδ′h, denote the in-sample estimates from
an h-step projection. Eq. (45) is also:

1yT+h+k|T+k = πh +ρh1yT+k +δ′hfT+k (46)

where πh is the estimated composite intercept, which
is the formulation used in Section 5 and denoted PC1-4
(being based on the first four principal components).

There are several possible ways to robustify (46), corre-
sponding to a robust version of that multi-step form using
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h-period differences, or developing amulti-step robust de-
vice after first differencing. We chose a variant of the for-
mer (denoted R1PC1-4 below), namely:

1yT+h+k|T+k = 1yT+k +ρh∆∆(h)yT+k +δ′h∆(h)fT+k. (47)
The other robust formulation would use first differences
for the regressors. In both cases, the same parameter esti-
mates as (46) are used. The robust versions of a first-order
autoregression (AR1) reported below correspond to (47)
withδh = 0.

The multi-step smoothed robust variant is formulated
as:

1yT+h+k|T+k =
1
r

r−1
i=0

1yT+k−i

+ρh


1yT+k −

1
s

s
i=1

1yT+k−i



+δ′h

fT+k −

1
m

m
i=1

fT+k−i


(48)

denoted R4PC1-4 below when r = s = m = 4. As be-
fore, (48) can be formulated with other values for r, s and
m. First differences instead of ∆(h) in (47) corresponds to
r = s = m = 1 in (48).

For models that have both variables zt−1 and factors
ft−1 with in-sample means µz and µf respectively, then
the initial general unrestricted model (GUM) would be the
singular specification:
1yt = θ + ρ (1yt−1 − θ) + λ′


zt−1 − µz


+ δ′


ft−1 − µf


+ ϵt . (49)

However, using combinations of contracting and expand-
ing block searches, as in Autometrics, selection can be
applied to deliver the ‘non-robust’ full-sample estimated
model as shown in Castle, Clements, and Hendry (2013):

1yt = θ +ρ 1yt−1 −θ+λ′

1


z1,t−1 −µ1,z


+δ′1 f1,t−1 −µ1,f


. (50)

The corresponding smoothed robust approach for 1-step
ahead forecasts becomes:

1yT+k+1|T+k =
1
r

r−1
i=0

1yT+k−i

+ρ 1yT+k −
1
s

s
i=1

1yT+k−i



+λ′

1


z1,T+k −

1
p

p
i=1

z1,T+k−i



+δ′1

f1,T+k −

1
m

m
i=1

f1,T+k−i


. (51)

Setting r = s = m = p = 4, for example, the smoothed
robust 1-step forecasts are given by:
1yT+k+1|T+k = S41yT+k +ρ (1yT+k − S41yT+k−1)

+λ′

1


z1,T+k − S4z1,T+k−1


+δ′1 f1,T+k − S4f1,T+k−1


(52)
where Sr =
1
r


1 + L + L2 + L3 + · · · Lr−1


and L is the lag

operator.
To makematters concrete, when 1yt denotes the quar-

terly GDP growth rate (defined as the first difference of
the natural log of quarterly GDP), then the smoothed ro-
bust forecasting device has the interpretation that future
quarterly GDP growth is predicted using lagged annual
growth at quarterly rates, the previous quarterly growth
rate 1yT+k−1 as a deviation from its past yearly average,
and the relevant variables and factors entered as I(0) trans-
formed deviations from their moving averages (S4z1,T+k−1
and S4f1,T+k−1). Thus, in this setting, we would use Auto-
metrics model selection to get the best in-sample model,
then generate robust forecasts therefrom as transformed
in (52) as well as for r = m = s = p = 1 in (51).

However, the factors used below have already been
differenced once or twice, so are already partly ‘robus-
tified’. Moreover, Chevillon (2007) shows that DMS also
provides partial robustification against various forms of
mis-specification, including location shifts. Thus, the ex-
tra differencing of the robust methods proposed for such
factor formulations may be less helpful than for a VEqCM,
and will be advantageous primarily when π changes, so
is better approximated by recent lagged growth than a
full-sample estimate. Beyond h = 4, the in-sample es-
timates ρh and δh below are tiny, so only the compos-
ite intercept mattered empirically. Consequently, we also
consider a variant of (48) where the estimates of δ are not
constrained to those found from (46), but are re-estimated
after imposing differencing: this is denoted R4PC1-4est be-
low.

4.1. Change in the relevance of a variable

An alternative source of location shifts may be from
changes over time in the relevance of ‘explanatory vari-
ables’ or factors. For example, Stock and Watson (2008)
report a pseudo out-of-sample forecasting exercise for US
inflation, and find that models with indicator variables
only episodically enhance forecasts relative to a random
walk model, at least over the period from 1985 onwards.
Suppose the DGP is:

wt = θ + ρwt−1 + εt , t < τ

wt = θ + ρwt−1 + γ zt−1 + εt , t ≥ τ (53)

so that zt helps to predict wt+1 only after time τ . Depend-
ing on the relative pre and post break sample sizes in (53),
assuming that the coefficient of zt−1 was constant over the
whole period might well result in z appearing to be in-
significantwhen the full-samplemodel is estimated, and at
the least its effectwould be attenuated. Rollingwindows of
a length that did not span both regimes at the time of fore-
casting would perform well.

When the mean of zt−1 in the second period is µ, then
(53) becomes:

wt =

θ + γµ1(t≥τ)


+ ρwt−1 + γ 1(t≥τ) (zt−1 − µ) + εt (54)

where 1(t≥τ) = 1 for t ≥ τ . This extended model has con-
stant parameters (as in Clements & Hendry, 1999, p. 260),
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but in practice, the dates of such breaks (as there may be
several) and which variables (or factors) are affected are
unknown. When there are a number of explanatory vari-
ables that might have changing effects, a strategy of in-
teracting all possible such terms with step indicators for
every date then selecting the optimal forecasting model
could be infeasible. However, the most detrimental ef-
fect of omitting a variable such as zt−1 probably arises
from the induced location shift, γµ1(t≥τ). The strategy of
step-indicator saturation (SIS) – saturating the model with
step-shift indicators – then becomes a possible solution.
Commencing at the first observation and continuing to ev-
ery observation, one creates T indicator variables for T ob-
servations, of the form S1 =


1{t≤j}, j = 1, . . . , T


, when

1{t≤j} = 1 for observations up to j, and zero otherwise. Step
indicators are the cumulations of impulse indicators up to
each next observation. Such a general procedure is needed
when the locations, durations, magnitudes and signs of lo-
cation shifts are unknown. Castle, Doornik, Hendry, and
Pretis (2013) investigate the theory of step-indicator satu-
ration under the null of no location shifts, and for a variety
of single and multiple shifts. SIS is included in Autometrics
and is feasible because software like Autometrics can han-
dle more candidate variables N than observations T , using
a combination of expanding and contractingmultiple block
searches. SIS even provides a potential solution when the
need to include zt−1 is not known (see Castle & Hendry,
2014). Location shifts when τ is near the forecast origin
were considered above, and if found, SIS then provides a
natural intercept correction.

Alternatively, suppose the DGP is:

wt = θ + ρwt−1 + γ zt−1 + εt , t = 1, . . . , T (55)

but shifts to:

wT+k = θ + ρwT+k−1 + εT+k, k ≥ 1 (56)

so that zT+k−1 no longer predicts wT+k after T . When the
mean of zt−1 in-sample is µ1 but changes magnitude to
µ2 in the forecast period, then the forecasts from the
estimates of (55) are:

wT+k =θ +ρwT+k−1 +γ zT+k−1 (57)

so withεT+k = wT+k − wT+k:εT+k =

θ −θ+ (ρ −ρ) wT+k−1 −γ zT+k−1 + εT+k

then (ignoring finite-sample biases of O(T−1) in (57)):

E [εT+k] ≃ −γµ2.

The most detrimental effect of including γ zT+k−1 in (57)
therefore arises from the induced location shift, γµ2. As an
empirical example (see Castle, Clements, & Hendry, 2013),
consider the sudden and dramatic shift that occured in the
monetary base following the financial crisis, which jumped
from $863bn in 2008(3) to $1724bn in 2009(3). Models
which retained a term in the monetary base would have
experienced a forecast error shift ofγ zT+k−1 in the forecast
period, resulting in forecast failure. Rolling windows
of a length that eventually did not span both regimes
would end performing well. In practice, intervention by
the forecaster could also attenuate such effects, and we
provide an ex post mimic of that below.
The simplest robust approach (e.g., the equivalent of
(51) with r = s = m = 1) is:wT+k|T+k−1 = wT+k−1 +ρ1wT+k−1 +γ1zT+k−1.

When k > 1, lettingεT+k|T+k−1 = wT+k −wT+k|T+k−1, and
ignoring parameter estimation, we obtain:εT+k|T+k−1 = 1wT+k − ρ1wT+k−1 − γ1zT+k−1

= −γ1zT+k−1 + 1εT+k.

Providing there are no further location shifts in z:

E
εT+k|T+k−1


≃ −γ E [1zT+k−1] = 0

and hence should outperform forecasts based on the in-
sample DGP. In summary: our robust forecasting devices
should work in a world in which the predictive ability of
explanatory variables changes over time, and when these
variables are themselves subject to large shifts, as occurred
with monetary variables during the Great Recession.

5. Robust forecasts of US GDP and GDP growth

Our empirical forecasting exercise compares the fore-
cast performance of regression models based on princi-
pal componentswith robust devices.We forecast quarterly
GDP growth and the corresponding level over the period
2000–2011. The robust devices we consider are based on
the class described in Section 4. We do not consider other
possibilities, such as SIS as described in Section 4.1. Nor do
we consider updating the model estimates over the fore-
cast period as a way of mitigating the effects of breaks
in order to focus on the new class of robust devices we
have introduced, although in practice one might imple-
ment the robust devices with recursive or rolling forecast-
ing schemes.

A number of authors have assessed the forecast perfor-
mance of factor models over this period, and Stock and
Watson (2011) review studies which explicitly consider
the impact of breaks on factor-model forecasts, including
Stock and Watson (2009) who suggest estimating the fac-
tors on the full historical period across the break (then,
the Great Moderation around 1984, see, e.g., McConnell &
Perez-Quiros, 2000), but only estimating forecasting mod-
els using factors as explanatory variables on the post-break
period. Here we use the full estimation sample for factors,
and the new robust devices to counter location shifts. AR
benchmarks have typically been difficult to beat system-
atically, and Stock and Watson (2010) argue that simple
univariate models, such as a random walk which is the
simplest robust device, are competitive with models using
explanatory variables, consistentwith location shifts being
important.

The data are discussed in detail in Castle, Clements, and
Hendry (2013), so only briefly noted here in Section 5.1,
and the forecasting models are described in Section 5.2.
Section 5.3 presents the results.

5.1. Data

The data set, based on Stock and Watson (2009), con-
sists of 144 quarterly time series for the United States
over 1959(1)–2006(4), updated here to 2011(2). There are



J.L. Castle et al. / International Journal of Forecasting 31 (2015) 99–112 109
n = 109 disaggregate variables, used both as the candidate
set of regressors and the set for the principal components.
All data are transformed to removeunit roots by taking first
or second differences (usually in logs) as described in Stock
and Watson (2009) Appendix Table A1. The data avail-
able for estimation span T = 1962(3)–2011(2), so there
are 150 in-sample observations after transformations and
lags, with the forecast horizon of 2000(1)–2011(2), which
is separated into the two periods 2000(1)–2006(4), and
2007(1)–2011(2), to assess the performance of the fore-
castingmodels over both a quiescent period and the finan-
cial crisis.

Three forecast horizons are recorded, for h = 1, 4, 8
step-ahead direct forecasts. Forecasts are evaluated over
the full forecast sample of 2000(1)–2011(2) (46 observa-
tions),with the first forecast subsample of 2000(1)–2006(4)
(28 observations), and the second of 2007(1)–2011(2)
(18 observations).

5.2. Forecasting models

Our primary interest is in forecasting models which
consist of the first four principal components. Castle,
Clements, and Hendry (2013) found that such models per-
formedwell compared tomodels selected from factors and
variables. This model, denoted PC1-4, is given by:

1yt = γ0 + ρh1yt−h +

4
k=1

γk,hfk,t−h + ϵt (58)

where 1yt is the first difference of log real gross domestic
product and fk,t is the kth PC. The PCs are extracted from
the whole dataset. Although this may seem to favour such
models, the effect could go either way. Information that is
not available at the time of the forecast is used, but against
that there were major changes in some of the disaggre-
gated variables over the forecast period, consistent with
the success of the robust device R4PC1-4est where coef-
ficients of factors were re-estimated.

The usual benchmark forecasts of a randomwalk (RW):

1yRWT+h+k|T+k = 1yT+k (59)

where T + k is the forecast origin, and a first-order au-
toregression are included for comparison, as is a robust
version of the AR1, essentially (47) without factors.
We evaluate the forecasts on root mean-square errors
(RMSFEs) for both levels and growth rates. The level fore-
casts for GDP (in logs) are computed from the forecasts of
the growth rates as:

yT+h+k|T+k =

h
i=1

1yT+i+k|T+k + yT+k

for h = 4, 8. Although 1-step ahead forecast errors are
identical for levels and differences, results of both are re-
ported for ease of comparison. Note that 4-step forecasts
are evaluated from 2000:4 onwards and 8-step forecasts
from 2001:4 (and similarly for the second subsample).
5.3. Results

Table 1 records the RMSFEs for log GDP and GDP
growth for each of the forecasting models in the whole
sample and two subperiods. For GDP growth, the four-
period smoothed robust device that does not impose the
original parameter estimates for the factors, but instead
estimates them after differencing (R4PC1-4est) performs
well, ranking second on all horizons for the full sample
due to its favourable performance in the second, more
volatile, sub-period. The unadjusted model that uses the
first 4 PCs (PC1-4) tends to dominate at 1-step ahead
and does well in the more quiescent first sub-period, as
would be expected when there are no breaks. A simple
AR(1) is difficult to beat at longer horizons, but there is
no benefit to robustifying the AR(1) device, which in fact
does worst overall. Both PC1-4 and R4PC1-4 outperform
the non-smooth robust device and the random walk. The
RMSFEs for 2007(1)–2011(2) are often twice as large as
those for the first sub-sample. Robust devices are ‘de-
signed’ for short-term rather than long-horizon forecasts,
and the smoothing leads to an improvement over R1PC1-4
at almost all horizons, but R4PC1-4 also does surprisingly
well at 8-steps ahead, further improved by R4PC1-4est.

The rankings are less clear for the levels forecasts,
confirming that evaluation in levels and growth rates need
not result in the same ranking. The unadjusted factor
model obviously still performs best at the 1-step horizon,
but at longer horizons the robust versions still do well.
The non-smooth robust device (R1PC1-4), which did not
rank in differences, is ranked second at the 8-step horizon
across all sub-periods, with the smoothed variants often
preferred at other horizons. The AR(1) device does well
in the quiescent period in levels, but not in the more
volatile later sub-period. There are very large increases at
longer horizons in theRMSFEs for levels relative to growth,
and between the two subsamples, which emphasizes
the difficulty of forecasting the level of GDP especially
when the impact of the crisis-period location shift was
unanticipated: all the methods fail to ‘foresee’ the shift,
even using full-sample PCs.

Fig. 1 illustrates this last feature for the 4-period ahead
forecasts of changes and levels of log real GDP for PC1-4
and R4PC1-4est over the quiescent and turbulent periods.
The systematic over-prediction of growth from mid 2007
to mid 2009 translates into increasing mis-forecasting
of the levels. In many cases, averaging across the ‘least
poisonous’ devices would have reduced RMSFEs, as panel
d suggests visually here, confirmed by the average of those
two levels forecasts having a RMSFE of 3.57.

6. Conclusion

The theory and evidence in Castle, Clements, and
Hendry (2013) demonstrated the importance of robusti-
fying forecasts to location shifts, a key source of forecast
failure. Regression models, whether based on variables or
factors, are equilibrium-correction formulations, so like all
EqCMs, are not robust after location shifts, potentially fac-
ing systematic forecast failure.We presented a new class of
forecasting devices that are robust after location shifts, and
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Table 1
Forecast-error outcomes.

PC1-4 R1PC1-4 R4PC1-4 R4PC1-4est RW AR1 R1AR1

1yT+h

Full sample
0.56 0.83 0.63 0.59 0.75 0.73 0.86
0.97 1.00 0.93 0.85 1.05 0.84 1.05
1.01 1.08 0.92 0.91 1.10 0.88 1.10

2000(1)–2006(4)
0.47 0.82 0.52 0.53 0.77 0.56 0.93
0.63 0.69 0.65 0.66 0.68 0.54 0.68
0.64 0.85 0.74 0.74 0.86 0.55 0.85

2007(1)–2011(2)
0.73 0.90 0.83 0.73 0.73 0.93 0.74
1.19 1.36 1.50 1.08 1.44 1.14 1.45
1.30 1.37 1.14 1.13 1.40 1.20 1.40yT+h

Full sample
0.56 0.83 0.63 0.59 0.75 0.73 0.86
2.79 2.89 3.23 2.61 3.02 2.75 3.08
5.96 4.60 4.55 4.78 4.70 5.28 4.69

2000(1)–2006(4)
0.47 0.82 0.52 0.53 0.77 0.56 0.93
1.71 1.64 1.83 1.75 1.62 1.34 1.63
3.62 3.61 3.69 3.92 3.68 2.55 3.66

2007(1)–2011(2)
0.73 0.90 0.83 0.73 0.73 0.93 0.74
3.89 4.43 4.70 3.77 4.64 4.15 4.66
8.92 6.79 6.72 6.98 6.93 8.54 6.92

RMSFEs×100 for log GDP and quarterly GDP growth. Forecast devices are: PC1-4 (46); R1PC1-4 (47); R4PC1-4 (48);
R4PC1-4est (48) with δ re-estimated rather than imposed from (46); RW (59); AR1 (46), and R1AR1 (47) both with
δ = 0. The three rows in each block correspond to 1, 4, and 8 step ahead forecast outcomes. The smallest RMSFE in
each row is shown in bold, with the second smallest RMSFE in italics.
a b

c d

Fig. 1. 4-period ahead forecasts of changes (column 1) and levels (column 2) of log real GDP by PC1-4 and R4PC1-4est over both quiescent (row 1) and
turbulent periods (row 2).
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analyzed their properties in a variety of settings. For large
location shifts, the most adaptable should prove advanta-
geous, but if other problems are present, such as measure-
ment errors at the forecast origin, a smoothed variant may
perform better.

The empirical application considered log GDP and GDP
growth, computing forecasts using robust devices based
around the first four principal components, which had
performed aswell as selection over factors and variables in
Castle, Clements, and Hendry (2013). Only counting 1-step
outcomes once, the four-period smoothed robust device
re-estimating the factor coefficients after differencing,
produced either the smallest or second smallest RMSFEs
on 7 occasions, as against the AR1 8 times and the non-
robust device based on the levels of the PCs 6 times.
The success of the last may be because the principal
components are themselves averages over many variables,
or may be due to using full-sample estimates of PCs.
Alternatively its relative success may be because the PCs
are differenced (sometimes twice), so are already partly
robustified. These three approaches dominated a random
walk, the more highly adaptive robust device (although
that did relatively well at longer horizons for levels), and a
robust AR(1)model, providing some support for smoothing
robust methods.

The forecast performances of all these devices would
probably be improved by recursive updating, combining
information between devices, both by averaging and only
switching to a robust method after forecast failure then
switching back once ‘normality’ returned, but worsened
by having only preliminary data available at successive
forecast horizons.
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