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Glucocorticoids are widely used for treating autoimmune conditions or inflammatory disorders. Long-term use of
glucocorticoids causes impaired skeletal growth, a serious side effect when they are used in children. We have
previously demonstrated that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone
growth. In this study, we investigated the effect of CNP on impaired bone growth caused by glucocorticoids by
using a transgenic mouse model with an increased circulating CNP level. Daily administration of a high dose of
dexamethasone (DEX) to 4-week-old male wild-type mice for 4 weeks significantly shortened their naso-anal
length, which was restored completely in DEX-treated CNP transgenic mice. Impaired growth of the long
bones and vertebrae by DEX was restored to a large extent in the CNP transgenic background, with recovery in
the narrowed growth plate by increased cell volume, whereas the decreased proliferation and increased apopto-
sis of the growth plate chondrocytes were unaffected. Trabecular bone volume was not changed by DEX treat-
ment, but decreased significantly in a CNP transgenic background. In young male rats, the administration of
high doses of DEX greatly decreased N-terminal proCNP concentrations, a marker of CNP production. In organ
culture experiments using fetal wild-type murine tibias, longitudinal growth of tibial explants was inhibited by
DEX but reversed by CNP. These findings now warrant further study of the therapeutic potency of CNP in gluco-
corticoid-induced bone growth impairment.

Keywords:

C-type natriuretic peptide (CNP)
Glucocorticoid

Growth retardation

Skeletal growth

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Glucocorticoid (GC)-based drugs are widely used to treat various
diseases because of their immunosuppressive and anti-inflammatory
effects. However, the long-term use of these drugs causes many side ef-
fects on various tissues, including bone. The most notable deleterious ef-
fects on bone associated with GCs are osteoporosis and subsequent
bone fractures [1]. These side effects on bone have been proposed to
be caused by manifold functions of GCs, such as suppression of the pro-
liferation and differentiation of osteoblasts, acceleration of the apoptosis
of osteoblasts and osteocytes [2], and attenuation of the function of in-
sulin-like growth factor-1 (IGF-1), which promotes bone formation [3,
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4]. Moreover, it is well-known that long-term administration of GCs to
children induces growth retardation. GC-induced growth impairment
correlates with the dose of GCs [5]. Although it has been reported that
GCs used for physiological replacement (0.075-0.125 mg/kg/day pred-
nisone or 0.3-0.375 mg/kg/day hydrocortisone) can induce growth re-
tardation [6], a recent study suggests that growth impairment is
actualized when the GC dose exceeds 0.2 mg/kg/day prednisone equiv-
alents [5]. Alternate-day treatment of boys with prednisone also in-
volves growth impairment, and the impairment persists even after the
treatment is discontinued, resulting in reduction of their adult height
[7]. There are many studies concerning growth retardation due to GCs.
Long-term, high-dose regimen of GCs induces apoptosis, impairs differ-
entiation, prevents proliferation of growth plate chondrocytes, and in-
hibits bone growth [8,9]. GCs have direct effects on chondrocytes in
growth plate and in addition, GCs impair the anabolic effects of growth
hormone (GH)/IGF-1 axis on growth plate chondrocytes [10,11]. As for
treatment of GC-induced growth retardation, GH therapy has been
attempted but the effect was reported to be limited [12]. Ablation of
Bax, the pro-apoptotic protein, was indicated to rescue GC-induced
growth retardation [13], but effective therapy for GC-induced growth
retardation has not been established.
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C-type natriuretic peptide (CNP) is a member of the natriuretic pep-
tide family along with atrial natriuretic peptide (ANP) and brain natri-
uretic peptide (BNP) [14,15]. There is growing evidence that CNP is
associated with endochondral bone formation and linear growth. Mice
depleted of CNP or its specific receptor, natriuretic peptide receptor 2
(NPR2), develop a severe short stature phenotype owing to their im-
paired endochondral bone growth, indicating that CNP/NPR2 signaling
is a pivotal and physiological stimulator of endochondral bone growth
[16,17]. In contrast, transgenic mice subject to targeted overexpression
of CNP in cartilage or increased levels of circulating CNP exhibit promi-
nent skeletal overgrowth phenotype [18,19].

In humans, biallelic loss of function mutations in the NPR2 gene
cause one form of short-limbed skeletal dysplasia, acromesomelic dys-
plasia-type Maroteaux [20,21]. Furthermore, monoallelic loss-of-func-
tion mutations in the NPR2 gene are reported to be related to short
stature [22,23]. In contrast, monoallelic gain-of-function mutations in
the NPR2 gene cause a prominent skeletal overgrowth phenotype [24,
25]. Making use of this stimulatory effect of CNP/NPR2 signaling on skel-
etal growth, we are now undertaking translational research on the acti-
vation of CNP/NPR2 to restore impaired skeletal growth. Previously, we
studied the stimulatory effect of CNP/NPR2 activation on impaired bone
growth in achondroplasia, the most common form of skeletal dysplasia,
using the relevant mouse model; we showed that either targeted over-
expression of CNP or increasing the levels of circulating CNP using a
transgenic approach could almost completely restore the impaired skel-
etal growth of achondroplastic model mice [18,26,27]. Furthermore, we
showed that exogenous administration of synthetic CNP to these mice
also restored the impaired skeletal growth [27]. We expect that CNP/
NPR2 activation can be used to treat impaired skeletal growth under
various conditions. In this study, we investigated the effect of CNP on
GC-induced impaired skeletal growth using a mouse model subjected
to high-dose GC treatment and transgenic mice with increased circulat-
ing CNP levels.

2. Materials and methods
2.1. Animals

All experimental procedures involving animals were approved by
the Animal Research Committee, Graduate School of Medicine, Kyoto
University (Permit number: MedKyo07598). Care of animals and all an-
imal experiments were conducted in accordance with the institutional
guidelines of Kyoto University Graduate School of Medicine.

CNP transgenic mice under the control of human serum amyloid P
component (SAP) promoter (SAP-Nppc-Tg mice) were generated in
the C57BL/6] background by the method previously reported [19] and
we used SAP-Nppc-Tg line 17 described in the report [19] for the follow-
ing experiments. These mice harbor the human SAP/mouse CNP fusion
gene and produce excessive CNP in their livers, resulting in higher plas-
ma CNP levels than wild-type mice [19]. F344/]cl rats were purchased
from CLEA Japan, Inc. (Tokyo, Japan).

2.2. Experimental design

We used SAP-Nppc-Tg mice as our experimental model to be treated
with CNP. Four groups of mice were established at the start of this study.
The first group was composed of SAP-Nppc-Tg mice treated with saline
at a dose of 10 ml/kg/day (CNP/vehicle group). The second was com-
posed of wild-type C57BL/6] mice treated with saline at the same dose
(WT/vehicle group). The third was composed of wild-type C57BL/6]
mice treated with dexamethasone (DEX) at a dose of 2 mg/kg/day
(WT/DEX group). DEX was purchased from Wako Pure Chemical Indus-
tries, Ltd. (Osaka, Japan) as dexamethasone sodium phosphate (No.
040-30811, Wako), dissolved in saline, and injected subcutaneously at
200 pg/ml concentration so that the volume of the solution was equiva-
lent to that of saline. The last group was composed of SAP-Nppc-Tg mice

treated with DEX at the same dose (CNP/DEX group). DEX and vehicle
were injected daily for 4 weeks, from 4 weeks of age to 8 weeks. The
naso-anal length and body weight were measured weekly from
3 weeks of age to 8 weeks under isoflurane-induced anesthesia. During
the measurement of naso-anal length, the cranium of the target mouse
was fixed and the body was stretched to its fullest extent. In preliminary
trials, we had performed an inter-observer variation assay and con-
firmed the reproducibility of the measurement results between ob-
servers (Supplementary Fig. 1). The difference between observers was
at most 4% of naso-anal length and the data were thought to be correct
enough to be evaluated. Following length measurement was performed
by the same observer throughout the whole experiment. This observer
was not aware of the group to which each mouse belongs.

2.3. Skeletal analysis

At 4 weeks and at 8 weeks of age (the end of the experiment), the
anteroposterior and transverse diameters of the cranial bone and the
lengths of the humerus, radius, ulna, femur, tibia, fibula, and lumbar ver-
tebrae of each mouse were measured on soft X-ray film. Lengths of the
humerus, radius, ulna, femur, tibia, and fibula were averages of the right
and the left. We measured the span from the first lumbar vertebra to the
fifth as the length of lumbar vertebrae.

2.4. Microstructural analysis of bone

At the end of the experiment, microstructural analysis of bone was
performed with micro-computed tomography (micro-CT, SMX-100CT-
SV3, Shimadzu Co., Kyoto, Japan). The scan area was set as the 1.0 mm
region from 0.2 mm proximal of the distal growth plate of femur.
Micro-CT scan was used to determine the bone volume fraction (BV/
TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabec-
ular separation (Tb.Sp). These structural indices were calculated using a
three-dimensional trabecular bone analysis software (TRI/3D-BON,
Ratoc System Engineering Co., Tokyo, Japan).

2.5. Histological analysis

Mice were sacrificed at the end of the experiment and their tibias
collected. These tibias were fixed and decalcified with 10% EDTA for
2 weeks before they were embedded in paraffin and cut longitudinally
to analyze the growth plate. After the bone sections were deparaffinized
and rehydrated, Alcian-blue staining and immunohistochemical stain-
ing for type Il and type X collagens of tibial growth plates were per-
formed using rabbit anti-type II collagen antibody (Novotech Pty Ltd.,
Sydney, Australia) and mouse anti-type X collagen antibody (Quartett
Immunodiagnostika and Biotechnologie Vertriebs GmbH, Berlin, Ger-
many), respectively, as previously described [28]. The width of the
growth plate was measured for each specimen.

The analysis of apoptosis in growth plate chondrocytes was per-
formed by TdT-mediated dUTP nick-end labeling (TUNEL) assay using
Apop Tag Peroxidase In Situ Apoptosis Detection Kit (Millipore No.
S7100). TUNEL-positive cells were counted within three randomly cho-
sen fields in the hypertrophic chondrocyte zone of the growth plate and
expressed as the percentage of positive cells per field.

2.6. 5-Bromo-2'-deoxy-uridine (BrdU) assay

Four-week-old mice divided into WT/vehicle, WT/DEX, and CNP/
DEX groups were given saline or DEX for a week. After the administra-
tion, we injected BrdU intraperitoneally at a dose of 30 Lg/g an hour be-
fore sacrifice. The tibias were resected, fixed, decalcified, and
longitudinally cut. The BrdU assay was performed on their growth
plates using 5-Bromo-2’-deoxy-uridine Labeling and Detection Kit I
(Roche No. 11296736001). BrdU-positive cells were counted in three
randomly chosen fields in the proliferative chondrocyte zone of the
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growth plate and the results were expressed as the percentage of posi-
tive cells per field.

2.7. Measurement of NT-proCNP

Thirty-three-day-old male rats were divided into two groups and
treated with either saline or DEX for 2 days at the same dose as the
mice described above. After administration (5-week-old), their blood
was collected and blood levels of N-terminal proCNP (NT-proCNP), as
the representative for CNP production, were measured using proCNP,
N-terminal, EIA Kit (BI-20872, Biomedica Medizinprodukte GmbH &
Co KG, Wien, Austria). This kit is designed to measure human NT-pro
CNP by using sandwich assay. It is announced that cross reactivities of
capture antibody and primary antibody with rat NT-proCNP are 88%
and 95%, respectively.

2.8. Organ culture

Three ICR mice on the 16th day of pregnancy (Shimizu Experimental
Supply, Co., Japan) were sacrificed and tibias collected from their fetal
mice were cultured for 4 days in BGJb medium (No. 12591-038,
Gibco) with 6 mg/ml of albumin from bovine serum (No. 010-23382,
Wako), 150 pg/ml of ascorbic acid (No. 012-04802, Wako), and 10 pl/
ml of penicillin-streptomycin solution (No. 168-23191, Wako). These
tibias were incubated at 37 °C with vehicle, 1 M of DEX, 1 uM of CNP,
or both DEX and CNP at the same doses. CNP was purchased from Pep-
tide Institute (Minoh, Japan) as CNP-22 (4229-v, Peptide Institute). The
medium was exchanged every day with the addition of vehicle, DEX,
CNP, or both DEX and CNP. The length of each tibia was measured by
a light microscope with a linear ocular scale at the start and at the end
of the culture period. Histological analysis of each tibia was performed
at the end of the experimental period. Preparation of the specimen
and Alcian-blue staining were performed by the method described
above.

2.9. Statistical analysis

Statistical analysis of the data was performed using either Student's
t-test or two-way factorial analysis of variance (ANOVA), followed by
Turkey-Kramer test as a post hoc test. Data were expressed as
means = SE. The differences were considered significant when P values
were <0.05.

3. Results

3.1. The effects of increased circulating CNP on impaired growth of a GC-
treated mouse model

CNP transgenic mice under the control of human serum amyloid P
component (SAP) promoter (SAP-Nppc-Tg mice) have approximately
twice as much circulating CNP compared with wild-type mice [19].
Therefore, we used these transgenic mice as an experimental model
for treatment with CNP. As we had observed that there was no signifi-
cant difference in the body length or weight between wild-type and
SAP-Nppc-Tg mice at the age of 4 weeks, we planned to perform exper-
iments using 4-week-old wild-type and SAP-Nppc-Tg mice. Because the
CNP-transgene was targeted to be overexpressed in the liver under the
control of SAP promoter in SAP-Nppc-Tg mice, we also checked the
weight of the livers of SAP-Nppc-Tg mice at the age of 4 weeks and
found not changed compared with that of wild-type mice (0.91 +
0.08 g, n = 5and 0.91 4 0.05 g, n = 7 in wild-type and SAP-Nppc-Tg
mice, respectively, P = 0.93). We divided male mice into four groups.
The first group was composed of SAP-Nppc-Tg mice treated with saline
as a vehicle (CNP/vehicle group); the second was composed of wild-
type mice treated with saline (WT/vehicle group); the third was com-
posed of wild-type mice treated with dexamethasone (DEX) at a dose

of 2 mg/kg/day (WT/DEX group); and the last was composed of SAP-
Nppc-Tg mice treated with DEX at the same dose (CNP/DEX group). Ei-
ther DEX or vehicle was injected daily from 4 weeks of age until 8 weeks
(for 4 weeks). Gross appearance and soft X-ray pictures of the four
groups of mice at the end of the experimental period (8 weeks of age)
revealed that WT/DEX mice exhibited short lengths owing to their im-
paired skeletal growth, which is completely restored in CNP/DEX mice
(Fig. 1A and B). CNP/vehicle mice displayed the overgrowth phenotype
that we previously reported (Ref. [19] and Fig. 1A and B). As confirmed
in the growth curves depicted in Fig. 1C, there were no significant differ-
ences in the naso-anal length between the four groups of mice at the
start of this study (4-week-old). The naso-anal length of WT/DEX
mice became significantly smaller than that of WT/vehicle mice, where-
as that of CNP/DEX mice became significantly larger than that of WT/
DEX mice after 5 weeks of age (n = 10, 8, and 10 in the WT/DEX, WT/
vehicle, and CNP/DEX groups, respectively, P < 0.05, WT/DEX vs. WT/ve-
hicle or CNP/DEX). The naso-anal length of CNP/DEX mice was almost
the same as that of WT/vehicle mice at all the time points during the ex-
perimental period. The length of CNP/vehicle was significantly larger
than that of either the WT/vehicle or CNP/DEX (n = 11 in CNP/vehicle
group, P < 0.05, CNP/vehicle vs. WT/vehicle or CNP/DEX). As for the
growth velocity during the administration period, DEX decreased the
averaged growth velocity of wild-type mice by 39% whereas the de-
crease in SAP-Nppc-Tg mice was 58% (Fig. 1D). Furthermore, although
CNP increased the growth velocity by 88% in vehicle-treated group,
the increase in DEX-treated group was only 29% (Fig. 1D). The growth
velocity of CNP/DEX mice was comparable to that of WT/vehicle mice
(Fig. 1D). As for body weight, WT/DEX mice became significantly lighter
than WT/vehicle mice after the start of DEX treatment and continued to
be significantly lighter than WT/vehicle mice during the remainder of
the experimental period. CNP/DEX mice were comparable to WT/DEX
mice and significantly lighter than WT/vehicle mice after the start of
the administration (n = 8, 10, and 10 in the WT/vehicle, WT/DEX, and
CNP/DEX groups, respectively, P < 0.05, CNP/DEX or WT/DEX vs. WT/ve-
hicle) (Fig. 1E). The weight of CNP/vehicle mice was comparable to that
of WT/vehicle mice and significantly higher than that of CNP/DEX or
WT/DEX mice (n = 11 in the CNP/vehicle group, P < 0.05, CNP/DEX or
WT/DEX vs. CNP/vehicle) (Fig. 1E).

We performed the same series of experiments using female mice
and obtained the same qualitative results as for male mice on the final
linear growth at the end of the 4-week experimental period (Supple-
mentary Fig. 2), so we chose to use male mice for the following
experiments.

3.2. The effect of CNP on impaired bone growth of a GC-treated mouse
model

We went on to measure the length of each bone in the four groups of
male mice on soft X-ray film. We confirmed that there were no signifi-
cant differences in the lengths of most bones we measured
(anteroposterior and transversal diameters of cranium, humerus, radi-
us, ulna, femur, tibia, fibula, and lumbar vertebrae) between 4-week-
old wild-type and SAP-Nppc-Tg mice (Fig. 2A). Nevertheless, the periph-
eral bones of SAP-Nppc-Tg mice tended to be longer than those of wild-
type mice, and only the ulnae of SAP-Nppc-Tg mice were significantly
longer than those of wild-type mice. At the end of the experimental pe-
riod for DEX treatment, WT/DEX mice had significantly shorter appen-
dicular bones than the WT/vehicle group (Fig. 2B). On the other hand,
most appendicular bones of CNP/DEX mice became comparable to the
WT/vehicle group, while some appendicular bones of CNP/DEX mice be-
came noticeably longer than those of the WT/vehicle group (Fig. 2B).
The lumbar vertebrae of WT/DEX mice were significantly shorter than
those of mice in both the WT/vehicle and CNP/DEX groups. The lumbar
vertebrae of CNP/DEX mice were comparable to those of WT/vehicle
mice (Fig. 2B). As for the cranium, skull length in the WT/DEX group
tended to be shorter than the WT/vehicle group while skull length in
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Fig. 1. Gross phenotypes of 8-week-old male wild-type (WT) and SAP-Nppc-Tg (CNP) mice treated with saline (vehicle) or DEX. (A) Gross appearances and (B) soft X-ray pictures of CNP/
vehicle, WT/vehicle, WT/DEX, and CNP/DEX mice. Scale bar in each panel indicates 10 mm. (C) Growth curves of naso-anal length of CNP/vehicle (A), WT/vehicle (®), WT/DEX (O), and
CNP/DEX (x). (D) Averaged growth velocity of naso-anal length from the age of 4 weeks to 8 weeks. (E) Growth curves of body weight of CNP/vehicle (A), WT/vehicle (@), WT/DEX (O),
and CNP/DEX (x). CNP/vehicle, n = 11; WT/vehicle, n = 8; WT/DEX, n = 10; and CNP/DEX, n = 10. (C,D) *: P<0.05, vs. WT/vehicle and {: P< 0.05, vs. CNP/DEX. (E) i: P<0.05, vs. WT/DEX

and §: P < 0.05, vs. CNP/DEX.

the CNP/DEX group tended to be longer than the WT/DEX group, but
there were no significant differences. The skull width of WT/DEX mice
became significantly smaller than the WT/vehicle group, and that of
the CNP/DEX group was almost equal to the WT/DEX group (Fig. 2B).
In CNP/vehicle mice, appendicular bones, lumbar vertebrae, and skull
length were all significantly longer than those in WT/vehicle mice, as
we have previously reported (Ref. [19] and Fig. 2B). There was no signif-
icant difference in skull width between CNP/vehicle and WT/vehicle
mice (Ref. [19] and Fig. 2B).

3.3. Histological examination of the effect of CNP on the growth plate of GC-
treated mouse model

We subsequently performed histological analyses of the tibial
growth plates of the four groups of mice at the end of the experimental

period. As depicted in the histological pictures in Fig. 3A and as shown
by the graph of the widths in Fig. 3B, the growth plates of WT/DEX
mice were significantly thinner than those of WT/vehicle mice. Al-
though the growth plates of CNP/DEX mice became significantly thinner
than those of CNP/vehicle mice, they became significantly thicker than
those of WT/DEX mice and furthermore, were thicker than those of
WT/vehicle mice (Fig. 3B). Similar results were observed in the hyper-
trophic zones of their growth plates stained with type X collagen (Fig.
3(C), although there were no significant differences between WT/vehicle
and CNP/DEX mice (Fig. 3D). The hypertrophic zones of CNP/vehicle
mice were not diminished in the CNP/DEX group, nor were they signif-
icantly larger than in the WT/vehicle group (Fig. 3D). There were no sig-
nificant differences in the thickness of the proliferative zones stained
type Il collagen among the WT/vehicle, WT/DEX, and CNP/DEX groups,
although that of the CNP/vehicle group was significantly thicker than
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the other three groups (Fig. 3E and F). Histological images of Alcian-blue
staining at higher magnification suggested that the size of cells in the
growth plate is reduced by DEX and increased by CNP, especially in
the hypertrophic zone (Fig. 3A, lower panels).

To further elucidate the mechanism underlying thinner growth
plates in WT/DEX mice and the observed recovery in CNP/DEX mice,
we examined the proliferation of growth plate chondrocytes using a
BrdU assay. We could observe the significant reduction of cell prolifera-
tion in the growth plates of WT/DEX mice compared with WT/vehicle
mice, but the reduction was not restored in the growth plates of CNP/
DEX mice (Fig. 4A).

Next, we measured the apoptosis of hypertrophic chondrocytes
using a TUNEL assay. As shown in Fig. 4B, TUNEL-positive cells in the hy-
pertrophic zones were significantly increased in WT/DEX mice com-
pared with WT/vehicle mice, indicating that apoptosis was increased
in hypertrophic zones of WT/DEX mice. CNP/DEX mice also had in-
creased numbers of TUNEL-positive cells in their hypertrophic zones,
and there was no significant difference between CNP/DEX mice and
WT/DEX mice (Fig. 4B).

3.4. The effect of CNP on bone microstructure of GC-treated mouse model

We went on to perform microstructural analysis of the distal
metaphyses of femurs of these groups of mice at the end of the experi-
ment using micro-CT. As we have performed and reported on the micro-
structural analysis of SAP-Nppc-Tg bone in detail in our previous report
[28], herein we investigated and compared the microstructures of other

three groups of mice, namely, WT/vehicle, WT/DEX, and CNP/DEX. WT/
DEX mice tended to have larger BV/TV and a significantly larger Th.N
than the WT/vehicle group (Fig. 5A and B). In the WT/DEX group,
Tb.Th was almost equal to that in the WT/vehicle group and Tb.Sp was
significantly smaller than in the WT/vehicle group (Fig. 5C and D). In
the CNP/DEX group, BV/TV and Tb.N were significantly smaller than in
the WT/DEX group (Fig. 5A and B), while Th.Th was significantly smaller
than that in the WT/vehicle group (Fig. 5C). In contrast, Th.Sp was signif-
icantly larger than that in the WT/DEX group (Fig. 5D).

3.5. Change in blood NT-proCNP levels in GC-treated rat model

In order to verify the influence of GC on circulating levels of CNP in
rodents, we determined the blood NT-proCNP levels of rats treated
with DEX. NT-proCNP levels in rats treated with DEX for 2 days at a
dose of 2 mg/kg/day were 3.8 4- 0.4 pmol/L whereas those in the vehi-
cle-treated control group were 18.2 £ 1.9 pmol/L; NT-proCNP levels in
DEX-treated rats were significantly lower than those in vehicle-treated
rats (P<0.01, n = 4-5, each).

3.6. The effect of CNP in an organ culture experiment

To elucidate the direct effect of DEX and CNP on endochondral bone
growth, we performed an organ culture experiment using tibial ex-
plants from fetal mice. Growth of tibias incubated with DEX was signif-
icantly impaired but recovered by addition of CNP, which was
consistent with the results of our in vivo experiments described above
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Fig. 3. Histological pictures of growth plates and the width of each chondrocyte layer measured on the pictures. (A, C, E) The histological pictures of growth plates of Alcian-blue staining
(A) and immunohistochemical staining for type X (C) and type II (E) collagens. Lower panels in (A) exhibit a part of hypertrophic chondrocyte layers in the respective upper panel pictures
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C, E: 50 um. (B, D, F) Graphs of widths of growth plates (B), hypertrophic zones (D), and proliferative zones (F) measured on histological pictures of Alcian-blue staining and
immunohistochemical staining for type X and type II collagens, respectively. n = 6, 6, 8, and 8 in the CNP/vehicle, WT/vehicle, WT/DEX, and CNP/DEX groups, respectively. *: P < 0.05.

(Fig. 6A, B). The results of histological analysis of cultured tibias were
also consistent with those of in vivo experiments (Fig. 6C-E). Hypertro-
phic zones of the growth plates were thickened in CNP-treated, and
both DEX and CNP-treated explants compared with vehicle-treated
and DEX-treated explants, respectively. Hypertrophic zones of explants
treated with both DEX and CNP were rather thicker than those treated
with vehicle (Fig. 6C, D). There was no significant difference in the thick-
ness of non-hypertrophic zones among these four groups (Fig. 6E).

4. Discussion

In the present study, we examined the effect of CNP on the impaired
skeletal growth in a mouse model for GC-induced growth retardation.
We used SAP-Nppc-Tg mice, which have increased circulating CNP levels
[19]. We could successfully restore the impaired skeletal growth of a
mouse model of GC-treatment with a higher level of circulating CNP.
DEX impaired the growth of cranial and appendicular bones but CNP
overexpression reversed the impairment of appendicular bone growth.

Skull length tended to be lengthened by CNP but skull width was not
rescued. Whereas appendicular bones are formed through endochon-
dral ossification, skeletogenesis of cranial bone consists of both endo-
chondral and intramembranous ossifications and cranial bone is
widened mainly by intramembranous ossification. CNP is a stimulator
of bone growth based on endochondral ossification, and we have previ-
ously reported that CNP did not affect skull width using transgenic and
knockout mice [29]. We therefore concluded that although DEX impairs
both endochondral and intramembranous bone growth, CNP could re-
store only the endochondral bone growth impaired by DEX. As for the
growth of bones formed through endochondral ossification, recovery
from DEX-induced growth impairment induced by CNP was stronger
in appendicular bones than in vertebrae. The reason for this is not
known at present, but the shortness of the longitudinal length and the
thinness of the growth plate in each vertebral body may affect the res-
cue effect of CNP on impaired endochondral bone growth by DEX.

The growth velocity of CNP/DEX mice was comparable to that of WT/
vehicle mice. Elevated circulating CNP in SAP-Nppc-Tg mice would be
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responsible for the restoration of GC-induced growth impairment be- other factors than circulating CNP should be considered. At first, any
cause SAP-Nppc-Tg mice had a similar overgrowth phenotype to mice possible advantageous factors relevant to CNP/NPR2 signaling might
treated with intravenous administration of CNP-22 [27]. However, be increased in SAP-Nppc-Tg mice. For example, we have reported that
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Fig. 5. Analyses of bone microstructure by micro-CT. Graphs of bone volume fraction (BV/TV) (%) (A), trabecular number (Tb.N) (/mm) (B), trabecular thickness (Tb.Th) (um) (C), and
trabecular separation (Tb.Sp) (um) (D) at the end of experimental period are shown. n = 7, 4, and 5 in the WT/vehicle, WT/DEX, and CNP/DEX groups, respectively. *: P < 0.05.
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the mRNA expression of natriuretic peptide receptor 3, the clearance re-
ceptor of CNP, is down-regulated in costal cartilage of SAP-Nppc-Tg mice
compared with in heart [19]. Thus, the effect of CNP on cartilage could
be more enhanced and indeed, skeletal phenotype of SAP-Nppc-Tg
mice is prominent compared with cardiovascular phenotype [19].
Next, overexpression of CNP in the liver might affect the clearance of
DEX and then reduce the skeletal impairment by DEX. Nevertheless,
there was no significant difference in the liver weight between wild-
type and SAP-Nppc-Tg mice.

It is well-known that the body weight is reduced by DEX in mice. As
GCis reported to have no influence on food intake in mice [30], DEX-in-
duced body weight loss seems to be mainly caused by muscle atrophy
because the body weight loss is completely restored by intervention
against muscle atrophy [31]. As for the body weight of SAP-Nppc-Tg
mice, we previously reported that body weights are not different be-
tween SAP-Nppc-Tg and wild-type mice [19]. The effect of CNP on met-
abolic status is controversial; one report suggests that CNP increases

food intake [32], whereas another indicates that CNP suppresses food
intake [33]; the effect of CNP on appetite likely differs depending on
the way of administration, etc. Recently, we reported that brain-specific
NPR2 deleted mice neither have higher lipid deposition nor higher
weight gain than wild-type mice, when fed a standard diet [34]. These
mice did not exhibit altered energy homeostasis including body tem-
perature, food intake, and oxygen consumption compared to wild-
type mice. We think that CNP does not have clear effect on energy ho-
meostasis, such as food intake or variation of adipose tissue, at least in
this SAP-Nppc-Tg model at present. Therefore, SAP-Nppc-Tg mice in
this experiment have no significant weight change compared with
wild-type mice. The overgrowth in length in SAP-Nppc-Tg mice with
no body weight change owes only to skeletal overgrowth, resulting in
the development of “slender” mice.

As for the mechanism underlying the protective effect of CNP by
DEX-induced impaired skeletal growth, we showed that CNP complete-
ly restored the hypertrophic zones of growth plates reduced by DEX by
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histological analysis but did not affect either the increased apoptosis or
the decreased proliferation of growth plate chondrocytes induced by
DEX. As for the width of the hypertrophic zone, the width for the CNP/
DEX group was comparable to that for the CNP/vehicle group, although
that for the WT/DEX group was dramatically lower than the WT/vehicle
group. This indicates that CNP protects against inhibition of hypertro-
phic differentiation by DEX. On the other hand, the width of the prolif-
erative zone in the CNP/DEX group was much smaller than in the
CNP/vehicle group, which concurs with the finding that CNP could not
rescue the DEX-induced impairment of proliferation of growth plate
chondrocytes. Collectively, CNP might mitigate the delayed hypertro-
phic differentiation of chondrocytes caused by DEX and restore DEX-in-
duced impaired endochondral bone growth. Furthermore, we showed
that the size of growth plate chondrocytes is lessened by DEX and re-
stored by CNP, especially in the hypertrophic zone. In addition, we
have demonstrated that CNP promotes extracellular matrix synthesis
of growth plate chondrocytes in our previous report [18]. Recently, ex-
tracellular matrix deposition and cell volume enlargement were report-
ed to be the main contributors of longitudinal growth of long bones
through the observation of dynamic images of the growth plate carti-
lage [35]. CNP seems to lengthen long bones by stimulating these key
factors.

We have previously demonstrated that genetic overexpression or
systemic administration of CNP rescues the impaired skeletal growth
observed in a mouse model for achondroplasia, the most common
form of skeletal dysplasia caused by the constitutive activation of fibro-
blast growth factor receptor 3 (FGFR3), a potent negative regulator of
endochondral bone growth [18,26,27]. We postulated that the mecha-
nism of rescue involves inhibition of extracellular signal-regulated ki-
nase (ERK) phosphorylation in the mitogen-activated protein kinase
(MAPK) pathway of FGFR3 signaling by CNP/NPR2 signaling. Neverthe-
less, we think that the stimulatory effect of CNP/NPR2 signaling on en-
dochondral bone growth is not restricted to the inhibition of the ERK
MAPK pathway for FGFR3 signaling. As examples of other CNP/NPR-B
signaling pathways stimulating endochondral ossification, the p38
MAPK-dependent pathway [36] and the AKT-GSK3p-dependent path-
way [37] have been reported to be involved. Our present study revealed
that although CNP have a stimulatory effect on endochondral bone
growth even under a high dose of GC, CNP did not reduce the inhibitory
effect of DEX (DEX decreased the growth velocity of wild-type mice by
39% whereas the decrease in SAP-Nppc-Tg mice was 58%) and DEX re-
duced the stimulatory effect of CNP (the growth velocity of CNP/DEX
mice was 29% larger than WT/DEX mice, whereas that of CNP/vehicle
mice was 88% larger than WT/vehicle mice). The specific actions of
DEX on CNP pathway activity clearly require further study.

There are some reports on the interaction between glucocorticoid
and CNP. Subcutaneous injection of DEX is reported to decrease plasma
CNP and NT-proCNP levels in ewes [38,39], whereas in vitro DEX has
been proposed to stimulate the expression of CNP in chondrocytes
[40]. In the present study, we tried to determine the effect of GC on
CNP production in mice in vivo by measuring plasma NT-proCNP level,
because plasma CNP level itself is so low that it is quite difficult to mea-
sure the value precisely. Although measurements of CNP (CNP-22 ultra-
sensitive RIA kit; Phoenix Pharmaceuticals, Belmont, CA) have been
used by us previously, this assay requires too much plasma to be collect-
ed from young mice we used in the present study [19]. Further, we
could not measure plasma NT-proCNP levels in mice because there is
no available antibody against murine NT-proCNP. We therefore investi-
gated plasma NT-proCNP concentrations of rats as the representative for
rodents, and observed a drastic reduction in NT-proCNP levels following
DEX administration. While it is unclear if the reduction in CNP produc-
tion is related to the impaired skeletal growth caused by DEX, plasma
NT-proCNP levels are reported to be correlated with linear growth ve-
locity in rats, lambs, and humans [41-43]; therefore, the reduced CNP
levels caused by DEX might be at least a part of the cause of DEX-in-
duced growth retardation. The mechanism by which GC reduces CNP

is not clear; as DEX is suggested to stimulate the expression of CNP in
chondrocytes in vitro [40], DEX may affect the production of CNP indi-
rectly in vivo. In fact, GC affects various systems that regulate skeletal
growth, including growth hormone and IGF-I axis [4,44,45]. Further
studies are needed to elucidate the regulation of CNP by GC, especially
in vivo.

In this study, we used SAP-Nppc-Tg mice, which have approximately
two times as much circulating CNP compared with wild-type mice, as a
mouse model for systemic CNP administration [46]. Indeed, the SAP
promoter has been reported to be activated just after birth [47]; thus,
it might not be an ideal model for administration, in that circulating
CNP levels would increase during the same time as the GC-administra-
tion period. Nevertheless, there was no significant difference in the
naso-anal length between wild-type and SAP-Nppc-Tg mice at the age
of 4 weeks, the start point of our experiments. Furthermore, we verified
that the length of each bone that we measured was unchanged between
wild-type and SAP-Nppc-Tg mice at the age of 4 weeks, except for the
ulna. However, there remains the possibility that various differences
in endochondral bone growth between wild-type and SAP-Nppc-Tg
mice already existed at the age of 4 weeks. In order to support our pres-
ent in vivo result, we further performed organ culture experiments to
exclude the effect of increased circulating levels of CNP in SAP-Nppc-Tg
mice before DEX administration and to elucidate the direct effect of
CNP on DEX-induced impairment of endochondral bone growth. We
obtained the same qualitative result as in our in vivo experiments. In ad-
dition, SAP-Nppc-Tg mice have the human SAP/mouse CNP fusion gene
and whole length of CNP is produced in their livers. Thus, this mouse
is indeed a model treated with proCNP and increased circulating mix-
ture of proCNP, CNP-53, and CNP-22 might exist, unlike mice treated
with single molecular form of bioactive CNP, such as CNP-22 or CNP-
53. Little is known about processing of CNP molecule in vivo, thus it is
quite difficult to predict whether SAP-Nppc-Tg mice and CNP-treated
mice have different phenotype or not. Both groups of mice would
have activated CNP/NPR2 signaling on one level or another and SAP-
Nppc-Tg mice could imitate CNP-22-treated or CNP-53-treated mice
in terms of longitudinal growth. However, further investigation into
the difference of bioactive forms of CNP between mouse models includ-
ing SAP-Nppc-Tg is desirable for precise evaluation. To use SAP-Nppc-Tg
mice as a model for systemic CNP administration has technical merit,
but we might have to perform CNP administration to a murine model
for GC-induced growth retardation in order to obtain more accurate
data. Our SAP-Nppc-Tg model is an approximation but we think we
could assume much about the therapeutic potency of CNP for GC-in-
duced impaired bone growth and analyze its mechanism.

It is well-known that systemic administration of GC reduces bone
mineral density. However, our microstructural analysis with micro-CT
revealed that the trabeculae of distal metaphyses of femurs were not di-
minished by DEX. Similar results with regard to the effect of DEX on tra-
beculae were reported in a study in which DEX was administered to
young mice [48]. Because these microstructural analyses were only per-
formed at the proximal region from the distal growth plates of femurs,
the decreased longitudinal growth rate by DEX might affect the results
and the bone volume of WT/DEX mice was maintained to the extent
of that of WT/vehicle mice. On the other hand, CNP decreased the tra-
becular volume of DEX-treated mice. We recently reported that the tra-
becular volume was significantly decreased in SAP-Nppc-Tg mice
compared with wild-type mice at the age of 8 weeks [28]. As the trabec-
ular volume in WT/DEX mice was comparable with that in the WT/vehi-
cle group, it is consistent that the trabecular volume in CNP/DEX mice
was lower than that in WT/DEX mice. In clinical settings, we would
treat the decrease in bone mass caused by CNP in any way. However,
we believe that further study is required concerning the effect of DEX
or CNP on bone strength when administered to young mice.

In conclusion, we have determined that CNP is efficient for restoring
the impaired skeletal growth caused by high doses of GC in a mouse
model. As the stimulatory effect of CNP on endochondral bone growth
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is both potent and universal, we expect an increasing number of thera-
peutic targets in various situations involving impairment of endochon-
dral bone growth.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.bone.2016.08.026.
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