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Infectious diseases remain a significant cause of morbidity and mortality worldwide. A wide range of
diverse, novel classes of natural antibiotics have been isolated from different snake species in the recent
past. Snake venoms contain diverse groups of proteins with potent antibacterial activity against a wide
range of human pathogens. Some snake venom molecules are pharmacologically attractive, as they pos-
sess promising broad-spectrum antibacterial activities. Furthermore, snake venom proteins (SVPs)/pep-
tides also bind to integrins with high affinity, thereby inhibiting cell adhesion and accelerating wound
healing in animal models. Thus, SVPs are a potential alternative to chemical antibiotics. The mode of
action for many antibacterial peptides involves pore formation and disruption of the plasma membrane.
This activity often includes modulation of nuclear factor kappa B (NF-jB) activation during skin wound
healing. The NF-jB pathway negatively regulates the transforming growth factor (TGF)-b1/Smad path-
way by inducing the expression of Smad7 and eventually reducing in vivo collagen production at the
wound sites. In this context, SVPs that regulate the NF-jB signaling pathway may serve as potential tar-
gets for drug development.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Hospitals represent a rich environment for several
life-threatening bacteria worldwide. For instance, Gram-negative
bacterial infection (particularly involving Pseudomonas species) is
a serious problem in patients hospitalized with cystic fibrosis
and burns [1]. The fatality rate is almost 50%, and such infections
are difficult to treat with the existing antibiotics [2]. Moreover,
sepsis and septic shock are host-derived inflammatory conditions
resulting from a systemic response to the bacterial infections [3].
Indeed, sepsis, pneumonia, and other conditions caused by
hospital-acquired infections are responsible for at least 48,000
deaths worldwide and cost $8.1 billion to treat infected individuals
every year [4].

A number of infections acquired in hospitals are caused by
potentially fatal bacteria such as Staphylococcus aureus, which
can survive for extended periods on medical devices such as intra-
venous lines and catheter tubes. Nearly 40% of all nosocomial
infections involve the urinary tract and use of catheters [5]. Con-
versely, >70% of nursing home residents are hospitalized every
year and exposed to methicillin-resistant S. aureus (MRSA) [6]. A
previous study reports that 4.4% of all S. aureus strains are MRSA
among children treated with flucloxacillin for noninfected atopic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcp.2016.03.006&domain=pdf
http://dx.doi.org/10.1016/j.bcp.2016.03.006
mailto:phsrp@nus.edu.sg
http://dx.doi.org/10.1016/j.bcp.2016.03.006
http://www.sciencedirect.com/science/journal/00062952
http://www.elsevier.com/locate/biochempharm


2 R.P. Samy et al. / Biochemical Pharmacology 115 (2016) 1–9
eczema. A 15–20% prevalence of fusidic acid resistance and MRSA
in children (infancy to school age) has been reported for infected
atopic eczema [7]. Previous reports related to decubital ulcers
and inflammatory skin diseases with erosive lesions and venous
leg ulcers mention the key role of MRSA [8]. In addition, severe
infections may also complicate 0.25–4% of major cardiac surgical
procedures, causing death and morbidity, leading to higher costs
[9,10]. Generally, in diabetes mellitus and AIDS, a normally mild
infection can rapidly become life-threatening [11]. In the case of
diabetic foot ulcers caused by S. aureus, which produces the Pan-
ton–Valentine leukocidin and toxic shock syndrome toxin 1, per-
sistent tissue damage and inflammatory response are observed.
As a result, the inflammation may be the source of ongoing tissue
damage [11,12]. Exotoxins are actively secreted proteins produced
by virulent strains of S. aureus and Streptococcus pyogenes [13],
which cause tissue damage or dysfunction via diverse mechanisms.
It is estimated that half of all S. aureus strains develop resistance to
antibiotics such as methicillin. The emergence of vancomycin-
resistant Enterococcus species may accelerate the spread of van-
comycin resistance genes through plasmids to other species. The
diagnosis and treatment perspectives include technological
advances for diagnosis by blood cultures, tissue swabs with cul-
ture, needle aspiration, X-ray, ultrasound, and computed tomogra-
phy (CT) scan or magnetic resonance imaging (MRI) screening,
depending on the clinical manifestations. However, these tech-
niques fail to detect microorganisms sometimes [10] and subse-
quently delay proper treatment.

Currently, there is an urgent need for an effective treatment
regimen to prevent further emergence of multidrug-resistant
(MDR) microorganisms. Furthermore, MDR significantly increase
the risk of these infections; new antibacterial sources and agents
are needed. Moreover, antimicrobial resistance is recognized as
one of the greatest threats to human health worldwide [14]. Novel,
promising sources of antimicrobials include antimicrobial peptides
derived from various biological sources. For the past 20 years, sev-
eral antimicrobial peptides have been isolated from plants, insects,
and animals [15,16] as defense molecules, playing a vital role in
innate immunity [17]. Animals are significant producers of antimi-
crobial peptides, most of which have been identified from inverte-
brate and vertebrate species [18].

This review focuses on a wide variety of snake venom proteins
(SVPs) and peptides with antimicrobial effects and wound-healing
accelerating properties. The most interesting biological and phar-
macological properties are linked to a variety of enzymes such as
phospholipase A2 (PLA2), metalloproteases, serine proteases,

L-amino acid oxidases (LAAO), esterases, and other proteins such
as disintegrins [19]. Recently, a snake (Bothrops alternatus) metal-
loproteinase called alternagin-C (ALT-C) has received attention. It
is a disintegrin-like, cysteine-rich protein that promotes wound
healing, induces increased type I collagen deposition and fibroblast
density, and reduces inflammation in rats within 7 days [20]. Snake
neurotoxins, myotoxins, cardiotoxins, and cytotoxins induce differ-
ent toxic effects [21]. Some of these SVPs are not only toxic but also
excellent antimicrobial agents [22].
2. Antimicrobial properties of SVPs

Thirty different snake venoms were assayed against Gram-
negative and Gram-positive bacteria by a disk-diffusion method
[23]. Purified LAAO (LAO1 and LAO2) from Pseudechis australis
venom shows promising antibacterial activity that is, respectively,
70 and 17.5 times more effective on a molar basis than tetracycline
is against Aeromonas [23]. A more recent study reports that among
14 Elapidae and eight Viperidae venoms tested for antibacterial
effects, Bothrops moojeni and Bothrops jararacussu venoms inhibit
the growth of Streptococcus mutans, a principal agent involved in
dental caries [24]. Furthermore, Naja naja venom, as well as puri-
fied peptides, exhibits potent antibacterial activity against both
Gram-positive and Gram-negative bacteria such as Escherichia coli,
Pseudomonas aeruginosa, Vibrio cholerae, S. aureus, and Bacillus sub-
tilis. The most potent peptides target Gram-negative bacteria at
concentrations of 100 lg/ml [25]. In addition, crude venoms from
Viperidae species demonstrate significant inhibitory effect; inter-
estingly, Calloselasma rhodostoma venom generates the largest
inhibition zones against S. aureus (minimum inhibitory concentra-
tion (MIC) of 125 lg/ml) [26]. The antimicrobial profile of four dif-
ferent Viperidae venoms (Agkistrodon rhodostoma, Bothrops atrox,
Bothrops jararaca, and Lachesis muta) against 10 drug-resistant,
Gram-positive and Gram-negative bacteria has also been reported
[27]. To date, Viperidae venoms represent a rich source of proteins
and peptides that are yet to be studied. With these and other stud-
ies, snake venoms may represent valuable resources for the devel-
opment of novel human therapeutics in future [28].

Snake venoms and, in particular, their PLA2s exhibit stronger
antibacterial activity even at low concentrations [29,30]. Type IIA
secretory PLA2s are endogenous antibiotic-like proteins which
exert antibacterial activity [31–33]. One specific example includes
crotamine from Crotalus durissus terrificus, which inhibits several
strains of E. coli (MIC ranges of 25–100 lg/ml) via membrane per-
meabilization [34]. Importantly, crotacetin is a novel snake venom
C-type lectin isolated from C. durissus terrificus, sharing homology
with convulxin, which also exhibits antimicrobial activity against
both Gram-positive and Gram-negative bacteria [35]. A PLA2 myo-
toxin from the venom of this South American rattlesnake is struc-
turally close to beta-defensin antimicrobial peptides found in other
vertebrates [34]. Myotoxin has been found to exhibit a significant
antibacterial effect independent of PLA2 enzymatic activity [36].
More interestingly, a PLA2 derived peptide exhibits fungicidal
activity against Candida albicans [37]. Cationic peptides designed
from amino acids (KKWRWWLKALAKK) 115–129 of a Lys49 PLA2

in Bothrops asper venom exhibit both bactericidal and anti-
endotoxic properties [29]. Several synthetic peptides can be
derived from parent SVPs that are also PLA2s. These small novel
molecules not only display broad-spectrum activities but are also
nontoxic and yet increase the bactericidal potency compared with
the parent molecules.

The peptide family termed ‘‘cathelicidins” with a common
proregion (cathelin domain) was first identified in bone marrow
myeloid cells of mammals [38]. Therefore, they are also known
as ‘‘myeloid antimicrobial peptides” or MAPs. Cathelicidins are a
group of antimicrobial peptides, varying in amino acid sequence,
structure, and size [39]. Cathelicidins have been found in humans
and other species including cattle, horses, pigs, sheep, goats, chick-
ens, rabbits, birds, and some fish [40]. Recently, cathelicidin-based
antimicrobial peptides were identified from Bungarus fasciatus
venom [39,41,42] and are the first to be reported in reptiles. The
mode of action of many antibacterial peptides is disruption of
the plasma membrane. These studies have demonstrated that
these peptides act preferentially on bacteria by efficiently perme-
ating anionic phospholipid bilayers, whereas peptides that lyse
mammalian cells efficiently bind and permeate both acidic and
zwitterionic phospholipid membranes, mimicking the plasma
membranes of these cells. With respect to the target membrane,
antimicrobial peptide activities primarily depend on the structure,
length, and complexity of hydrophilic polysaccharides found in the
outer layer of the membrane. These parameters affect a peptide’s
ability to diffuse through the cell’s outer barrier and reach its cyto-
plasmic membrane [43]. However, these peptides may have a
direct effect on microorganisms by damaging or destabilizing the
bacterial, viral, and fungal membrane or by acting on unknown tar-
gets. Interestingly, antimicrobial peptides also play a key role in
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innate immunity and the inflammatory response [44]. However,
these snake-derived cathelicidin peptides may be used as models
for developing novel therapeutic drugs with antimicrobial
properties.
3. Structure and activity relationship of SVPs

Snake venom PLA2s are an interesting protein superfamily that
catalyze the hydrolysis of the 2-acyl bond of cell-membrane phos-
pholipids, releasing arachidonic acid and lysophospholipids. These
proteins are found abundantly in nature. Snake venom PLA2s have
a very high content of disulfide bonds, relatively low molecular
mass (10–20 kDa) and similar three-dimensional structures
(Fig. 1A and B). The PLA2s from snake venoms belong to either
group I or II [45–47]. Group I consists of PLA2s from Elapidae and
Hydrophidae venoms that contain 120 amino acids with seven
disulfide bonds. These enzymes may contain a surface cysteine
loop (63–37) called the pancreating or elapidic loop [47]. They
are calcium dependent and contain an aspartic acid at position
49 (Asp49-PLA2 or D49-PLA2) [48–50]. Group II PLA2s are derived
from Crotalidae and Viperidae venoms, containing 125 amino acids
and seven disulfide bonds with no elapidic loop. These molecules
possess an additional tail on the carboxy-terminal region and an
extra disulfide bond close to His48 (Cys50–Cys138) [46]. His48
has an important catalytic role in the activity of PLA2, together with
Tyr52 and Asp99. Alkylation of His48 with p-bromophenacyl bro-
mide (p-BPB) completely or partially abolishes catalytic and other
pharmacological activities [48,50]. Thus, His-modified enzymes are
suitable for investigating the effect of their enzymatic activity on
the PLA2 pharmacological profiles [48]. Some snake venom PLA2s
(group IIA), such as vipoxin from Vipera ammodytes meridionalis,
possess an Asp49 PLA2 that interacts with Ca2+. Interestingly, the
canonical Ca2+-binding loop formed by Trp28, Gly30, Gly32, and
Asp49 is not disturbed by alkylating His48, and essentially Ca2+

protects the enzyme from inactivation. Alternatively, this enzyme
contains a hydrophobic channel composed of Gly30, His48,
Tyr52, Trp73, and Asp99 [51,52]. Furthermore, the structural
DOI: 3I3I
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Fig. 1. (A) A comparison between apo ‘‘structure of the enzyme with no ligand” and com
loop region for the catalytically inactive Lys49-PLA2s. Antibacterial effects based on the
acutus (AaHIV), a P-III-type snake venom metalloproteinase (SVMP), consists of metallop
metalloproteinase (ADAM) family proteins (PDB, DOI: 3HDB).
determinants of this toxic effect are experimentally mapped to
the C-terminus (residues 115–129), which is antibacterial and
combines both cationic and hydrophobic aromatic amino acid resi-
dues from Lys49 and Asp49 myotoxic PLA2s of B. asper. However,
most cationic and hydrophobic groups of snake proteins and pep-
tides exhibit antibacterial action against a wide range of human
pathogens (see Table 1).
4. SV proteins/peptides as novel candidates for wound healing

Antibiotic resistance has become increasingly prevalent within
dermatology, specifically for wound healing [53]. Antimicrobial
peptides are considered new antimicrobial agents with low resis-
tance development reported against them. One of our previous
studies evaluated the anti-staphylococcal activity of SVPs and pep-
tides in vitro and in vivo, some of which are promising candidates.
Currently, the antibacterial properties of different types of SVPs
such as PLA2s, metalloproteinases, and peptides have emerged
from several reports in recent years [54]. Local application of SVPs
completely clears S. aureus infection with a 14-day treatment reg-
imen, which is a better outcome than with commercial antibiotics
[55]. Another SVP isolated from Eastern diamondback (Crotalus
adamanteus) venom exhibited not only antimicrobial but also
wound-healing properties. This protein, C. adamanteus toxin-II
(CaTx-II), not only exerts potent bactericidal effects on S. aureus
at a dose of 7.8 lg/ml but also modulates the activation of nuclear
factor kappa B (NF-jB) in skin wound repair in an established
mouse model [56]. Therefore, SVPs and peptides will be useful in
developing antimicrobial and wound-healing agents in future
[54]. Oxynor is a synthetic therapeutic agent (b-taipoxin) discov-
ered from the venom of the Australian taipan snake (Oxyuranus s.
scutellatus) that promotes wound healing. Oxynor (100 lg/ml)
showed no toxic effect on ischemic skin wounds in rats and is
under clinical development for wound healing [57].

Several snake venom compounds are effective against bacterial
infections and promote wound healing. Fibrin glue obtained from
snake venom is used as an alternative suturing agent that reduces
(B)
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Table 1
Summary of the snake venom-derived peptides/candidate molecules under preclinical/clinical development.

Proteins/peptides Snake species Properties Mechanism(s) of action References

Viperatoxin (VipTx-II) Daboia russelli russelli
(Indian Russell’s viper)

MICs 6.25 lg/ml on Burkholderia pseudomallei/S. aureus, MICs
12.25 lg/ml on Proteus vulgaris

Pore formation and causes cell wall
membrane damage on bacteria

[98]

Peptide Naja naja (Indian
cobra)

Antimicrobial (Gram-negative bacteria at 100 lg/ml) – [25]

Cathelicidin (Hc-CATH) Hydrophis cyanocinctus
(Sea snakes)

MICs 0.16 lM (Shigella dysenteriae), Klebsiella pneumoniae
(MICs 8 lM)

Membrane damage or cellular
inclusion efflux induced by Hc-CATH

[99]

Omwarpin Oxyuranus
microlepidotus (Inland
taipan) (25 kDa)

MICs 2–10 lg (Gram-positive bacteria) – [100]

Cationic peptides (Lys49-
PLA2)-myotoxin II
KKWRWWLKAL AKK
(115–129 AA)

Bothrops asper (Pit
viper)

MMCs 1 lg/ml (K. pneumoniae), 100 lg of pEM-2 peptide-
treated mice were cleared of peritonitis induced by
Salmonella enterica

Membrane-permeabilizing action of
S. aureus bacteria

[29]

Cationic peptides (Lys49-
PLA2)-myotoxin II

Bothrops asper (Pit
viper)

High microbicidal potency against S. aureus/Salmonella
typhimurium

Functionally interacts with
lipopolysaccharide (LPS) in a
chimeric bacteria model

[101,102]

Cathelicidin (BF) Bungarus fasciatus
(Banded krait)

MICs 0.6 lM (Escherichia coli) Displays potent, broad-spectrum,
salt-independent antimicrobial
activities

[42]

CaTx-II (protein) Crotalus adamanteus
(Eastern Diamondback
Rattlesnake)

MICs 7.8 lg/ml (S. aureus), B. pseudomallei/Enterobacter
aerogenes (MICs 15.6 lg/ml)

Membrane-damaging effects/pore
formation

[56]

Phospholipase A1 inhibitor Python reticulates
(Python serum)

MICs 3.125 lg/ml (S. aureus/B. pseudomallei) peptide PIP-18
[59–76] showed wound healing (50 mg/kg body weight) in
mice model of S. aureus infection

Membrane disintegration/wound
repair

[103]

Alternagin C (ALT-C PEP) Bothrops alternatus
(Crossed pit viper)

10, 50, 100 ng of ALT-C rat increased fibroblast
density/collagen deposition at day 7 in rats

Angiogenesis and growth
modulation induced by snake venom
disintegrin-like, cysteine-rich protein

[20]

Cathelicidin-BF30 Bungarus fasciatus
(Banded krait)

Killing effects on P. aeruginosa/S. aureus (2 logs within 6 min);
BF-30 treated burn/acute infection rat model showed potent
reduction of bacteria/healing at 0.75, 3, 12 mg/kg/day

Cell debris, cytoplasmic leakage [104]

Crotamine (toxin) Crotalus durissus
terrificus (South
American rattlesnake
venom)

Peptide (10 lg/well) caused marked permeabilization of
S. aureus

Peptide that selectively targets
microbial or abnormal host cells

[105]

Crotamine (basic
polypeptide-myotoxin)

C. durissus terrificus Antifungal activity on Candida spp., Trichosporon spp.,
Cryptococcus neoformans (12.5–50 lg/ml)

Ultrastructural alteration of Candida
albicans, low toxicity/no

[106]

Crotamine (basic myotoxin) C. durissus (South
American rattlesnake)

Strong antibacterial effect against several strains of
Escherichia coli (MICs 25–100 lg/ml)

Killing of bacteria by membrane
permeabilization

[34]

Cathelicidin (NA-CATH) Naja naja (Chinese
cobra)

Potent antimicrobial action on Burkholderia thailandensis at
3.6 lg/ml)

Evades destruction of Gram-negative
bacteria by NA-CATH

[107]

Synthetic peptides (ATRA-1,-
2, 1A); NA-CATH–ATRA1-
ATRA)

Naja naja (Chinese
cobra)

NA-CATH–ATRA1-ATRA inhibited biofilm production by
S. aureus (0.51 lg/ml)

Anti-biofilm tools may be a useful
template for the treatment of chronic
wound infections

[108]

Lectin (BIL) Bothrops leucurus
(Whitetail lancehead)

Effective antibacterial activity on S. aureus, E. faecalis,
Bacillus subtilis (31.25, 62.25, 125 lg/ml)

Secondary structure possess a-helix
and b-sheet responsible for
antibacterial effects

[109]

Oxynor (synthetic peptide) Oxyuranus scutellatus
scutellatus (Australian
taipan)

Mice wound (4 mm) treated with active domain of Oxynor
(500 lg/mouse)/b taipoxin (100 lg/ml for PC12 cells) for 7
days

Nontoxic b-taipoxin showed
mitogenic action on cells/wound
healing in mice
FDA approved for human non-
healing wounds

[57]

Captropirls (Bj-BPP-10c) Bothrops jararaca
(South American
snake)

Bradykinin-potentiating peptides Inhibitor of angiotensin-converting
enzyme (ACE)

[110]

Echistatin Echis carinatus (Saw-
scaled viper)

Antagonists Motif binds to glycoprotein IIb/IIIa
integrin receptors

[111]

Mambalgins (Peptide) Dendroaspis polylepis
polylepis (Black
mamba)

Peptide showed potent analgesic effects as powerful as
morphine

Venom peptides target acid-sensing
ion channels to alleviate pain

[85]

a-Neurotoxin Ophiophagus Hannah
(King cobra)

Hannalgesin (painkiller) Neurotoxin produces analgesia
(16–32 ng/g, i.p) without any
neurological deficits

[112]

Dimeric complex (MiTx) Micrurus tener tener
(Texas coral snake)

Analgesic (painkiller) Induces pain-like behavior in mice [113]

Drug (CB24) C. adamanteus
(American
diamondback
rattlesnakes)

Anticancer effects Targets and kills cancer cells [114]

Protein ACTX-6/ACTX-8 Agkistrodon acutus
(Sharp-nosed viper)

Anticancer potency Induces apoptosis in cervical cancer
cells

[115]
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adherence, strengthens the wound site [58], has an adhesive effect
on organ elasticity, stimulates the formation of more granulating
tissue in uterine scars [59], and accelerates healing. In addition,
ALT-C, a disintegrin-like cysteine-rich protein isolated from B.
alternatus venom, induces angiogenesis. Wounded rats treated
with Natrozol gel alone showed accelerated wound healing with
10, 60, and 100 ng of ALT-C for 1, 3, 5, and 7 days [20]. Thus, this
scientific study provides sufficient evidence for the potential of
SVPs in the development of novel therapeutics for wound repair.
5. Cysteine-rich SVPs induce wound healing

Integrins form a family of cell-surface adhesion receptors that
can mediate both cell to cell and cell to extracellular matrix
(ECM) interactions. The a2b1 integrin is a chief collagen receptor
that plays a key role in the adhesion of normal and cancerous cells
to the ECM [60]. Families of small integrin-binding proteins called
disintegrins are found in snake venoms, which strongly inhibit
integrin-mediated cell adhesion and migration [61]. For instance,
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and transforming growth factor (TGF)-a in a rat model for skin
wounds [20]. Further sequence modification(s) of ALT-C/ALT-C
PEP may not only further enhance the cytotoxic effects of these
proteins on bacteria but also significantly decrease their potential
toxic effect on eukaryotic cells [68].
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6. Activation of NF-jB by SVPs in wound healing

Wound healing is a complex process involving interactions
among a variety of different cell types [69,70]. In a severe wound
and chronically inflamed tissues, inflammatory cytokines and pro-
teases (particularly MMPs) are released by extravasation, and acti-
vated tissue-resident cells that ultimately modify the ECM [71].
Inflammation progresses via the release of diverse pro-
inflammatory cytokines, including interleukin (IL)-1, TNF-a,
interferon-gamma (IFN-c), IL-12, IL-18, and the granulocyte–
macrophage colony-stimulating factor (GM-CSF). The inflamma-
tory process is resolved by anti-inflammatory cytokines such as
IL-4, IL-10, IL-13, IFN-a, and TGF-b, and other molecules such as
annexin-A1 (Fig. 2A). The signal transduction pathways of these
cytokines have been studied extensively, ultimately activating
transcription factors such as NF-jB, Smad, and STATs [72]. The
activation of the pro-inflammatory NF-jB protein leads to cell
damage and death in skin wound tissues [72–74]. In corroboration
with earlier studies, we also noted activation of NF-jB in skin
wounds [56]. We found enhanced nuclear localization of p65 in
wound control mice, indicating its involvement in this process.
By contrast, treatment with C. adamanteus toxin-II (CaTx-II) causes
downregulation of NF-jB and more rapid wound repair (Fig. 2B).
We hypothesize that NF-jB plays a negative role in response to
CaTx-II treatment of wound healing [56]. NF-jB is an important
transcription factor with a vital role in several cellular activities
such as proliferation, activation of immune cells, and development
of T/B lymphocytes. Interesting cross talk may occur between NF-
jB and TGF-b1/Smad signaling cascades during skin wound heal-
ing [75–79]. The TGF-b isoforms (TGF-b1, TGF-b2, and TGF-b3)
are synthesized as latent precursors, which are regularly secreted
as a complex with the latent TGF-b-binding protein that is
removed by extracellular proteolytic cleavage (Fig. 3). Active
TGF-bs then exert their biological function by binding to a hetero-
meric receptor complex, which consists of type I and type II recep-
tors that are also serine–threonine kinases. TGF-bs bind with high
affinity to a non-signaling type III receptor that mainly presents
TGF-b to the type II receptor [80]. Thus, TGF-bs act in a similar
manner to wound cytokines and are thus among the most studied
molecules in the wound-healing process.
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Fig. 3. The process of wound healing involves potential cross talk between TGF-b
and NF-jB signaling pathways.
7. Venom-based drugs and therapeutics potential

Snake venom is not only toxic but also used to treat various
human ailments, especially their secreted peptides/enzymes, as
evidenced in current medical practice [81]. The peptide-based anti-
hypertensive life-saving drug captopril was discovered in 1970
from the venom of a Brazilian viper, B. jararaca [82]. This viper
venom drug is an angiotensin-converting enzyme (ACE) inhibitor
used to treat hypertension [83]. Currently, several venom-based
drugs are being developed; for example, a pain-relieving agent
called hannalgesin is 20–200 times more effective than morphine
[84] and is also used as an anti-inflammatory agent. Hannalgesin
is a toxin-derived drug obtained from king cobra (Ophiophagus
hannah) venom. Peptides with analgesic effects have also been
described from venom of the black mamba (Dendroaspis polylepis
polylepis) [85]. Australian elapid snake venoms effectively prevent
bleeding, for example, textilin-1 (code number Q8008), haem-
patchTM (Q8009), and CoVaseTM (V0801). Crotoxin is a protein
derived from the South American rattlesnake [84], and other mole-
cules may be an attractive option for treating cancer [86,87]. The
United States Food and Drug Administration (FDA) have approved
drugs derived from cone snail venoms (ώ-conotoxin CVID) that can
be used to treat chronic pain [88]. A recent study urges the use of
various venoms as a platform for human drugs, thereby emphasiz-
ing the rapid translation of venom toxins into therapeutics [89].
The potential of toxin-derived molecules and in particular some
of the disulfide-rich venom peptides are under clinical trials [90].
8. Concluding remarks

Although the bites of certain snakes can be deadly, their venoms
contain diverse components of medical, biotechnological, and
pharmaceutical importance [91]. Proteins and peptides derived
from natural toxins found in animal venoms provide an invaluable
template for developing new drugs to treat human disorders.
Toxicology and clinical safety are the most common reasons for
the failure of these molecules during development and clinical
studies [92,93]. The venom-derived drugs currently under devel-
opment must be passed through preclinical evaluation/clinical tri-
als to examine their therapeutic efficacies before translation [94].
The medical industry is currently focusing on disulfide-rich pep-
tides, as broad-spectrum molecular tools to treat diverse clinical
disorders or infections [95,96]. These therapeutic peptides may
be useful for oral delivery, as some peptide drugs can breach the
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blood–brain barrier and be translocated across cell membranes.
Thus, intracellular targets [89] can be considered with high
potency and specificity [97]. In addition, these peptide molecules
highlight the importance of peptide drugs, which are of great
potential despite the several challenges that lie ahead.

SVPs and peptides may be potentially useful, novel antibiotics
to combat infections, including those caused by antibiotic-
resistant bacteria such as S. aureus and Enterococcus. For example,
the disintegrin-like, cysteine-rich snake protein alternagin is a
potent inhibitor of collagen-induced adhesion by blocking a2b1
integrin, cytokines, and TGF-b influences during wound healing.
Annexin-A1 (ANXA1) is an important regulator of wound healing
and may act in coordination with both NF-jB and TGF-b1/Smad
signaling pathways. Molecular cross talk is often seen between
the NF-jB and TGF-b1/Smad signaling pathways during skin
wound healing. Snake venom contains various groups of proteins
and peptides that exhibit antibacterial activity against a wide
range of human pathogens. Some of these multifunctional proteins
also promote wound healing in well-established animal models by
modulating NF-jB activation. Ultimately, small venom-derived
candidate molecules such as peptides may serve as useful tools
to develop novel anti-inflammatory and wound healing
therapeutics.
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