
JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.1 (1-11)

Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

An Efficient Time Optimized Scheme for Progressive Analytics in Big
Data

Kostas Kolomvatsos a, Christos Anagnostopoulos b, Stathes Hadjiefthymiades c

a Department of Computer Science, University of Thessaly, 35100, Greece
b School of Computing Science, University of Glasgow, G12 8QQ, UK
c Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2014
Received in revised form 3 December 2014
Accepted 3 February 2015
Available online xxxx

Keywords:
Big data
Continuous queries
Progressive analytics
Sequential time-optimized models

Big data analytics is the key research subject for future data driven decision making applications. Due
to the large amount of data, progressive analytics could provide an efficient way for querying big data
clusters. Each cluster contains only a piece of the examined data. Continuous queries over these data
sources require intelligent mechanism to result the final outcome (query response) in the minimum time
with the maximum performance. A Query Controller (QC) is responsible to manage continuous/sequential
queries and return the final outcome to users or applications. In this paper, we propose a mechanism
that can be adopted by the QC capable of managing partial results retrieved by a number of processors
each one responsible for each cluster. Each processor executes a query over a specific cluster of data. The
proposed mechanism adopts two sequential decision making models for handling the incoming partial
results. The first model is based on a finite horizon time-optimized model and the second one is based
on an infinite horizon optimally scheduled model. We provide mathematical formulations for solving the
discussed problem and present simulation results. Through a large number of experiments, we reveal the
advantages of the proposed models and give numerical results comparing them with a deterministic
model. These results indicate that the proposed models can efficiently reduce the required time for
returning the final outcome to the user/application while keeping the quality of the aggregated result
at high levels.

© 2015 Elsevier Inc. All rights reserved.
108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129
1. Introduction

1.1. Motivation

Big data is an interesting research area and consists of the basis
of future data driven decision making techniques. The appropriate
management of huge amounts of structured or unstructured data
is the key research challenge. This research area has attracted the
attention of many institutes and companies worldwide. The reason
is that, in many applications domains, huge amount of data are
produced and stored requiring the appropriate management mech-
anisms and the so-called big data analytics. The increase of users’
devices leads to an increased amount of data as well as to an in-
creased number of queries. Decision makers should adopt analytics
in order to reach efficient decisions according to the application
domain. For instance, companies adopt analytics in order to deal
with critical applications like security, customers behaviour, etc.

E-mail addresses: kostasks@di.uoa.gr, kolomvatsos@cs.uth.gr (K. Kolomvatsos).
http://dx.doi.org/10.1016/j.bdr.2015.02.001
2214-5796/© 2015 Elsevier Inc. All rights reserved.
Handling big data is not a trivial issue. Many frameworks have
been proposed so far. The most known framework is Hadoop1 and
its programming model MapReduce [11]. The idea behind Hadoop
is to store data sets across distributed clusters and, then, run a
distributed processing scheme in each cluster. In general, there
are two processing models: (a) the batch oriented processing and,
(b) the stream (on-line) oriented processing. Hadoop and MapRe-
duce are oriented to batch processing. Problems arise when ap-
plications require real-time management of data streams. Specific
extensions have already been proposed for Hadoop like Pig2 and
Hive3 to handle these problems.

When data are ‘static’, batch processing is the most appropriate
technique to retrieve analytics and build decision making mecha-
nisms. For instance, a large company may want to discover pat-
terns of the behaviour of buyers. It could adopt historical data to
retrieve the discussed patterns and take specific decisions for the

1 http :/ /hadoop .apache .org/.
2 http :/ /pig .apache .org/.
3 http :/ /hive .apache .org/.
130

131

132

http://dx.doi.org/10.1016/j.bdr.2015.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:kostasks@di.uoa.gr
mailto:kolomvatsos@cs.uth.gr
http://hadoop.apache.org/
http://pig.apache.org/
http://hive.apache.org/
http://dx.doi.org/10.1016/j.bdr.2015.02.001

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.2 (1-11)

2 K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
future strategy. In these cases, real-time data stream processing is
not the appropriate technique. Consider now, a power plant, where
security issues are very critical. Sensors for natural phenomena
(e.g., temperature, people movement) result large amounts of data
that should be managed in real-time. The aim is to create alarms
when specific criteria are met and decisions should be taken re-
lated to the response to security violations. Real-time and big data
analytics on streams require new models for handling the speed
with which data arrive, are managed and stored.

Additionally, in the discussed application domain, there is the
need of continuous query processing. Research efforts in streams
query processing [1,4,6,10,17,26,34] focus on the ability of han-
dling incoming data on-line against a set of continuous queries
[25]. In this paper, we propose a mechanism that deals with con-
tinuous query processing for applications requiring the manage-
ment of big data streams. Progressive analytics could constitute the
basis of an efficient solution. Progressive analytics is the generation
of early results to queries based on partial data, and the progres-
sive refinement of these results as more data are received [5].
Progressive analytics requires only a few resources as query pro-
cessing ends when sufficient accuracy is observed in early results.
Furthermore, in order to avoid the users intervention in the deci-
sion on when to end the process, we propose the use of Optimal
Stopping Theory (OST) [28]. We provide an intelligent mechanism
that stops/terminates the process of collecting partial results and
return the final outcome to the user/application. The proposed
mechanism relies between the user/application and the progres-
sive analytics service. The progressive analytics service is applied
onto a number of clusters. A specific processor is responsible to
(i) execute the same query in each cluster and (ii) return early
(partial) results along with a confidence interval on these results
to our mechanism. Based on the confidence values, the mechanism
decides when it is the appropriate time to stop the process, allevi-
ating users from monitoring the discussed information. Hence, the
system saves time and resources in a setting of continuous queries
over big data streams. The proposed mechanism is simple, how-
ever, efficient as we adopt the advantages of data parallelism (a set
of clusters) combined with the advantages of a time-optimized
framework based on the OST.

1.2. Motivating examples

In this section, we provide three examples that show the mo-
tivation of our work. In these examples, we reveal the need for
having an intelligent mechanism relying between the user/applica-
tion and a progressive analytics service.

Example 1. Imagine a Cloud computing setting where a service
provider applies an intelligent monitoring service over the under-
lying resources. The provider wants to process numerous log data
and performance metrics in order to have an insight on the over-
all performance of the system. This is very critical as consumers’
requirements should be always satisfied because any malfunction
could cause Service Level Agreement (SLA) violations. Any violation
has economic consequences and, additionally, affects the reputa-
tion of the provider. Streams of values for the discussed metrics
and logs are continually stored into the system. The provider, apart
from simple alerting mechanisms, wants an analytics service over
the huge amount of data in order to have: (a) a more complex and
intelligent alerting mechanism and (b) a basis for scheduling fu-
ture advances in the system. The first issue requires the execution
of queries over the stored data in real-time while the second is
more ‘relaxed’ concerning the reception of each query outcome.

Example 2. A governmental agency provides access to huge
amount of data related to various types (e.g., research data, sen-
sor data). Such data are available to interested parties either for
research or for commercial purposes. For each type of data, spe-
cific partitions are provided in order to facilitate data management.
The agency also provides a reference point for these data, actually,
a query executor serving a large number of users/applications.

Example 3. A bank, serving a large number of clients, manages
their every day transactions. The bank needs a system for fraud de-
tection that will respond and derive alerts in real-time. The huge
amount of transactions are stored to a number of clusters that
are continually updated. The fraud detection system should define
queries over this large amount of data and wait for the response.
Fraud should be detected in the minimum time consuming the
minimum required resources.

In the above discussed scenarios, two issues are of great impor-
tance: (a) the separation of the huge amount of data into a number
of pieces and, (b) an executor responsible to receive queries of a
stream, process them and return the final results to users/appli-
cations. The data could be separated into a number of clusters,
probably in different locations, and different processors undertake
the responsibility of returning progressive results, for each cluster,
in order to meet time constraints. Streams of data are connected to
the underlying storage mechanisms and, thus, data are continually
updated. Each query is executed over the entire set of clusters and
when the ‘appropriate’ result is available, the final outcome is de-
livered to the upper level application. The executor is responsible
to return a response in the minimum amount of time. Accordingly,
the executor asks for the execution of the query from the under-
lying set of processors. The selected set of processors could not
be exhaustive, as the executor decides in real-time the plan for
assigning the query execution to specific processors and for re-
trieving the final responses. The executor does know how the data
are separated and, thus, it asks for progressive results accompa-
nied with the confidence interval that every processor provides on
these early (partial) results. The executor, by serving a large num-
ber of requests, should decide the right time to aggregate partial
results and return the final outcome to the user/application. Hence,
it saves time and resources increasing its throughput. Through this
approach, the executor releases computational resources and can
serve much more users/applications. It should be noted that the
final outcome is returned to the user/application only when the
executor is sure about the quality of the final outcome. The quality
of the final outcome is affected by the confidence values for every
set of early (partial) results.

1.3. Related work

Data are continuously collected in many application domains
like financial services, life sciences, mobile services, etc. On-line
users create huge amount of content like blog posts, tweets, social
networking interactions or photos [32]. Big data analytics involves
the process of collecting, organizing and analyzing big data. The
aim is to discover patterns, especially in the case of unstructured
data. Hence, meaningful information could be extracted consisting
of the basis of more complex decision making mechanisms. Suc-
cessful decision making mechanisms will increasingly be driven by
analytics-generated insights.

A number of tools for big data analytics have been proposed
in the literature. The majority of them concern batch oriented sys-
tems and they build on top of the Hadoop. A number of research
efforts try to reveal performance insights to the discussed frame-
work [2,12,23]. Researchers try to provide new functionality on top
of the Hadoop in order to enhance the performance of the pro-
posed systems. For instance, the authors in [19] propose Starfish
which is a self-tuning tool for big data analytics. It can be adapted

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.3 (1-11)

K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–••• 3

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
to user needs and to the system workload in order to provide an
efficient solution. The proposed architecture adopts a self-tuning
database system in order to be adapted to changes in users’ re-
quirements.

When big data applications involve continuous queries, for hav-
ing near real-time responses, such applications include a large
number of clusters or machines. However, retrieving a response
near real-time could be very difficult due to limitations defined
by the number of data and the underlying hardware performance.
Querying data samples and the provision of progressive analytics is
an efficient solution to the described problem [3]. In addition, the
automatic selection of data samples is a very difficult task. Samples
should be defined taking into consideration the domain, the under-
lying infrastructure and so on. Specific sampling techniques have
been proposed in the literature [8,18,27]. In progressive analytics
the Approximate Query Processing (AQP) technique is the key mean
for handling the accuracy in early (partial) results. AQP aims at
providing confidence intervals for early results and select process-
ing orders to bias [8,13,29]. Users defining queries are not involved
in the process, however, based on the confidence intervals could
develop an intelligent mechanism for handling this information.
When accuracy is at acceptable levels (according the specific ap-
plication domain), the process could be stopped.

A progressive analytics system is presented in [5]. The system is
based on a framework called Prism and allows users to communi-
cate progressive samples to the system. Queries are processed over
the defined samples. The authors proposed Now! a progressive
data-parallel computation framework for Windows Azure, where
progress is understood as a first-class citizen in the framework.
Now! mainly works with streaming engines to support progressive
SQL over big data. In [9], the authors present an on-line MapRe-
duce scheme that supports on-line aggregation and continuous
queries. For decreasing the latency of the system, the authors pro-
pose to have the Map task sending early results to the Reduce
tasks. This mechanism enables the generation of approximate re-
sults, which is particularly useful for interactive analytics scenarios.
In [24], the authors present a continuous MapReduce model. The
execution of the Map and Reduce functions is coordinated by a
data stream processing platform. Latency is improved through a
model where mappers are continually fed by data instead of files
and the retrieved results are transferred to reducers.

CONTROL [18] is an AQP system adopted to support progressive
analytics. Users have the opportunity to refine answers and have
on-line control of processing. This way, users are actively involved
in the data analysis process. DBO [22] is another AQP system able
to compute the exact answer to queries over a large relational
database in a scalable fashion. DBO can have an insight on the fi-
nal response together with specific bounds for the accuracy of the
early results. As more information is processed, the DBO has the
opportunity to provide more accurate results. Users can stop the
process at any time, if the accuracy level is of their preference.

1.4. Contribution and organization

Our aim is to provide an intelligent mechanism on top of a
progressive analytics service. This mechanism will minimize users
intervention in handling early (partial) results. In the literature, the
majority of the proposed models involve users to manually define
either data samples, where queries will be executed, or to stop
the process when satisfied by the accuracy level of early results.
However, this is very difficult, especially in very dynamic environ-
ments where big data streams is the common case. Let us consider
a Query Controller (QC) that receives a stream of queries and per-
forms their execution. Each query is assigned to a set of processors.
The QC should provide the final outcome as soon as possible as it
aims to serve a large number of users/applications. The sooner the
Table 1
Concept notations.

Notation Description

QC Query controller
QoR Quality of result
Q Query under consideration
QE Partial query results
Pi Query processors (i = 1,2, . . .)
CIi Confidence Interval for Pi

Ci Confidence value for CIi

ci Confidence value realization for CIi

t∗ Optimal stopping time
Yt Reward at stage t
Mt Maximum confidence value at stage t
Y ∗ Reward at the optimal stopping time t∗
R∗ Optimal stopping rule
T ∗ Principle of optimality
β Discount factor for reward
T Discrete time domain

final outcome is generated, the better the performance of the QC
(throughput) and, respectively, of the applications. However, the
process ends when the proposed system ‘sees’ that the quality of
the final result is at high levels. The Quality of Result (QoR) depends
on the confidence intervals that each processor returns to the QC.
The higher the confidence is, the better for the system. We adopt
the AQP technique and a progressive analytics approach. The pro-
vision of confidence intervals for partial results is responsibility of
the AQP system [5,7,14] and not of the proposed mechanism. The
proposed mechanism could be applied either for batch oriented
models or for stream processing models.

The paper is organized as follows. Section 2 presents our sce-
nario and gives an insight to our setting. In Section 3, we present
the proposed mechanism by giving details of our models. We de-
scribe analytical solutions and depict their realization. Performance
metrics, simulation set-up and experimental evaluation are pre-
sented in Section 4. Finally, in Section 5, we conclude our paper
by giving future extensions of our work.

2. Rationale and preliminary

In this section, we discuss the proposed architecture and
present basic information about our setting. In Table 1, we give
basic notation for our problem adopted throughout the paper ac-
companied by a short description.

2.1. The proposed architecture

Without loss of generality, we focus on the execution of a spe-
cific query Q. The QC is responsible to manage the ‘efficient’ exe-
cution of Q. With the term ‘efficient’, we depict the process that
will result the best possible QoR in the minimum time. As men-
tioned, data parallelism can offer advantages in the ‘efficient’ query
execution by splitting the data in to a number of pieces. We con-
sider that no specific algorithm is adopted for splitting the data
and, thus, we cannot be aware on the contents of each piece. Let
us denote each piece of data as ‘cluster’. As depicted in Fig. 1, for
every cluster, a processor (Pi , i = 1, 2, . . .) is responsible to manage
the underlying data and return results to the QC.

Processors Pi adopt the discussed AQP technique and for every
response, they also return the confidence interval CIi [5] on the
early (partial) results. The process, through which every Pi derives
early results and the CIi , is responsibility of the internal system
and does not affect our model. We assume that Pi are assigned to
execute the same query over different clusters adopting, probably,
different execution methods. CIi , actually, is an error estimate. De-
riving a closed form for the CIi is often a manual analytical process
and, in the literature, is related to simple SQL queries [3]. Usually,

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.4 (1-11)

4 K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 1. The architecture of our model.

CIi comes with the form of error bars defining the upper and the
lower level of the error. Without loss of generality, we consider
the variable Ci which depicts the estimate of the centre of the
population described by the CIi (confidence value). The calculation
process of the Ci is beyond the scope of this paper.

Let us now consider the discrete time domain T. In each t ∈ T,
the QC receives:

• the id of the processor Pi ;
• early (partial) results for Q depicted by the set QE ;
• the confidence value Ci for these results.

As data are not separated by adopting an ‘intelligent’ method and
our main scenario involves streams of data, Ci values could in-
crease or decrease over time. This is because, confidence intervals
could be shortened or expanded as more data are received and
stored to the system. From the QC point of view, Ci values are re-
ceived in a sequential order together with early (partial) results.
The QC should wait to receive more results expecting an increased
Ci , however, it should not wait for a long time as it should return
the results to the user/application as soon as possible. Our aim is
to provide an optimal stopping model that will result the optimal
time where the QC should stop observing Ci values and return the
aggregation of the partial results to the user/application.

2.2. Optimal Stopping Theory

The Optimal Stopping Theory (OST) [28], concerns finding the
best time to take an action (decision) based on sequentially ob-
served random variables. The final aim is to maximize an ex-
pected reward. The optimal stopping problem is defined by a
sequence of random variables C1, C2, . . . whose joint distribu-
tion is known and a sequence of real-valued reward functions
Y0, Y (x1) , Y (x1, x2) , Let (�, B, P) be the probability space,
and Gt be the sub-σ -field of B generated by C1, . . . , Ct . We have
a sequence of σ -fields as G1 ⊂ G2 ⊂ . . .Gt ⊂ B . A stopping time is
defined as a random variable T ∈ 0,1, . . . ,∞ such that the event
T = t is in Gt . The aim is to choose an optimal stopping time t∗ to
maximize the expected future reward E[Yt∗]. If there is no bound
on the number of steps at which one has to stop, this is an infi-
nite horizon problem and the optimal return can be calculated via
the optimality equation. When there is a known upper bound on
the number of steps, it is a finite horizon problem and the optimal
return can be solved by backward induction.

3. The proposed time-optimized mechanism

3.1. Model description & problem formulation

Every Pi sends early (partial) results and Ci to the QC. We con-
sider the random independent variables Ci, i = 1, 2, . . . with real-
izations ci, i = 1, 2, The QC observes ci ∈ [0, 1] and decides the
optimal stopping time t∗ where the QC stops the process and de-
liver the aggregated results to the user/application. At every stage
t ∈ T, the QC receives ct and checks if the current reward is greater
than the expected future reward. The reward for stopping at t is

Yt = βt Mt (1)

where

Mt = max
(
c∗

t

)
(2)

and c∗
t = {c1, c2, . . . , ct}. β ∈ (0, 1) affects the QC behaviour as fol-

lows. The QC probably should delay the decision in anticipation of
a better ci when β → 1. It should not delay the decision when
the user/application (e.g., a critical application) requires an imme-
diate response to Q (β → 0). If the QC never stops, the reward is
considered equal to zero, thus, we assume Y0 = Y∞ = 0. The dis-
count factor β defines an upper limit on the stages for delivering
the final outcome.

Problem 1. Identify the optimal stopping time t∗ where the ex-
pected QC reward is maximized.

Problem 2. Find an optimal stopping rule, such that the QC ter-
minates the process in order to maximize the expected reward Yt ,
i.e., E[Yt].

We can treat Problem 1 as a finite or as an infinite horizon
problem. In the finite horizon case, the QC should respond in a
specific time interval while in the infinite horizon case the QC re-
ceives ci and it has no ‘pressure’ on the time for the final decision.
However, the discount implied by the parameter β makes the QC
to return the final result in a rationale time interval. The reason
is that β affects the reward that the QC tastes at future stages. It
should be noted that we consider a model involving ‘recall’, mean-
ing that the QC stores the responses and early results up to stage t .

Once the QC receives ct , it decides whether to continue the pro-
cess or not, by examining the expectation of the future reward, i.e.,
based on the max{m, ct} value, with m = max{c0, c1, . . . , ct−1}. In
other words, the QC has to find an optimal stopping time (stage
t∗) at which the supremum in Eq. (3) is attained.

sup
t

E[Yt] (3)

Suppose that at some stage t , the QC has received Mt = m′ and it
is optimal to continue the process. Then, at the next stage t + 1,
if Mt+1 is still m′ , because ct+1 ≤ m′ , it is optimal to continue due
to the invariance of the problem in time [15]. Hence, based on the
principle of optimality, this problem can be solved as an optimal
stopping problem with discounted future reward and without re-
call. This means that the reward, in Eq. (2), can be considered as
Y ′

t = βt Mt and the problem in Eq. (3) assumes the same solution
as the following problem:

Problem 3. Find a t∗ such that the supt E[Y ′
t] is attained.

3.2. Model analysis

Let rewards Y0, Y1, . . . , Y∞ where Yt = f (c1, c2, . . . , ct). The se-
quence 〈ct ,Ft〉 is defined by a probability space �, an increasing
sequence of sub σ -algebras {Ft}∞1 , the sequence of random vari-
ables Ci (ci ∈ Ft) and E[ci], ∀i. The following two assumptions
should be true in order to have an optimal stopping time:

(A) E[supt Yt] < ∞
(B) lim supt→∞Yt ≤ Y∞

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.5 (1-11)

K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–••• 5

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Definition 1. A stopping rule R∗ is the rule for which the following
inequality stands true: E[Y R∗]|Ft) > Yt a.s. on {R∗ > t}, ∀t .

Theorem 3.1. Assuming condition (A), for any stopping rule R∗, there is
a regular stopping rule R ′ such that E[Y R ′] ≥ E[Y R∗].

Proof. See [15]. �
Theorem 3.2. Under (A) and (B) conditions, there exists a stopping rule
R∗ such that E[Y R∗] = M∗ where M∗ = supR E[Y R].

Proof. See [15]. �
Theorem 3.3. Under (A), if an optimal stopping rule exists, in particular,
if (B) holds true, then R∗ is optimal.

Proof. See [15]. �
Theorem 3.4. For the model defined by Eq. (2) and Eq. (3), an optimal
stopping time exists.

Proof. We have Yt ≤ βt max (c1, c2, . . . , ct) ≤ max(βc1, β2c2, . . . ,
βtct) ≤ ∑∞

j=1 β j|c j|. Additionally, we have E[supt Yt] ≤ ∑∞
j=1 β j ×

E[|c j|] = β
1−β

E[|c j |] < ∞. Based on the above, condition (A) is
satisfied.

Additionally, lim supt Yt ≤ limtβ
t ∑t

j=1 |c j| = limtβ
t
∑t

j=1 |c j |
t .

From the law of large numbers, we take
∑t

j=1 |c j | → E[|c|] and
tβt = 0. Hence, lim supt Yt ≤ Y∞ = 0 and condition (B) is satis-
fied. �

Based on the above, the optimal stopping rule and the optimal
stopping time is given by the principle of optimality i.e.,

T ∗ = min
{

t ≥ 0 : Yt ≥ Y ∗} (4)

3.2.1. Finite horizon model
In the finite horizon case, there is an upper limit of stages equal

to N . Till stage N , the QC should return the final outcome to the
user/application. As the optimal stopping rule exists as well as the
optimal stopping time t∗ , we can focus on the optimal stopping
rule and solve our problem through backward induction. Let us
define Jt(ct) = max

(
βtct , E[Jt+1(ct+1)]

)
. We take Zt = Jt (ct)

βt and,
thus,

Zt(ct) = max (ct, βE[Zt+1(ct+1)]) (5)

If we take Zt(x) = max (x,at+1), we, finally, have that at =
βE[Zt(x)] = βE[max (x,at+1)]. Remind, that every ci ∈ [0, 1] and,
thus, the optimal stopping time is defined at the time where the
current reward Yt is greater than at where

at = β

⎛
⎜⎝

at+1∫

0

at+1dF (c) +
1∫

at+1

cdF (c)

⎞
⎟⎠ (6)

with

aN = βE (c) (7)

Solving Eq. (6), we can have the recursive equation that gives us
the reward limit, for every stage t . Above this reward limit, the QC
stops observing ci and returns the final outcome to the user/appli-
cation.
3.2.2. Infinite horizon model
In the infinite horizon case, the optimal stopping time t∗ is

given by Eq. (4) where

Y ∗ = E[max
(
βct, Y ∗)] (8)

Following [15], we have that Y ∗ = E[max (βc1, Y ∗)] and, thus,
Y ∗ = βE[max (c1, Y ∗)] Finally, as ci ∈ [0, 1], we have that Y ∗ is the
solution of the following equation:

Y ∗ = β

⎛
⎝

Y ∗∫

0

Y ∗dF (c) +
1∫

Y ∗
cdF (c)

⎞
⎠ (9)

3.3. Model realization

Our model realization depends on the selection of the proba-
bility distribution for variables Ci . In this section, we choose two
probability distributions and solve our model. The aim is to reveal
the benefits of each one in the discussed setting. We adopt: (a) the
Uniform distribution and (b) the Exponential distribution. Frequen-
tist inference involves inference mechanisms based on confidence
distributions. As defined in [31], the confidence distribution for a
parameter θ involves the case where at θ , the distribution follows
Uniform and, thus, it is not informative in direction [31]. Example
application domains, where Uniform is adopted, include Econo-
metrics [33] or participatory sensing [30]. In [20,21], the authors
assume that confidence values follow an Exponential distribution.
These efforts propose models for combining classifiers for charac-
ter recognition.

When applying the Uniform distribution, we assume that ci val-
ues are of equal probability in a specific interval. In other words, ci

values have the same probability to be observed by the QC. On the
other hand, by applying the Exponential distribution, we aim to
handle various cases where the QC assumes that confidence val-
ues will be low or high affected by the rate of the Exponential.
As no special data separation mechanism is adopted, the QC can-
not be sure about the level of the confidence values. It should be
noted that there is no reason to adopt a distribution ‘favourite’ to
large values (ci → 1) as in these cases, the intelligent mechanism
is useless. Large confidence values depict the case where each pro-
cessor believes that partial results are similar to the final, from the
beginning of the Q execution. However, this scenario cannot be
representative when we consider streams of data feeding the sys-
tem.

3.3.1. Finite horizon model
Proposition 3.5. If confidence values follow a Uniform distribution, the
recursive equation at = β

2

(
a2

t+1 + 1
)

defines values that indicate the op-
timal stopping rule at every stage t.

Proof. Applying the probability density function (PDF) of the Uni-
form in Eq. (6), we can easily take that at = β

2

(
a2

t+1 + 1
)
. Addition-

ally, through Eq. (7), we get aN = β
2 . �

Proposition 3.6. If confidence values follow an Exponential distribu-
tion, with rate λ, the recursive equation at = β

λ

(
λat+1 + e−λat+1 −

(λ + 1) e−λ
)

defines values that indicate the optimal stopping rule at
every stage t.

Proof. Applying the PDF of the Exponential distribution in Eq. (6),
we can easily take that at = β

λ

(
λat+1 + e−λat+1 − (λ + 1) e−λ

)
. Ad-

ditionally, through Eq. (7), we get aN = β
λ

. �

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.6 (1-11)

6 K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
3.3.2. Infinite horizon model
Proposition 3.7. If confidence values follow a Uniform distribution, the
QC should stop the process and return the aggregation of the partial re-

sults when the reward at stage t is greater than Y ∗ = 1−√
1−β2

β
.

Proof. Solving the integrals in Eq. (9) and, accordingly, the equa-

tion β
2 Y ∗2 − Y ∗ + β

2 = 0 for Y ∗ , we get Y ∗ = 1−√
1−β2

β
. �

Proposition 3.8. If confidence values follow an Exponential distribution,
with rate λ, the QC should stop the process and return the aggregation
of the partial results when the reward at stage t is greater than Y ∗ =
ω+(β−1)LambertW(0,− βe

− ω
β−1

β−1)

λ(β−1)
where ω = βe−λ (λ + 1).

Proof. Solving the integrals in Eq. (9) and, accordingly, the equa-

tion Y ∗ − β
λ

(
λY ∗ + e−λY ∗ − (λ + 1) e−λ

)
= 0 for Y ∗ , we get Y ∗ =

ω+(β−1)LW(0,− βe
− ω

β−1
β−1)

λ(β−1)
, where ω = βe−λ (λ + 1). LW indicates the

Lambert function (also known as the omega function or product
logarithm). Hence, LW() represents the solution of the following
equation:

W (x)eW (x) = x (10)

with x = − βe
− ω

β−1

β−1 . �
4. Experimental evaluation

We elaborate on the performance of the optimal stopping mod-
els. Through a large number of experiments, we evaluate the finite
horizon model OSMF as well as the infinite horizon model OSMI .
Various simulation scenarios are adopted in order to evaluate the
performance of the OSMF and the OSMI when, in our models,
we adopt the Uniform or the Exponential distribution for depict-
ing the confidence values. When the Uniform is adopted, we aim
to handle scenarios where the QC receives confidence values in
an ‘agnostic’ manner. The term ‘agnostic’ means that the QC con-
siders that confidence values, in the sample space, have an equal
opportunity of occurring. The QC does not know anything about
the process followed by every processor Pi and, additionally, it be-
lieves that confidence values could continually be changed either
in an increasing or in a decreasing manner. When we adopt the
Exponential distribution, we focus on high or low confidence val-
ues based the λ parameter. For instance, when λ = 1.0, the QC
considers that it will receive high confidence values. The higher
the λ is, the smaller the confidence values become. In this setting,
we aim to evaluate different scenarios where streams of data af-
fect the confidence values and, thus, the query process at every
cluster of data. When λ → 1.0, we assume that data received by
the stream have small ‘fluctuations’ and each processor could eas-
ily conclude high confidence values on the partial results. When
λ is very high, we assume that data have ‘heavy fluctuations’ and
processors cannot easily conclude a specific high confidence value.

4.1. Performance metrics & simulation set-up

We report on the performance of the proposed models con-
cerning the throughput and the maximum QoR. In this paper, we
consider the throughput as the amount of the successful queries
executed in a specific amount of time. We define metric T , that
depicts the throughput of the QC. T is defined by the following
equation:
T = |Q|∑|Q|
k=1 T E

(11)

where Q = {Q 1, Q 2, . . .} are the queries executed by the QC and
T E is the total execution time for each Q i . T represents the num-
ber of queries executed by the QC divided by the total time re-
quired for the execution of those queries. Actually, T depicts the
number of queries executed over a fixed time (milliseconds in our
case). The higher the T is, the higher the performance of the pro-
posed models becomes. T is a very important metric as in our
setting, we consider continuous queries execution and aim to have
high throughput performance.

The QoR for each query is evaluated by the γ metric which is
defined by the following equation:

γ =
∑|Q|

k=1 C∗

|Q| (12)

where C∗ = max(c1, c2, . . . , ct∗). The γ metric depicts the max-
imum confidence value received till the stopping time t∗ . The
higher the γ is, the higher QoR the QC tastes (and the user/ap-
plication, respectively). High ci indicates that processors Pi are
confident on the partial results retrieved by the progressive ana-
lytics process.

For comparison purposes, we define TD and γD metrics. The
following equations hold true:

TD = TF − TI

TI
· 100% (13)

γD = γF − γI

γI
· 100% (14)

where TF is the throughput of the OSMF and TI is the throughput
of the OSMI . Additionally, γF is the maximum confidence result of
the OSMF and γI is the maximum confidence of the OSMI . These
metrics are adopted to depict the difference in the performance
between the finite and the infinite horizon models. Our aim is to
reveal the advantages and weaknesses of the proposed models for
the same simulation scenarios.

We compare the proposed optimal stopping models with a de-
terministic model. Let t# be the stopping time where the reward
exceeds a pre-defined threshold h for the Deterministic Stopping
Model (DSM). We compare OSMF and OSMI with the DSM in order
to demonstrate the optimality achieved by the proposed models.
Specifically, a mechanism that is based on a DSM proceeds with
a stopping decision (i.e., decision D2) iff the discounted reward at
time t , Yt = y, exceeds a fixed threshold h. The DSM decides as
follows:

D1 Continue receiving partial results and confidence values at the
next time slot t + 1, if Yt < h;

D2 Stop and proceed with aggregating partial results and return
them to the user/application, if Yt ≥ h.

We evaluate our models with the DSM for diverse values of h, in
order to examine the cases where OSMF and OSMI results in bet-
ter rewards. The evaluation of each mechanism (OSMF , OSMI and
DSM) refers to the average throughput and maximum confidence
values for a large number of experiments.

Without loss of generality, we consider the sampling pe-
riod d = 1 time unit. For each experiment, we run 1000 runs
and take results for the OSMF , OSMI and DSM. We take β ∈
{0.2,0.4,0.6,0.8,0.99} and λ ∈ {1.0,5.0,10.0,20.0,30.0}. β → 0.0
represents the scenario where the QC should immediately return
the final result to the user/application while β → 1 represents the
scenario where the QC has not ‘anxiety’, defined by time restric-
tions, on returning the final outcome. In the second case, the QC

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.7 (1-11)

K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–••• 7

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Fig. 2. Pdf of t∗ for the OSMF model.

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
could wait for longer to receive more confident partial results. Sim-
ilarly, as described, low λ values are adopted when we deal with
the scenario where the QC receives large confidence values and the
opposite stands for high λ. Finally, we take h ∈ {0.5,0.9}. When
h = 0.5, the DSM stops the observation process for relatively low
confidence values compared to the scenario where h = 0.9.

4.2. Performance assessment

We initially report on an estimate of the PDF for the proposed
models. In Fig. 2, we present an estimate of the PDF of t∗ for the
OSMF model. We observe that the stopping time is affected by
the parameter β . The higher the β is, the higher the t∗ (in aver-
age) becomes. The reason is that the proposed mechanism waits
to receive higher confidence values before it decides to stop the
process, aggregate partial results and return the final outcome to
the user/application. In such cases, the reward at t + 1 stage re-
mains at similar levels as at t . When β → 0, the QC reward is
highly reduced as the decision for stopping the observation process
is delayed. In general, the adoption of an Exponential distribution
for depicting confidence values results higher t∗ especially when
β = 0.99 and λ = 10.0. λ = 10.0 leads to very low confidence val-
ues and, thus, the QC should delay the decision of stopping the
process as it expects higher confidence in the upcoming stages.
When β = 0.5, the mechanism results a very low t∗ as the reward
at time t is half of the reward at time t − 1. When Exponential is
adopted, the proposed model is more sensitive to β and, thus, the
final aggregation is immediately decided after receiving the first
partial results (e.g., t∗ is very low, below 7, when β = 0.5).

In Fig. 3, we see our results for the OSMI model. We observe
similar results as in the OSMF with slightly lower t∗ . Recall that
in the OSMI , the mechanism does take the final decision having
in mind a specific horizon to conclude the aggregation result. It
should be noted that results depicted by Fig. 2 and Fig. 3 represent
the probability density estimate over the observed values retrieved
by our simulations. Moreover, our models do not result a ‘stop-
ping’ action when t∗ = 0. In this case, the QC should stop before
it receives the first partial results. We assume that the stopping
decision is taken at t∗ ≥ 1. A future extension of our model is to
involve a warm up period for the discussed setting after which
the QC could stop the process and return the final outcome to the
user/application. However, an intelligent mechanism for deriving
the appropriate warm up period is necessary in this setting.

We compare the performance of the OSMF and the OSMI con-
cerning the throughput of the proposed mechanisms and the QoR
of the final outcome. In Fig. 4, we see our results when Uniform
distribution is adopted. The OSMI exhibits better throughput, how-

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.8 (1-11)

8 K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Fig. 3. Pdf of t∗ for the OSMI model.
108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
ever, it performs worse than OSMF concerning the γ metric. The
reason is that the finite horizon model delays to take the stopping
decision till the upper limit for stages N . As confidence values fol-
low the Uniform distribution, the infinite model is heavily affected
by β and, thus, when the model achieves a limited reward stops
the process. The main reason is the ‘pessimistic’ approach that the
infinite model follows. As the confidence values are considered of
equal probability, the infinite horizon model, the first time that it
observes a reward above Y ∗ , stops the process. The finite horizon
model is forced to receive partial results till N , especially when
β → 1. When β → 0, both models exhibit a similar behaviour
concerning the throughput as the decision should be immediately
taken due to the reason that the future reward is eliminated. As
β → 1, the finite model results decisions at stages close to the up-
per limit N in order to achieve better performance. There is a trade
off between the two proposed models. If the QC wants to serve
more queries, the OSMI should be chosen. If the QoR is the main
focus of the system, the OSMF is the best solution. The higher the
β is, the higher the difference in the performance becomes.

The opposite results are obtained when an Exponential distri-
bution is adopted (Figs. 5 and 6). In this setting, the OSMF per-
forms better than the OSMI either for the TD or the γD metric.
When β ≤ 0.5, both OSMF and OSMI models exhibit the same
performance concerning the γ metric. In general, the Exponential
distribution has an ‘attitude’ to low values based on the λ param-
eter. In this case, the infinite model decides the stopping action
at later stages compared to the finite horizon model that should
take the decision before N . Hence, the throughput is lower for the
infinite horizon model. On the other hand, a delay in the deci-
sion of the infinite horizon model may increase the QoR as the
proposed model receives more confidence values (in number) and
chooses the optimal among them. It should be noted that the dis-
cussed process is heavily affected by the ‘nature’ of the Exponential
distribution. When λ → ∞, the Exponential distribution leads to
low values in general, and, thus, the infinite horizon model de-
lays more the stopping decision decreasing the throughput. On the
other hand the infinite horizon model for low λ and β → 1 leads
to an increased QoR as it selects the optimal QoR from a large set
of values (compared to the finite horizon model). When λ → 0,
the Exponential distribution does not exhibit an ‘attitude’ to low
values and, thus, the proposed models have similar performance,
especially when β → 0. The finite horizon mechanism seems to be
the best solution when we deal with the Exponential distribution
for depicting confidence values.

We compare the proposed models OSMF and OSMI with the
deterministic model DSM. In our experiments, we adopt h = 0.5
and h = 0.9. In Fig. 7, we present our results for the T metric
while in Fig. 8, we give results for the γ metric. The optimal stop-

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.9 (1-11)

K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–••• 9

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Fig. 4. OSMF vs OSMI (Uniform distribution).

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Fig. 5. OSMF vs OSMI (Metric: T , Exponential distribution).

Fig. 6. OSMF vs OSMI (Metric: γ , Exponential distribution).

ping models perform better than the DSM in the majority of our
experiments. The DSM has better throughput results only when
β → 0.99, however, for h = 0.5. A threshold h = 0.5, probably, is
very low to be adopted in real scenarios. Moreover, recall that
when β = 0.99, the proposed mechanism, mainly, retains the cur-
rent reward (approximately) when receiving successive confidence
values. Hence, no ‘anxiety’ is exercised in the proposed mechanism.
The OSMI exhibits better throughput results while the OSMF gives
better γ values. The DSM adopting a high h value (i.e., h = 0.9) ex-
hibits the worse performance compared to the rest models. This is
natural as the DSM waits to receive the confidence values that will
result reward over this high threshold. The above described results
are related to the adoption of a Uniform distribution for the confi-
dence values.

In Fig. 8, we present results for a large number of experiments
combining different β , λ and h values when the Exponential dis-
tribution is adopted to depict confidence values. As natural, the
examined models are affected by λ. Concerning the T metric,
when λ → 1.0, the DSM exhibits higher throughput compared to
the proposed OSM techniques. In this case, processors return high
confidence values for their partial results and, thus, the process
could be immediately stopped. When λ > 5.0, the OSMF performs
better than the rest models (T metric). The OSMF and the OSMI

achieves higher γ values for β = 0.99 and λ ≥ 5.0. In such cases,
the proposed mechanism results large t∗ as they wait to receive
high confidence values before deciding to stop the observation pro-
cess and return the final outcome to the user/application.

5. Conclusions and future work

Progressive analytics can offer many advantages when adopted
to manage big data. Such technique could be very efficient, espe-
cially when streams of data is the main scenario. In such cases,
data are continually updated and, thus, there is not any insight
on their form. In this paper, we focus on data parallelism and as-
sume an underlying progressive analytics service. We propose a
mechanism for handling responses retrieved by processors query-
ing clusters of data. Each processor adopts a progressive analytics
scheme and is responsible to return early (partial) results and a
confidence value to our mechanism. We adopt the principles of
the Optimal Stopping Theory (OST) and model the behaviour of
a Query Controller (QC) responsible to manage multiple queries.
We build on top of the processors and provide an intelligent deci-
sion making mechanism. Our aim is to alleviate users/applications
from the responsibility of monitoring continuous results retrieved
by processors and deciding when it is the right time to stop the
process in order to save time and resources. Two models are de-
scribed: the first assumes a finite horizon scheme while the second

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.10 (1-11)

10 K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Fig. 7. OSM vs DSM (Uniform distribution).

Fig. 8. OSM vs DSM (Exponential distribution).
112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
considers an infinite horizon setting. A large number of experi-
ments reveal the efficiency of the proposed models. We focus on
the throughput of the QC when working in a continuous query sce-
nario and on the quality of the final outcome. Through our results,
it is revealed that there is a trade off between throughput and the
quality of the final outcome.

Future extensions of our work include the definition of an in-
telligent scheme for creating plans and resulting assignments of
queries to specific processors. Every query will be assigned to
specific processors, probably, a subset of the processors available
to the QC. For this, we are going to provide specific models for
queries and processors characteristics. Through this approach, the
efficiency of the proposed system will be maximized as the appro-
priate processors will be selected only for those queries that their
performance will be the maximum. A learning technique will be
also adopted to build an intelligent scheme for assigning queries to
processors. For this, modelling the underlying data and the adop-
tion of an algorithm that splits them to the appropriate pieces, in
the most efficient way, seem to be imperative.
Uncited references

[16]

References

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, S.B. Zdonik, Aurora: a new model and architecture for data
stream management, VLDB J. 12 (2) (2003).

[2] A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A. Rasin, A. Silberschatz,
HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for
analytical workloads, PVLDB 2 (1) (2009).

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden, B. Moza-
fari, I. Stoica, Knowing when you’re wrong: building fast and reliable approxi-
mate query processing systems, in: ACM SIGMOD, USA, 2014.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U.
Srivastava, J. Widom, STREAM: The Stanford Data Stream Management System,
Springer, 2004.

[5] B. Chandramouli, J. Goldstein, A. Quamar, Scalable progressive analytics on big
data in the cloud, Proc. VLDB Endow. 6 (14) (2013).

[6] S. Chandrasekaran, M.J. Franklin, PSoup: a system for streaming queries over
streaming data, VLDB J. 12 (2) (2003) 140–156.

[7] S. Chaudhuri, D. Das, U. Srivastava, Effective use of block-level sampling in
statistics estimation, in: SIGMOD, 2004.

JID:BDR AID:16 /FLA [m5G; v1.148; Prn:18/02/2015; 12:47] P.11 (1-11)

K. Kolomvatsos et al. / Big Data Research ••• (••••) •••–••• 11

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
[8] S. Chaudhuri, G. Das, U. Srivastava, Effective use of block-level sampling in
statistics estimation, in: SIGMOD, 2004.

[9] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, R. Sears, MapRe-
duce online, in: Proc. of the 7th Conference on Networked Systems Design and
Implementation, 2010.

[10] C. Cranor, T. Johnson, O. Spataschek, V. Shkapenyuk, Gigascope: a stream
database for network applications, in: Proceedings of the ACM International
Conference on Management of Data, SIGMOD, 2003.

[11] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Google research, http://research.google.com/archive/mapreduce.html.

[12] J. Dittrich, J.A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, J. Schad, Hadoop++:
making a yellow elephant run like a cheetah, PVLDB 3 (1) (2010).

[13] A. Doucet, M. Briers, S. Senecal, Efficient block sampling strategies for sequen-
tial Monte Carlo methods, J. Comput. Graph. Stat. (2006).

[14] A. Doucet, M. Briers, S. Senecal, Efficient block sampling strategies for sequen-
tial Monte Carlo methods, J. Comput. Graph. Stat. (2006).

[15] T.S. Ferguson, Optimal stopping and applications, Mathematics Depart-
ment, UCLA, http://www.math.ucla.edu/~tom/Stopping/Contents.html, accessed
March 2014.

[16] R.L. Grossman, Y. Guo, Parallel methods for scaling data mining algorithms to
large data sets, in: Jan M. Zytkow (Ed.), Handbook on Data Mining and Knowl-
edge Discovery, Oxford University Press, 2002, pp. 433–442.

[17] M.A. Hammad, T.M. Ghanem, W.G. Aref, A.K. Elmagarmid, M.F. Mokbel, Efficient
pipelined execution of sliding-window queries over data streams, Technical
Report TR CSD-03-035, Purdue University, Department of Computer Sciences,
2003.

[18] J.M. Hellerstein, R. Avnur, Informix under control: online query processing, Data
Min. Knowl. Disc. (2000).

[19] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.B. Cetin, S. Babu, Starfish:
a self-tuning system for big data analytics, in: CIDR, 2011.

[20] S. Jaeger, Informational classifier fusion, in: Proc. of the 17th International Con-
ference on Pattern Recognition, 2004.

[21] S. Jaeger, Using informational confidence values for classifier combination: an
experiment with combined on-line/off-line Japanese character recognition, in:
Proc. of the 9th International Workshop on Frontiers in Handwriting Recogni-
tion, 2004.

[22] C. Jermaine, S. Arumugam, A. Pol, A. Dobra, Scalable approximate query pro-
cessing with the DBO engine, in: SIGMOD, 2007.

[23] D. Jiang, D.C. Ooi, L. Shi, S. Wu, The performance of MapReduce: an in-depth
study, PVLDB 3 (1) (2010).

[24] D. Logothetis, K. Yocum, Ad-hoc data processing in the cloud, Proc. VLDB En-
dow. 1 (2) (2008) 1472–1475.

[25] M. Mokbel, X. Xiong, M. Hammad, W. Aref, Continuous query processing of
spatio-temporal data streams in PLACE, Geoinformatics 9 (4) (2005).

[26] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.S. Manku, C.
Olston, J. Rosenstein, R. Varma, Query processing, approximation, and resource
management in a data stream management system, in: Proceedings of the In-
ternational Conference on Innovative Data Systems Research, CIDR, 2003.

[27] N. Pansare, V.R. Borkar, C. Jermaine, T. Condie, Online aggregation for large
MapReduce jobs, in: PVLDB, 2011.

[28] G. Peskir, A. Shiryaev, Optimal Stopping and Free Boundary Problems, ETH
Zuerich, Birkhäuser, 2006.

[29] V. Raman, B. Raman, J.M. Hellerstein, Online dynamic reordering for interactive
data processing, in: VLDB, 1999.

[30] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. Hansen, M. Srivastava, Evaluat-
ing participation and performance in participatory sensing, in: International
Workshop on Urban, Community and Social Applications of Networked Sens-
ing Systems, 2008.

[31] K. Singh, M. Xie, W.E. Strawderman, Confidence Distribution (CD) – distribution
estimator of a parameter, in: Complex Datasets and Inverse Problems: Tomog-
raphy, Networks and Beyond, vol. 54, 2007.

[32] S. Singh, N. Singh, Big data analytics, in: Proc. of the International Conference
on Communication, Information and Computing Technology, 2012.

[33] B. Stigum, Econometrics and the Philosophy of Economics, Princeton University
Press, 2003.

[34] Y. Yao, J. Gehrke, The cougar approach to in-network query processing in sensor
networks, SIGMOD Rec. 31 (3) (2002).
96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

http://research.google.com/archive/mapreduce.html
http://www.math.ucla.edu/~tom/Stopping/Contents.html

	An Efﬁcient Time Optimized Scheme for Progressive Analytics in Big Data
	1 Introduction
	1.1 Motivation
	1.2 Motivating examples
	1.3 Related work
	1.4 Contribution and organization

	2 Rationale and preliminary
	2.1 The proposed architecture
	2.2 Optimal Stopping Theory

	3 The proposed time-optimized mechanism
	3.1 Model description & problem formulation
	3.2 Model analysis
	3.2.1 Finite horizon model
	3.2.2 Inﬁnite horizon model

	3.3 Model realization
	3.3.1 Finite horizon model
	3.3.2 Inﬁnite horizon model

	4 Experimental evaluation
	4.1 Performance metrics & simulation set-up
	4.2 Performance assessment

	5 Conclusions and future work
	References

