
Big Data Research 3 (2016) 24–28
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Analysis of a Network IO Bottleneck in Big Data Environments Based
on Docker Containers ✩

P. China Venkanna Varma ∗, K. Venkata Kalyan Chakravarthy, V. Valli Kumari,
S. Viswanadha Raju

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2015
Received in revised form 29 November 2015
Accepted 1 December 2015
Available online 4 January 2016

Keywords:
Containers
Context switching
Docker
Hadoop
Map reduce

We live in a world increasingly driven by data with more information about individuals, companies and
governments available than ever before. Now, every business is powered by Information Technology and
generating Big data. Future Business Intelligence can be extracted from the big data. NoSQL [1] and
Map-Reduce [2] technologies find an efficient way to store, organize and process the big data using
Virtualization and Linux Container (a.k.a. Container) [3] technologies.
Provisioning containers on top of virtual machines is a better model for high resource utilization. As the
more containers share the same CPU, the context switch latency for each container increases significantly.
Such increase leads to a negative impact on the network IO throughput and creates a bottleneck in the
big data environments.
As part of this paper, we studied container networking and various factors of context switch latency. We
evaluate Hadoop benchmarks [5] against the number of containers and virtual machines. We observed a
bottleneck where Hadoop [4] cluster throughput is not linear with the number of nodes sharing the same
CPU. This bottleneck is due to virtual network layers which adds a significant delay to Round Trip Time
(RTT) of data packets. Future work of this paper can be extended to analyze the practical implications
of virtual network layers and a solution to improve the performance of big data environments based on
containers.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Data are unorganized facts that need to be processed. When 
data are processed, organized and structured in a given context so 
as to make them useful, they are called Information [10]. Now, ev-
ery business is powered with Information Technology (IT) and gen-
erating big data. There is a potential demand to process big data 
for rapid and accurate business decisions. Data scientists divided 
big data into five dimensions: Volume, Value, Velocity, Variety and 
Veracity (simply Big data 5V’s). Volume refers to vast amounts 
of data generated every second. To create Value for the business, 
volumes of data should be processed to determine the relevance 
within the data sets. Velocity refers to the data processing at data 
gathering speed. Variety refers to managing, merging and process-
ing of structured and un-structured data. Veracity refers to the 
biases, noise and abnormality in data.

✩ This article belongs to Big Data Networking.

* Corresponding author.
E-mail addresses: pc.varma@gmail.com (P. China Venkanna Varma),

tokalyankv@gmail.com (V. K.), vallikumari@gmail.com (V. Valli Kumari),
svraju.jntu@gmail.com (S. Viswanadha Raju).
http://dx.doi.org/10.1016/j.bdr.2015.12.002
2214-5796/© 2016 Elsevier Inc. All rights reserved.
Virtualization technology became de facto standard for all pub-
lic and private cloud requirements. Virtualization has consolidated 
all the hardware components and created software redundancy 
layers for elastic work loads. Docker framework introduced man-
ageable Linux containers [3] called Docker Containers. Docker is an 
open platform for developers and system administrators to build, 
ship, and run distributed applications. Hadoop is an open-source 
software framework for storing and processing the big data in a 
distributed fashion on large clusters.

Nowadays, data centers are adopting Docker to provision 
Hadoop [4] Clusters (HC) for elastic work loads and multi-tenant 
service models. Hadoop cluster nodes requires good amount of 
CPU cycles, Random Access Memory (RAM) and Resource IO to 
execute Map-Reduce operations. Virtualization solved orchestra-
tion of the dynamic resources for data centers, but virtualization 
overhead is the biggest penalty. “Every single CPU cycle that goes 
to the Hypervisor is wasted,” and “Likewise every byte of RAM”. 
Containers solved orchestration of dynamic resources within an 
operating system by virtualizing necessary components. If a con-
tainer runs inside a VM then the network IO path has two extra 
virtual layers: one layer between Hypervisor and VM and another 
layer between VM and container. These two extra network virtual-

http://dx.doi.org/10.1016/j.bdr.2015.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:pc.varma@gmail.com
mailto:tokalyankv@gmail.com
mailto:vallikumari@gmail.com
mailto:svraju.jntu@gmail.com
http://dx.doi.org/10.1016/j.bdr.2015.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2015.12.002&domain=pdf


P. China Venkanna Varma et al. / Big Data Research 3 (2016) 24–28 25
ization layers adds a significant delay to the RTT of data packets in 
the transmission.

We installed a Hadoop [4] cluster in our incubation lab and ex-
ecuted Hadoop benchmarks such as TestDFSIO-read [5], TestDFSIO-
write [5], TeraSort [5] and TeraGen [5] against the number of 
the containers (Hadoop cluster nodes). We considered three use 
cases: Native, VMs and Containers while executing benchmarks. 
Each use case executed and analyzed the throughput of Hadoop
cluster. TestDFSIO is a storage throughput test that is split into two 
parts: TestDFSIO-write writes 1 000 020 MB (about 1 TB) of data to 
HDFS, and TestDFSIO-read reads it back in. Because of the replica-
tion factor, the write test does twice as much I/O as the read test 
and generates substantial network traffic. These write tests spread 
across 140 map tasks. TeraSort sorts a large number of 100-byte 
records. It does considerable computation, networking, and storage 
I/O, and is often considered to be representative of real Hadoop
workloads. It splits into three parts: generation, sorting, and vali-
dation. TeraGen creates the data and is similar to TestDFSIO-write 
except that significant computation is involved in creating the ran-
dom data. The Map tasks write directly to HDFS so there is no 
reduce phase. TeraSort does the actual sorting and writes sorted 
data to HDFS in a number of partitioned files. A total of 280 Map 
tasks was used for TeraGen, 280 simultaneous (several thousand in 
all) Map tasks and 70 reduce [2] tasks for TeraSort, and 70 Map 
tasks for TeraValidate.

Based on test results, as the number of containers increases on 
a VM or a physical machine, there is a significant overhead on the 
big data operations. This overhead is due to a raise in the network 
IO RTT when the CPU is busy. If the CPU is busy, the network IO 
operation is in pending state and waiting for its scheduled slot 
to execute, this will increase the RTT of the network IO packet 
and leads to low network throughput. Ideally Hadoop throughput 
is linear, overall cluster throughput increases by adding new nodes. 
Based on our test results, we observed that the Hadoop cluster 
throughput is not linear with the nodes sharing the same CPU.

The outline of this paper is as follows: (1) Explore how con-
tainer networking works? (Section 2). (2) Identify the important 
factors of the CPU context switch latency (Section 3). (3) Identify 
the effects of virtual network layers on the RTT (Section 3). (4) Ex-
periment setup, big data environment and test cases (Section 4).
(5) Analysis of virtual layer overhead (Section 5). (6) Analysis of 
Hadoop cluster performance (Section 6). (7) Conclusion (Section 7).

2. Docker networking

Docker has a software Ethernet bridge called “docker0” build on 
top of Linux “bridge-utils” [6]. When docker starts, it will create a 
default bridge “docker0” inside the Linux kernel and a virtual sub-
net to exchange the packets between containers and host. Docker 
randomly chooses the IP address range not used by host and de-
fined by RFC 1918. When a container is created a pair of virtual 
interfaces will be initialized, those are similar to both the ends of 
a tube where a packet sent from one end will be delivered to an-
other end. One virtual interface given to the container and another 
one hooked into docker0 to communicate with host and other 
containers. Fig. 1 describes the docker’s docker0 and virtual inter-
faces. Communication between containers depends on the network 
topology and system firewall (iptables). By default docker0 bridge 
allows inter container communication. Docker never do changes to 
the iptables to allow a connection to docker0 bridge, it uses a flag 
“–iptables=false” when docker starts. Otherwise docker will add a 
default rule to the FORWARD chain with a blanket ACCEPT policy if 
you retain the default “—icc=true”, else will set the policy to DROP 
if “—icc=false”.

We observed that docker adds a network virtualization layer 
in the form of a software bridge which adds an extra hop in 
Fig. 1. Docker’s docker0 bridge and virtual network layers.

the network path which adds some delay in the network packet 
transmission. We analyzed this overhead compared to native host 
network IO throughput.

3. Identify the important factors of the CPU context switch 
latency

“Context switch is the process of storing and restoring the state 
(context) of a process so that execution can be resumed from the 
same point at a later time” [9]. Context switch is applicable to a 
set of running processes in the same Central Processing Unit (CPU). 
There is a significant time required by the OS kernel to save exe-
cution state of the current running processes to memory, and then 
resume state of another process.

3.1. Process scheduling algorithms

Process Scheduling Algorithms plays a key role in the Context 
Switching. Each algorithm developed based on a use case. There is 
no ideal algorithm developed for all the known use cases. There 
is no choice given to end users to tune the Scheduling Algo-
rithms. Improving the performance by tuning process scheduling 
algorithms is not in the scope of this paper.

3.2. Multiple-processor scheduling

Multiple-Processor Scheduling is a complicated concept. Main 
aim is to keep all the Processors busy to get the best throughput. 
But, if more and more context switch operations happened, that 
leads to less throughput. Improving the performance by tuning 
multiple-processor scheduling algorithms is also not in the scope 
of this paper.

3.3. Virtualization extensions

How to execute the various Virtual machine processes in the 
same CPU (Virtual CPU or Core), without compromising security? 
Is key for Virtualization extensions. To execute the process belongs 
to a Virtual Machine, hypervisor will add an extra layer on top of 
the existing Process Control Block (PCB) to identity the Virtual Ma-
chine and Process. Coding and decoding of this extra information 
will add a significant overhead in the process execution. Recent 
reports published that Round Trip Time (RTT) latency of a virtual 
machine process request is around 40 nm.

4. Experiment setup

Installed VMware ESXi v5.5 Operating System (OS) on a Dell 
PowerEdge server with Intel Core 2 Quad Processor Q9650, 128 GB 



26 P. China Venkanna Varma et al. / Big Data Research 3 (2016) 24–28
Fig. 2. Big data environment for analysis.

RAM, 4 TB (4×1 TB) 7200 RPM Hard disk drive (HDD) and a Gi-
gabit Ethernet Network Interface (NIC). Provisioned 2 virtual ma-
chines each 60 GB RAM and 2 TB Virtual HDD and 2 vNICs. In-
stalled a Hadoop cluster using Ferry Opencore [7] frame work. 
Based on the use case, the number of Hadoop nodes will be 
increased/decreased dynamically using Yet Another Markup Lan-
guage (YAML) configuration files. We have used maximum of 32 
VMs or containers for all the experiments. Following are the use 
cases considered while analyzing the Network IO throughput.

1. Varying the number of Containers (Hadoop cluster nodes)
2. Varying the number of Virtual Machines (Hadoop cluster 

nodes)
3. Varying the number of Containers (Hadoop cluster nodes) on 

a VM

4.1. Hadoop cluster benchmarking testbed

Installed Hadoop cluster version 2.7.0 with Hive (version 0.12) 
using Opencore Ferry framework [7]. Following is the configura-
tion of the Hadoop cluster [8] and Fig. 2 describes Hadoop cluster 
environment for network IO throughput analysis.

backend: {-storage : { personality: “hadoop”, instances: 2, layers: 
hive }, connectors: {personality: “hadoop-client”} }
node: { Distribution: Ferry Hadoop 2.7.0, NameNode, JobTracker: 
node0, Secondary NameNode: node1, Workers: Dockers,
Non-default parameters: fs.datanode.max.xcievers=4096,
dfs.replication=2, dfs.block.size=134217728,
io.file.buffer.size=131072, mapred.child.java.opts=”-Xmx4096m
–Xmn512m” (native), mapred.child.java.opts=”-Xmx4096m
–Xmn512m” (virtual), Cluster topology:Native, 1 VM per host: all 
nodes in the default rack}

4.2. CPU load and network IO efficiency testbed

On top of the above Hadoop cluster environment some of the 
containers are designated as Servers or Clients to measure the CPU 
load and network IO efficiency against 3 network scenarios.

1. Client-to-server acts as the transmitter.
2. Server-to-client acts as the receiver.
3. Client-to-server and Server-to-client acts as transmitter and re-

ceiver.

5. Analysis of virtual layer overhead

5.1. CPU virtualization layer overhead

We measured CPU virtualization layer overhead using “CPU load 
and Network IO efficiency” testbed. In such an I/O-bound scenario, 
Fig. 3. CPU load and network IO efficiency.

we estimated overhead by measuring the amount of CPU cycles re-
quired to transmit and receive the data. Fig. 3 shows system-wide 
CPU utilization, measured using a Linux command “perf stat -a”. 
The network virtualization in docker i.e. Docker’s bridging and NAT 
noticeably increases the transmit path length; Containers that do 
not use NAT have identical performance to the native Linux. In real 
network-intensive workloads, we expect such CPU overhead will 
reduce the performance. Results shows that there is a significant 
overhead added by the virtualization layer. Native application al-
ways performs well compared to the application on the virtualized 
environments. Both Process scheduling and virtual CPU architec-
ture are the important factors for the network IO throughput. If 
the number of processes/virtual machines/containers increases on 
the same CPU, the context switch latency will be increased propor-
tionately.

5.2. Network virtualization layer overhead

We measured network bandwidth between the system under 
test using “CPU load and Network IO efficiency” testbed. An iden-
tical machine connected using a direct Giga byte Ethernet. Docker 
attaches all containers on the host to a bridge and connects the 
bridge to the network via NAT. We used the netperf request-
response benchmark to measure round-trip network latency us-
ing similar configurations. In this case the system under test was 
running the netperf server (netserver) and the other machine ran 
the netperf client. The client sends a 100-byte request, the server 
sends a 200-byte response, and the client waits for the response 
before sending another request. Thus only one transaction is in 
flight at a time. Fig. 4 describes that the Docker’s Virtualization
layer, increases the latency around 5 μs compared to the Native 
and Virtual environments. Virtual environment adds 30 μs of over-
head to each transaction compared to the native network stack, an 
increase of 80%. TCP and UDP have very similar latency because 
in both the cases a transaction consists of a single packet in each 
direction.

5.3. Number of containers on a virtual machine

The same use cases were executed against varying the num-
ber of containers within the same VM. Each docker node is given 
4 GB of RAM and performed 1000 Map-reduce [2] operations per 
minute. Fig. 5 describes that as the number of containers increases 
in the same VM, the RTT of the Network IO packets also increases 
proportionately. Test results describes that adding more nodes to 
Hadoop cluster will not increase the performance of the system 
linearly.

6. Analysis of Hadoop cluster performance

We executed Hadoop benchmarks TestDFSIO-read, TestDFSIO-
write, TeraSort and TeraGen on the Hadoop cluster testbed. Fol-
lowing are the use cases considered while analyzing the Network 
IO performance.



P. China Venkanna Varma et al. / Big Data Research 3 (2016) 24–28 27
Fig. 4. Describes the transaction latency for native, hypervisor and container envi-
ronments.

Fig. 5. Describes the increase of RTT with increase of the containers in same virtual 
machine.

Fig. 6. Hadoop benchmark – elapsed time in seconds (lower is better) against num-
ber of containers on a physical machine.

1. Varying the number of Containers (Hadoop cluster nodes)
2. Varying the number of Virtual Machines (Hadoop cluster 

nodes)
3. Varying the number of Containers (Hadoop cluster nodes) on 

a VM

6.1. Number of containers (Hadoop cluster nodes) on a physical 
machine

We executed Hadoop benchmarks TestDFSIO-read, TestDFSIO-
write, TeraSort and TeraGen with varying number of containers on 
a physical machine installed with CentOS 7 x64 OS. For all bench-
marks we observed the elapsed time in seconds (lower is better). 
Fig. 6 describes that all benchmark results getting better with 
number of containers. But, the elapsed time of TestDFSIO-write 
and TeraGen operations are not linear with number of containers.

6.2. Number of virtual machines (Hadoop cluster nodes) on a physical 
machine

We evaluate the performance with the same benchmarks with 
varying number of VMs on a physical machine installed with 
VMware ESXi version 5.5 OS and observed the elapsed time in 
Fig. 7. Hadoop benchmark – elapsed time in seconds (lower is better) against num-
ber of virtual machines on a physical machine.

Fig. 8. Hadoop benchmark – elapsed time in seconds (lower is better) against num-
ber of containers on a virtual machine.

seconds (lower is better). Fig. 7 describes that TestDFSIO-read and 
TeraSort operations getting better with number of containers. But, 
TestDFSIO-write and TeraGen operations are blocked somewhere 
and did not get the expected performance. Test results describes 
that elapsed time increases along with the number of containers.

6.3. Number of containers (Hadoop cluster nodes) on a virtual machine

We evaluate the performance with the same benchmarks with 
varying the number of the containers on the same VM and ob-
served the elapsed time in seconds (lower is better). Fig. 8 de-
scribes that the Hadoop cluster throughput is linear up to 16 nodes 
and degraded from 20th node onwards. Test results describes that 
elapsed time increases along with the number of containers. Af-
ter 20th node, we observed that the context switch latency for 
each node increased significantly and decreased the network IO 
throughput, hence the overall system performance was not linear 
with the number of nodes. If the CPU is busy in context switch-
ing, then the IO operations will be blocked and creating a bottle-
necks.

Finally, we found that Hadoop environment suffers from low 
network IO throughput. For better Data center operational margins 
CPU always kept busy. Busy CPU will increase the context switch 
latency, which leads to a raise in the network IO RTT of the data 
packets.

7. Conclusion

We have analyzed the factors that effects performance of the 
Hadoop cluster. We found that the network IO throughput is in-
versely proportional to the number of cluster nodes (sharing same 
CPU) on a VM. If the CPU is busy in the context switching it will 
add a significant latency to the RTT of the data packets. A raise in 



28 P. China Venkanna Varma et al. / Big Data Research 3 (2016) 24–28
the RTT will reduce the throughput of the entire system. Ideally, 
adding nodes to the Hadoop cluster will improve the throughput 
of the system linearly. But, beyond a number (cluster nodes run-
ning on containers), adding nodes to Hadoop cluster will decrease 
the performance due to a raise in the RTT of data packets of the 
containers.

Future work of this paper would be on studying the docker 
network bridge and come up with a solution to improve the net-
work IO throughput of the big data environments. We will study 
the TCP work flow and identify the overhead caused by the vir-
tual network layers. Then we will try to build a solution to reduce 
the RTT of the data packets passing through the virtual network 
layers. The solution would be a counter logic in the docker net-
work bridge and transparent to the containers and virtual ma-
chines.
References

[1] http://www.sersc.org/journals/IJDTA/vol6_no4/1.pdf.
[2] http://static.googleusercontent.com/media/research.google.com/en/us/archive/

mapreduceosdi04.pdf.
[3] http://www.ijarcsse.com/docs/papers/Volume_4/1_January2014/V4I10330.pdf.
[4] http://zoo.cs.yale.edu/classes/cs422/2014fa/readings/papers/shvachko10hdfs.

pdf.
[5] https://www.vmware.com/files/pdf/techpaper/

VMWHadoopPerformancevSphere5.pdf.
[6] https://wiki.aalto.fi/download/attachments/70789083/linux_bridging_final.pdf.
[7] https://github.com/jhorey/ferry.
[8] http://hortonworks.com/wpcontent/uploads/downloads/2013/06/Hortonworks.

ClusterConfigGuide.1.0.pdf.
[9] https://en.m.wikipedia.org/wiki/Process_switching_latency?previous=yes#

LATENCY.
[10] http://www.wikiind.com/2011/04/what-is-difference-between-data-and/.

http://www.sersc.org/journals/IJDTA/vol6_no4/1.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduceosdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduceosdi04.pdf
http://www.ijarcsse.com/docs/papers/Volume_4/1_January2014/V4I10330.pdf
http://zoo.cs.yale.edu/classes/cs422/2014fa/readings/papers/shvachko10hdfs.pdf
http://zoo.cs.yale.edu/classes/cs422/2014fa/readings/papers/shvachko10hdfs.pdf
https://www.vmware.com/files/pdf/techpaper/VMWHadoopPerformancevSphere5.pdf
https://www.vmware.com/files/pdf/techpaper/VMWHadoopPerformancevSphere5.pdf
https://wiki.aalto.fi/download/attachments/70789083/linux_bridging_final.pdf
https://github.com/jhorey/ferry
http://hortonworks.com/wpcontent/uploads/downloads/2013/06/Hortonworks.ClusterConfigGuide.1.0.pdf
http://hortonworks.com/wpcontent/uploads/downloads/2013/06/Hortonworks.ClusterConfigGuide.1.0.pdf
https://en.m.wikipedia.org/wiki/Process_switching_latency?previous=yes#LATENCY
https://en.m.wikipedia.org/wiki/Process_switching_latency?previous=yes#LATENCY
http://www.wikiind.com/2011/04/what-is-difference-between-data-and/

	Analysis of a Network IO Bottleneck in Big Data Environments Based on Docker Containers
	1 Introduction
	2 Docker networking
	3 Identify the important factors of the CPU context switch latency
	3.1 Process scheduling algorithms
	3.2 Multiple-processor scheduling
	3.3 Virtualization extensions

	4 Experiment setup
	4.1 Hadoop cluster benchmarking testbed
	4.2 CPU load and network IO efﬁciency testbed

	5 Analysis of virtual layer overhead
	5.1 CPU virtualization layer overhead
	5.2 Network virtualization layer overhead
	5.3 Number of containers on a virtual machine

	6 Analysis of Hadoop cluster performance
	6.1 Number of containers (Hadoop cluster nodes) on a physical machine
	6.2 Number of virtual machines (Hadoop cluster nodes) on a physical machine
	6.3 Number of containers (Hadoop cluster nodes) on a virtual machine

	7 Conclusion
	References


