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The emergence of new technologies such as Internet/Web/Network-of-Things and large scale wireless
sensor systems enables the collection of data from an increasing volume and variety of networked sensors
for analysis. In this review article, we summarize the latest developments of big sensor data systems
(a term to conceptualize the application of the big data model towards networked sensor systems) in
various representative studies for urban environments, including for air pollution monitoring, assistive
living, disaster management systems, and intelligent transportation. An important focus is the inclusion
of how value is extracted from the big data system. We also discuss some recent techniques for big data
acquisition, cleaning, aggregation, modeling, and interpretation in large scale sensor-based systems. We
conclude the paper with a discussion on future perspectives and challenges of sensor-based data systems
in the big data era.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Big data is a recent phenomenon with the potential to trans-
form and enhance the values of products and services in industry 
and business. It is the main driver for the second economy (a con-
cept proposed by economist W.B. Arthur which refers to the eco-
nomic activities running on processors, connectors, sensors, and 
executors) [1]. It is estimated that by 2030, the size of the sec-
ond economy will approach that of the current traditional physical 
economy. A definition for big data is given by [2] as “Big data 
is high-volume, high-velocity, and high-variety information assets 
that demand cost-effective, innovative forms of information pro-
cessing for enhanced insight and decision making”. An extended 
definition is that big data systems would involve the five V ’s: 
(1) big volume of data (e.g. involving datasets of terabytes), (2) va-
riety of data types, (3) high velocity of data generation and updat-
ing, (4) veracity (uncertainty and noise) of acquired data, and (5) 
big value [3]. The first four V ’s are concerned about data collec-
tion, preprocessing, transmission, and storage. The final V focuses 
on extracting value from the data using statistical and analytical 
methods (e.g. machine learning algorithms, complex network the-
ory). Big data techniques are targeted towards solving system-level 
problems that cannot be solved by conventional methods and tech-
nologies.

* Corresponding author.
E-mail addresses: kseng@csu.edu.au, jasmine.seng@gmail.com (K.P. Seng).
http://dx.doi.org/10.1016/j.bdr.2015.12.003
2214-5796/© 2016 Elsevier Inc. All rights reserved.
Fig. 1 shows a big data analysis pipeline [4]. The first step in-
volves data acquisition and selecting the data required to solve 
the problem. For big sensor data systems (a term to conceptu-
alize the application of the big data model towards networked 
sensor systems), this involves identifying and generating the re-
quired data from (multiple) sensor farms and other sources (e.g. 
public databases, data from social media, historical records). The 
second step is to perform preprocessing to obtain clean and mean-
ingful data. This is particularly important for sensor-acquired data 
which is often noisy, and to remove uncertainties from the sen-
sor data. The third step is to perform data integration, aggregation, 
and representation. For wireless sensor networks, the aggregation 
step helps in two ways. First, the volume of data is reduced for 
processing. Second, the process of aggregation also reduces the 
transmission requirements and increases the energy efficiency of 
battery-powered sensor nodes. The fourth step discovers new in-
sights or knowledge from the processed data through statistical 
and analytical methods. The fifth step presents the data in the 
form of graphs or charts for human interpretation and to guide 
decision-making.

The number of sensors/devices available for integration into 
networked systems is increasing rapidly. Other than traditional 
sensors to measure physical quantities (e.g. temperature, pressure, 
light), new devices like smartphones contain embedded sensors 
such as microphones, cameras, accelerometers, gyroscopes, and 
GPS which can be used to sense a variety of data from the envi-
ronment. Microphones and cameras can be used to acquire signal 
and image data whereas accelerometers, gyroscopes, and GPS can 
be used in combination to give location-based data. The internal 
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Fig. 1. The big data analysis pipeline showing major steps (top half of the figure) 
and characteristics that make the steps challenging (bottom half of the figure).

microprocessor clock can be used to give a timestamp on when 
the data was acquired. In this paper, we take a broad view of the 
meaning of a sensor or sensing device to describe a big sensor data 
system. It could be a traditional physical sensor, wearable medi-
cal sensor, smartphone, or an abstraction (e.g. energy consumption 
for a building, length of road network). From the data process-
ing viewpoint, each sensor data reading contains three pieces of 
information which can be exploited for use in big sensor data sys-
tems: (1) measurement value, (2) timestamp, and (3) location data. 
The timestamp gives information on when the measurement was 
taken whereas the location data gives information on where in 
the sensing field the measurement was taken. Each sensor read-
ing s(x, y, t) can then be placed in a three-dimensional space (two 
dimensions of the spatial sensing field and one temporal dimen-
sion). A key characteristic of sensor-based data compared to other 
types of data is that it is correlated in both the spatial and tem-
poral (spatio-temporal) domains. In the spatial domain, the sensor 
data forms an image snapshot of the sensing field at that particular 
time. In the temporal domain, each sensor produces a time series 
at that particular location (or nearby location in the case of mobile 
sensors). In a general sense, each sensor reading can be a feature 
vector containing several items or parameters of measurement.

We can distinguish several challenges for big sensor-based sys-
tems depending on the big data characteristics of the sensor farm 
deployment in terms of volume, variety, velocity, and veracity. 
A dense sensor farm deployment with a high sample rate would 
produce a “volume” challenge. The primary goal here is to ensure 
that there is sufficient processing power and storage available to 
handle the large amount of data which will be generated. Useful 
technologies to resolve this challenge is to employ distributed pro-
cessing and storage techniques (e.g. using Hadoop, MapReduce) or 
cloud computing technologies. On the other hand, a sparse sensor 
farm deployment with a low sample rate would produce a “vari-
ety” challenge. Due to the sparseness, there would be many regions 
within the sensing field where there are no data readings. The pri-
mary goal here is to infer the values of the missing data points 
from the sensor points which are available, in combination with a 
variety of other correlated data sources. A complication is due to 
the fact that sensing devices have different sampling rates (e.g. a 
medical EEG sensor has very high temporal resolution in millisec-
onds whereas a GPS sensor has a much lower resolution in min-
utes). A velocity challenge would be produced for sensor network 
systems with real-time and latency constraints. This is often the 
case for event-based sensor networks. For example, a sensor net-
work for detecting forest fires need to convey the sensed event to 
the base station to reach the decision maker as quickly as possible. 
In terms of veracity, each sensor reading comes with uncertainties 
not only for the measurement value. There are also uncertainties 
for the timestamp due to difficulties for synchronization amongst 
Fig. 2. The evolution of the big sensor data framework showing three inter-related 
branches and the required cross-domain multimodal inference and analytics for 
decision-making.

the sensors. There are also uncertainties for the location data due 
to difficulties for localization.

Fig. 2 shows the evolution of the big sensor data framework 
from three inter-related branches: wireless microsensor networks, 
diverse deployment platforms, and social-sensor networks. The 
earliest branch is the development of wireless microsensor net-
works, or commonly known as wireless sensor networks (WSNs) 
in the early 1990s. These WSN research works were initiated by 
DARPA which included the Distributed Sensor Networks (DSNs) 
and SensIT projects [65]. These early works gave sensor networks 
its defining capabilities like ad hoc networking, dynamic query-
ing, reprogrammability, and multi-tasking. The early WSNs had 
two main characteristics. First, in terms of deployment, they were 
mostly confined to terrestrial or ground-based networks. Second, 
in terms of behavior, the sensors functioned without reference or 
reliance on human interaction. The next branch extended WSNs 
from terrestrial networks to be deployed on diverse platforms. 
These platforms included deployments on different mediums like 
underwater (underwater sensor networks), underground (under-
ground sensor networks), aerial (satellite sensor networks) and 
to use different sensing modalities like speech (audio-based sen-
sor networks), video (multimedia sensor networks), and biologi-
cal signals (body sensor networks). The third evolutionary branch 
was due to the development of human-based social networks and 
smart mobile sensing devices where the human element and inter-
action became important. An example of a social-sensor network 
which will be discussed in Section 2 is the work by [31] where 
the Twitter social media platform was used as a distributed sensor 
system to serve as an early warning system for earthquake de-
tection. The convergence of these three branches necessitates the 
development of a different set of big data techniques for infer-
ence and analytics. While the traditional big data problem focuses 
on the five V ’s, the big sensor data problem also requires em-
phasis on cross-domain and multimodal techniques to be applied 
towards the increasing volume and variety of networked sensors 
for analysis and decision-making. Cross-domain techniques refer 
to approaches where data can be inferred from one domain and 
applied in another domain. An example of this approach which 
will be discussed in Section 2 is the work by [16] for inferring 
air quality pollution where data from different domains are uti-
lized to solve the big data problem. Multimodal techniques are 
required for fusion of the data from different sources (e.g. audio, 
speech, video, biological signals) for joint decision-making. Cross-
domain and multimodal techniques will be further discussed in 
Section 3.

The remainder of the paper is organized as follows. Section 2
discusses several representative studies of big sensor data research 
in urban environments, including for air pollution monitoring, as-
sistive living, disaster management, and intelligent transportation. 
Recent techniques for the big data pipeline are briefly discussed 
in Section 3. A discussion of future perspectives and challenges of 
sensor-based data systems in the big data era is given in Section 4. 
Section 5 concludes the paper.
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2. Studies in big sensor data research

The current surge in big data research is driven by the needs 
of industries and spearheaded by companies such as Facebook, 
Google, LinkedIn, Twitter, and Netflix where real-time data (e.g. 
emails, tweets, documents, photos, videos) gathered from millions 
of end users (human generated sources) is used to feed large-
scale analytic engines to produce additional value services such 
as recommender systems [5], customer analytics [6], social net-
work analytics [7], and fraud detection [8]. It is envisaged that the 
next generation of big data systems will be increasingly focused 
on the collection, transmission, storage, and processing (analytics) 
of machine-generated sensor based data from sources such as net-
worked sensor systems (e.g. Internet/Web/Network-of-Things, large 
scale wireless sensor systems). Much less research has been con-
ducted in this direction and seeing how the big data paradigm for 
machine-generated data such as from sensor-based systems can 
contribute towards increasing value, although the first contribu-
tions have been made. This is becoming an increasingly important 
area because the volume of data from machine-generated sources 
is widely expected to surpass the volume of data from human-
generated sources in the near future. This section surveys advance-
ments made in the development and applications of big sensor 
data systems. An important focus which is usually not discussed in 
other surveys on networked sensors and wireless sensor systems 
(e.g. [9,10]) is the inclusion of the fifth V (i.e. how value is ex-
tracted from the big data system using the appropriate analytical 
and machine learning methods). The lessons learnt from the case 
studies and the important factors/challenges for consideration for 
designing and building big sensor data systems are discussed in 
Section 4.

2.1. Big sensor data systems for air pollution monitoring

A recent success in big sensor data systems is for inferring 
air quality in urban areas (e.g. cities). Air pollution is a common 
problem in many cities because poor air quality poses a risk to 
human health, particularly to people suffering from cardiovascular 
illnesses and to young children whose lungs are still developing. 
The aim is to be able to provide real-time and fine-grained air 
quality information (AQI index levels) to inform people and guide 
their daily decision-making. In urban areas, this problem is very 
challenging because of multiple complex factors which affect the 
air quality such as meteorology, traffic volume, land use, and ur-
ban structures [16]. Researchers have proposed using wireless sen-
sor networks (WSNs) equipped with gas sensors to monitor the 
pollutant concentrations of CO (carbon monoxide), NO2 (nitrogen 
dioxide), and O3 (ozone) [11,12]. These gas sensors are relatively 
inexpensive and can be deployed on a large scale using current 
WSN technology. Furthermore, the sampling rate need not be very 
high (e.g. hourly) because the air quality would not change rapidly 
and there are no strict real-time constraints.

On the other hand, the problem of monitoring and detecting 
the aerosol pollutants such as particulate matter PM2.5 and PM10
(i.e. particles with a diameter of less than 2.5 μm and 10 μm) 
poses more difficulty. It is important to detect these pollutants ac-
curately because fine particulate matter is responsible for a variety 
of respiratory and cardiovascular diseases [13]. Unlike sensors for 
detecting gas pollutants, the sensors/devices for detecting aerosol 
pollutants are costly, not easily portable, and need a long sensing 
period (e.g. 1–2 hours) [16,17]. A possible solution is to apply con-
ventional dispersion models (e.g. Gaussian Plume [14], Operational 
Street Canyon [15] models). However, these approaches suffer be-
cause of the difficulty to obtain the necessary modeling parameters 
(e.g. vehicle emission rates, street geometry, roughness coefficient 
of the urban surface). Thus, the only accurate way to detect and 
measure the air quality and aerosol pollutants content is to build 
a monitoring station in each area to be measured. However, these 
stations are costly to build (e.g. due to land cost) and maintain and 
it is not feasible to build multitudes of them. The authors in [16]
report that Beijing only has 22 stations covering a 50 km × 50 km
area. Thus, there will be many areas without monitoring stations 
to obtain the direct AQI information. For these regions, the big data 
approach is to infer the AQI index information by using the direct 
AQI data available from regions with monitoring stations, in com-
bination with a variety of other indirect data sources (e.g. historical 
time-series data, social network tweets, real-time traffic data, city 
layout). Several researchers have proposed approaches using the 
big data model to infer the air quality for particulate matter in 
various cities like Beijing [16–20], New York [21], Japan [22], and 
Zurich [23]. Table 1 gives a summary of the different approaches 
showing the target city, the big data collected/used, the statisti-
cal/analytical methods used for gaining the insight/knowledge into 
solving the problem, and the value obtained from the big data sys-
tems.

The works in [16] and [17] describe an air quality inferring 
system for Beijing. In this work, the researchers divided the city 
into grids of cells of 1 km × 1 km. The aim is to label all cells 
with the AQI index level. The researchers used six AQI levels 
which are Good (G), Moderate (M), Unhealthy for sensitive groups 
(U-S), Unhealthy (U), Very unhealthy (VU), and Hazardous (H). The 
air quality in a grid cell is assumed to be the same throughout 
the cell. A grid cell which contains a monitoring station is la-
beled with the direct AQI level reported from the station. Five 
categories of indirect data features (meteorological features, traffic 
features, human mobility features, point-of-interest (POI) features, 
road network features) were extracted from the corresponding 
data in the cell and its eight surrounding cells. A co-training based 
semi-supervised learning approach was employed where unlabeled 
data were used to improve the inference accuracy. Two classifiers 
(a spatial and a temporal classifier) were built. The spatial classi-
fier was based on a backpropagation neural network and used the 
static features like the road network and POI features to model 
the spatial correlation of air quality amongst different cells. The 
temporal classifier was based on a linear-chain conditional ran-
dom field (CRF) and used the dynamic features like meteorological, 
traffic, and human mobility features to model the temporal depen-
dency of air quality in an individual cell. The researchers reported 
an accuracy of 82% for the detection of PM10 levels and success-
fully inferred the AQIs for the entire Beijing in five minutes.

A different approach for inferring the air quality in Beijing was 
used by the researchers in [20]. The researchers observed that cur-
rent coverage of AQI monitoring is limited to large cities where 
physical monitoring stations are built and many regions away from 
cities (e.g. rural towns) are under-served. To overcome this, their 
work proposed to use machine learning models to estimate AQI 
from social media data. Their key observation is that high AQI 
(poor air quality) in a region causes more Weibo (Sina Weibo is the 
most popular social media site in China) posts from that region to 
discuss air pollution. They found a strong positive correlation be-
tween the word “mai” (meaning haze in Chinese) with AQI levels. 
Their data used postings to Sina Weibo from 108 cities and col-
lected at most 200 posts per hour per city. They also utilized the 
“timestamp” and “location” (GPS coordinates) data to filter off ir-
relevant postings. In terms of the timestamp, the posts should be 
within a specific one hour long period and in terms of the location, 
the GPS coordinates should lie within a 10-km radius circle. The 
researchers proposed a model based on a Markov Random Field 
(MRF) for AQI estimation. Other than the social media text content 
correlation, the MRF model also considered the spatial correlation 
between cities and the temporal correlation within the same city. 
In that sense, this is characteristic of a big sensor data model 
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Table 1
Big sensor data studies for air pollution monitoring in various cities.

City Data collected/used Statistical/analytical method Value Reference

Beijing Real-time and historical AQI levels (G, M, 
U-S, U, VU, H) for cells containing a mon-
itoring station. Other variety data sources 
from:

• Meteorological features (temperature, 
humidity, barometer pressure, wind 
speed, weather – cloudy, foggy, rainy, 
sunny, snowy).

• Traffic features (Expectation of 
speeds E(v), Standard deviation of 
speeds D(v), Distribution of speeds 
P (v)).

• Human mobility features (number of 
people arriving ( fa), number of peo-
ple departing ( fl)).

• Point-of-Interest (POI) features (Dis-
tribution of POIs over categories 
( fn), Portion of vacant places ( f p), 
Changes in the number of POIs ( fc)).

• Road network features (total length 
of highways ( fh), total length of other 
road segments ( fr ), number of inter-
sections ( f s)).

Co-training based semi-supervised ap-
proach using two classifiers:

• spatial classifier based on backpropa-
gation neural network.

• temporal classifier based on linear-
chain conditional random field (CRF).

Achieved the inferring of PM10 for entire 
Beijing in five minutes (near real-time per-
formance) with an accuracy of 82%.

[16,17]

Beijing PM2.5 pollutant data from sensor network 
(AirCloud).

Gaussian Process Regression model. GP inference model performed better than 
baseline models based on linear and cubic 
spline interpolation.

[18]

Beijing Two group of data sources:

• Meteorological data (temperature, 
humidity, wind speed, wind direct).

• Pollutant data (PM10, CO, NO2, O3, 
SO2).

Backpropagation artificial neural network 
trained with a greedy algorithm to find 
the optimal combination of features from 
the training set.

Achieved the classification of PM2.5 with 
an accuracy of 72.80%.

[19]

Beijing Social media postings on Sina Weibo from 
108 cities. Postings had a:

• Time constraint (posts should be 
within a specific one hour long pe-
riod).

• Location constraint (GPS coordinates 
should lie within a 10-km radius cir-
cle).

Markov Random Field model that utilizes 
the text content in social media and the 
spatial-temporal correlation amongst cities 
and days.

Demonstrated good prediction perfor-
mance for large cities. The AQI information 
for small cities cannot always be predicted 
by their nearby big cities.

[20]

New York Two group of data sources:

• Energy consumption of heating oil 
data from 2012 for large buildings 
(heating oil #2, heating oil #4, heat-
ing oil #6) collected through New 
York City’s Local Law 84 energy dis-
closure mandate.

• Land use and geographic data at the 
tax lot level from the Primary Land 
Use Tax Lot Output data set from the 
New York City Department of City 
Planning.

Community network detection algorithm 
based on the Louvain method for modu-
larity maximization.

Graph signal model could better quantify 
and rank the combined impact of a build-
ing’s own heating oil consumption and the 
consumption of its neighbors on surround-
ing air quality compared with a conven-
tional method.

[21]

Japan Time series data of PM2.5 for 52 cities in 
Japan over a two year period:

• Other meteorological data sources 
from wind speed (WS), wind direc-
tion (WD), temperature (TEMP), illu-
minance (SUN), humidity (HUM), and 
rain (RAIN).

Deep Recurrent Neural Network (DRNN) 
trained using a novel auto-encoder pre-
training method and takes advantage of 
the spatial coherence (correlations) in the 
sensor data.

Achieved the time series prediction of 
PM2.5 12 hours ahead from the current in-
stant and outperformed the Japanese Gov-
ernment PM2.5 VENUS prediction system.

[22]

Zurich Over 50 million UFP measurements col-
lected by mobile sensing nodes over a pe-
riod of more than two years:

• Other data sources – land use and 
traffic data, historical measurement.

Generalized Additive Models (GAMs) to 
construct land-use regression (LUR) model.

Derived high resolution spatio-temporal 
pollution maps to show that city dwellers 
could reduce their exposure to UFPs by 7%.

[23]
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where each city is serving as a source node, and the timestamp 
and location data are also utilized in solving the problem.

The researchers in [21] proposed a big data analytics model to 
identify clusters or communities of buildings with large PM2.5 and 
NOx amounts of emissions or “hot spots” to understand the trends 
of air pollution in New York City. Their model utilized heating oil 
consumption data from 2012 for large buildings (the burning of 
heavy fuel oil produces black carbon which is a key component 
of PM2.5 emissions). They considered a data set where each data 
element is represented by a building. For each of the N data el-
ements, there is a corresponding geographic location which was 
obtained from a separate set of land use and geographic data at 
the tax lot level. In that sense, this also resembles a big sensor data 
problem where each building is abstracted as a feature vector sen-
sor source possessing spatial correlations with other neighboring 
buildings in the sensing space. The temporal correlations are not 
utilized in this case. The authors represented the built environment 
as a graph signal model G = (V , W ) where V = {v0, . . . , v N−1) 
is the set of nodes and W is the weighted adjacency matrix of 
the graph. Each data element (building) corresponds to a node 
vn in the graph model and the entry W i, j is the weight of a di-
rected edge that reflects the degree of relation (spatial) of the jth 
building to the ith building. To get the weighted adjacency ma-
trix, the authors used a modified Gaussian dispersion plume model 
to define the edges between nodes. Two preprocessing steps were 
performed as part of the data extraction and cleaning step in the 
big data modeling process. A first preprocessing was performed to 
remove duplicate data points and data points that were incom-
plete or contained missing information (e.g. energy usage, square 
footage, geographic information). A second preprocessing was per-
formed to identify and remove erroneous (e.g. exorbitantly high or 
too low energy usage) and outlier data points (e.g. top or bottom 
1% of energy usage). The analysis was performed using a complex 
network systems technique based on the Louvain method for com-
munity detection [24]. The Louvain method is a heuristic method 
based on modularity maximization where modularity is a measure 
of the density of links inside communities as compared to the links 
between communities. The authors compared their graph signal 
model with a conventional method of ranking buildings by their 
weighted heating oil consumption to determine the top emitters 
for each pollutant (PM2.5 and NOx). They reported that their graph 
signal model could better quantify and rank the combined impact 
of a building’s own heating oil consumption and the consumption 
of its neighbors on surrounding air quality compared with the con-
ventional method. For example, the conventional method failed to 
identify several buildings in Manhattan where the combination of 
a building’s own emissions and those of its neighbors together are 
indicative of locations where the surrounding air quality may be 
poor. This is because the conventional method fails to take into 
account the geographic locations of surrounding buildings in the 
analysis

The work in [22] presents an application for predicting the 
PM2.5 air quality for 52 cities in Japan. The researchers used the 
time series data of past values of measured PM2.5 concentrations 
in Japanese cities, along with other features (e.g. wind speed and 
rain precipitations) to predict the concentration level of PM2.5 sev-
eral hours ahead. This is another application of the big sensor data 
model to utilize the spatial and temporal correlations for, in this 
case, predicting future (sensor) values. Given a set of r sensors, the 
set of the resulting r time series data is given by S = {s1, . . . , sr}. 
The objective is to predict the future values in the time series at 
time {t + 1, . . . , t + N} for sz ∈ S given the past time series data 
at time {t, t − 1, . . . , t − L}. The authors proposed using a Deep 
Recurrent Neural Network (DRNN) trained using a novel auto-
encoder pre-training method and which takes advantage of the 
spatial coherence (correlations) in the sensor data using the data 
of nearby cities in training the network. Other meteorological data 
sources used were from wind speed (WS), wind direction (WD), 
temperature (TEMP), illuminance (SUN), humidity (HUM), and rain 
(RAIN). The authors showed that their DRNN model achieved the 
time series prediction of PM2.5 12 hours ahead from the current 
instant and outperformed the VENUS system. VENUS (for Visual 
Atmospheric Environment Utility System) is the Japanese Govern-
ment PM2.5 prediction system based on a combination of various 
weather and chemical transport calculations [25].

A recent work by [23] proposed a mobile measurement sys-
tem for the city of Zurich to derive accurate ultrafine particles 
(UFPs) pollution maps with high spatio-temporal resolution. UFPs 
are particles with a diameter of less than 100 nm. Their system 
collected a very large scale dataset of over 50 million UFP mea-
surements using mobile sensing nodes over more than two years 
(from April 2012 to April 2014). The mobile measurement system 
consists of ten sensor nodes installed on top of public transport 
vehicles, which cover a large urban area (100 m × 100 m) on a 
regular schedule. The mobility of the sensing system enables the 
data to be collected with a high spatial resolution across the large 
area without the need for a huge number of fixed sensors. How-
ever, this comes at a cost of a reduced temporal resolution at any 
covered location, making it a significant challenge to derive pollu-
tion maps with a high temporal resolution at daily or hourly time 
scales. The authors developed land-use regression (LUR) models to 
produce accurate pollution maps with high spatio-temporal reso-
lution. Their LUR model used a set of explanatory variables (land-
use and traffic characteristics data) based on Generalized Additive 
Models (GAMs) [26] to model pollution concentrations at locations 
not covered by the mobile sensor nodes. The authors evaluated 
the dependencies between the explanatory variables and the mea-
surements, and exploited these spatio-temporal relationships to 
predict the pollution levels for all locations without measurements 
but with available land-use and traffic information. They improved 
their model (decreased root-mean-square error by 26%) by incor-
porating historical measurements from environmental and meteo-
rological data. They demonstrated that their system had practical 
value and derived high resolution spatio-temporal pollution maps 
to show that city dwellers could reduce their exposure to UFPs by 
7% on average by not walking along the shortest path between two 
locations in the city but pursuing a slightly longer healthier path, 
which minimizes the expected exposure to UFPs. Other works on 
big sensor data systems for air pollution monitoring can be found 
in [57,58].

2.2. Big sensor data systems for assistive living

The World Health Organisation (WHO) estimates that by 2050, 
the number of older people on a global scale will have increased to 
2 billion, which is a three-fold increase on the figure of 600 million 
in 2000 [27]. Consequently, and because an increasing number of 
elderly people wish to live independently within their own homes, 
new paradigms in the delivery of health and social care are re-
quired. Another growing trend for big sensor data systems is for 
mobile healthcare applications with the appearance of more and 
more wearable sensors to measure different types of health condi-
tions (e.g. temperature, heart rate, blood pressure, pulse oximetry, 
electrocardiogram). This use of sensor-based technology is increas-
ingly being seen as a solution to support assistive living, although 
there are several challenges to be overcome. Table 2 gives a sum-
mary of the different approaches showing the sensing device used 
(custom wrist sensor, smartphone, body area/sensor network) and 
the value obtained from the big sensor data system.

Recently, researchers in [28] have proposed a big data solution 
using wearable sensors to carry out continuous monitoring of el-
derly people, alerting caregivers when necessary, and forwarding 
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Table 2
Big sensor data studies for assistive living, disaster management and intelligent transportation.

City Data collected/used Statistical/analytical method Value Reference

Assistive living
– Wrist device with five sensors 

(accelerometer, temperature, 
thermopile, heartbeat, SpO2).

Hidden Markov Model (HMM) and 
Locality Sensitive Hashing (LSH) as a 
mechanism to learn sensor patterns 
for behavior recognition.

Intelligent event detection using 
context information to transmit only 
important information for analytics 
to reduce data volume.

[28]

– Smartphone with embedded sensors 
(compass, accelerometer, gyroscope, 
GPS, microphone, temperature 
sensor, magnetometer, 
proximity/light sensor).

Markov Decision Process (MDP) and 
reinforcement learning.

Collaborative decision making among 
a group of sensors in close proximity 
for higher accuracy incident 
detection.

[29]

– Wireless body area sensor network 
(WBASN).

Practical signal filtering algorithms 
for resource-constrained sensor 
devices (moving average, Kalman 
filter).

Decreases the packet loss rate down 
to 20% of the value obtained when 
compared to using a hierarchical data 
gathering scheme.

[30]

Disaster management
Louisa County “Human as sensor” through natural 

language via tweets.
Visualization tools to determine 
earthquake wave propagation.

Using social media (Twitter) as a 
distributed sensor system to serve as 
an early warning system for large 
scale incidents.

[31]

Japan Spatially referenced mobile sensor 
data (daily GPS records from 
approximately 1.6 million 
individuals).

Machine learning technique (inverse 
reinforcement learning).

Model to simulate or predict 
population mobility in impacted 
cities to inform future disaster relief 
and management.

[32]

Japan Auto-GPS data (9.2 billion records 
from more than 1 million Auto-GPS 
users)

Data mining using average distance 
traveled as key indicator.

Near real-time model of an 
intelligent system for optimal crisis 
response and evacuation 
management to support responsive 
decision-making

[33]

Intelligent transportation
Ningbo GPS records from approximately 

4000 taxis in Ningbo, China (total of 
5,521,294 GPS records).

Deep Restricted Boltzmann Machine 
(RBM) and Recurrent Neural Network 
(RNN) architecture.

Achieved congestion prediction 
accuracy as high as 88% within less 
than six minutes in a GPU-based 
parallel computing environment.

[34]

California Caltrans Performance Measurement 
System (PeMS) database [45] (Three 
months traffic flow data collected 
every 30 seconds from over 15,000 
individual detectors in freeway 
systems across California)

Stacked autoencoder (SAE) model 
trained in a layerwise greedy fashion 
to learn generic traffic flow features.

Achieved prediction accuracy of more 
than 90% for over 90% of freeways for 
60-minutes prediction problem.

[35]

Shenzhen Six months real-world data set of 
14,453 taxicabs in Shenzhen, China 
(total of almost four billion GPS 
records).

Reduced 23% of passengers fares and 
increased 28% of drivers profits.

Reduced 60% of the total mileage to 
deliver all passengers and saved 41% 
of passengers waiting time. 
Recommender system based on 
collaborative-based filtering.

[36]
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pertinent information to a big data system for analysis. Their sys-
tem includes three components: a wrist device, a mobile phone, 
and a big data cluster. The wrist device has five sensors (an ac-
celerometer to measure activities of the wearer, a temperature 
sensor to measure ambient temperature, a thermopile to measure 
skin temperature, and two reflective photoplethysmography sen-
sors to measure heartbeat and SpO2 (oxygen saturation level) in 
the blood. The mobile phone receives the measured data from the 
wrist device (sent through Bluetooth Low Energy (BLE) communi-
cation) and performs intelligent behavior recognition for instant 
and unobstrusive care. It recognizes/infers the various states of 
a user (Sleep, Sit, Stand, Walk, Run, Abnormal) and controls the 
voice-based human–machine interaction when an anomaly is de-
tected to avoid false-positive detection. The third component is 
the big data cluster/server to perform the value-based analytics. 
There are four potential benefits/values from this big data system: 
(1) personalized quality of care for each elderly person, (2) effi-
cient use of health professional expertise (e.g. doctors and nurses), 
(3) provide statistical evidence for government strategic planning, 
and (4) reaching rural patients without proper access to health-
care.
However, a major challenge to be overcome in this big data 
system is the high volume of data which will be generated for 
storage and processing. The generation of data begins from the 
sensors in the wrist device. The authors report that acceleration 
data is sent from the wrist device every 0.1 s, skin temperature 
and received signal strength index (RSSI) every 2 s, heartbeat and 
SpO2 data every 3 s, and ambient temperature every 10 s. Every 
record includes a time stamp and the information stored can in-
clude various types of data (e.g. detected events, sensor readings, 
geolocation, voice dialog, machine triggered call, text). For a sys-
tem to support 10,000 users and a replication factor of three for 
data redundancy, the authors estimate a daily raw data consump-
tion of 864 GB and the consumption for one year would reach 
315 TB. Even using compression technology, the authors report 
that this would require 4 PB of data storage to operate the system 
for ten years. They estimate that 222 nodes would be required in 
the cluster of servers and which would be very expensive, require 
significant power, cooling, rack space, and network port density. To 
deal with the high volume of data, the authors proposed an intel-
ligent data forwarder that is embedded in each data source with 
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context-aware capability. The key idea is to reduce the data at each 
stage in the data collection/generation stages.

From the big data model, this could also be considered to be 
a velocity challenge to intelligently drop redundant data from data 
streams while maintaining minimal information loss. The authors 
propose a forwarder based on a Hidden Markov Model (HMM) 
and Locality Sensitive Hashing (LSH) as an efficient mechanism to 
learn sensor patterns for human behavior recognition. The intel-
ligent forwarders provide the remote wearable sensors with the 
necessary context-awareness so that the sensors transmit only im-
portant information to the big data server for analytics when cer-
tain behaviors occur and avoid overwhelming communication and 
data storage. This is similar to the challenges faced by event-driven 
wireless sensor networks where the remote sensors are equipped 
with smarter intelligence to detect events and transmit the sens-
ing data only when an event is detected. In this big sensor data 
system, each sensing device operates independently using its con-
text and time series information and the spatial relationships with 
neighboring sensors are not considered in the decision making.

Another by [29] proposed a smart collaborative mobile system 
for taking care of disabled and elderly people. Their system takes 
advantage of the sensors embedded in smartphones to monitor the 
status of a person based on what is happening in the environment. 
This is similar to the event-driven approach proposed by [28] using 
the intelligent data forwarder. However, there are two key differ-
ences between this system and the work in [28]. First, this system 
uses the sensors embedded in a smartphone as the sensing de-
vice whereas the work in [28] uses a custom wrist sensor. Second, 
compared to the work in [28], this system also uses information 
from neighboring sensors in the decision making. The main objec-
tive is to determine if a person has suffered an incident when a 
group of persons are doing an activity. Thus, the decision making 
process is collaborative based on inputs from a group of sensors in 
close spatial proximity. This is performed to improve the system 
accuracy and to predict an alarm before it happens and also re-
duce the amount of false positives. The alarm policy is formulated 
using a Markov Decision Process (MDP) and reinforcement learn-
ing. The MDP decides when to send the alarm message combining 
the alarm signals from various sensors. For example, if the device 
detects a noise above the set threshold, it could be interpreted as 
a distress call in a system without collaborative decision making. 
However, in this system, neighboring sensors within the group (i.e. 
in close spatial proximity) are first queried, and if their sensors 
also give similar data, then the alarm will not be sent because it 
would be interpreted that the group is moving through a noisy 
area. This would reduce the number of false positives. The work in 
[28] uses voice-based human–machine interaction for confirmation 
that an incident requiring attention is detected.

A wireless body area sensor network (WBASN) could be consid-
ered to be an application specific wireless sensor network of wear-
able biosensors to enable remote monitoring of vital health param-
eters (e.g. heart rate, respiration rate, pulse oximetry, blood pres-
sure, body temperature, glucose levels, chest sounds). The work 
in [30] proposed using a simple and effective handoff protocol for 
WBASN that enables continuous monitoring of ambulatory patients 
at home while they recover from noncritical conditions. A focus in 
this work is to work within the power limitations of wearable sen-
sors which often employ button-cell batteries to achieve compact-
ness and small form factor. The decreased power available leads to 
range limitations for wireless transmission which has to be consid-
ered in the design requirements. Optimizing power consumption is 
a critical factor in wireless sensor-based systems powered by bat-
teries, and this design requirement is carried forwards to apply to 
big sensor data systems as well. Other than having the characteris-
tics of the five V ’s for traditional big data models, big sensor data 
models also has an additional characteristic of an E (energy effi-
ciency) to be fulfilled. This requirement of energy efficiency should 
be applied at all stages in the big data pipeline whenever there is 
a non-rechargeable power source to be negotiated.

This work uses a two tier hierarchical network for data gath-
ering consisting of a first tier of wearable sensors used for vital 
signs collection and a second tier point-to-point link between the 
WBASN coordinator device and a number of fixed access points 
(APs). In the normal case, the role of a coordinator device is to poll 
individual sensor devices to collect the vital signs readings before 
forwarding them to an AP with which it is currently associated 
(i.e. a conventional hierarchical routing approach where sensors 
transmit to coordinator/aggregator/cluster head which collects all 
sensor data and forwards to AP/base station). However, upon ex-
periencing poor signal reception (the link quality is determined 
through the RSSI value) at the coordinator tier (e.g. when the pa-
tient moves), the AP may instruct the sensor network coordinator 
to forward the vital signs data through one of the wearable sen-
sor nodes. The authors developed signal filtering algorithms that 
are practical for resource constrained sensor devices such as mov-
ing average and Kalman filter techniques to obtain a smoother RSSI 
value sequence that can be reliably referenced. In this scenario, the 
wearable sensor node acts as a temporary relay if the node to AP 
link gives a stronger signal than the coordinator to AP link. The 
authors showed that their approach could decrease the packet loss 
rate down to 20% of the value obtained when compared to using 
the hierarchical data gathering scheme. Other works for assistive 
living can be found in [59,60].

2.3. Big sensor data systems for disaster management

Sensing devices and data for big sensor data systems can take 
many forms; from machine-generated sensed data captured from 
wireless sensor motes to human-generated data from smartphone 
devices. This fusion of sensor network and social network has 
vast potential to transform human society. In this section, we 
will review this combined sensor-social network for disaster man-
agement applications. Disasters may occur due to meteorological 
events (e.g. earthquakes, hurricanes, landslides, tsunamis) or man-
made events (e.g. building collapses, chemical spills, nuclear plant 
accidents). Table 2 gives a summary of some different approaches 
for disaster management showing the sensing device used, and the 
value obtained from the big sensor data system.

The authors in [31] discuss the emergence of social media 
(e.g. Twitter) as a new form of big distributed sensor network 
where humans act as sensors, and the generated data in the form 
of tweets convey relevant information with spatial and temporal 
characteristics reminiscent of physical wireless sensor networks. 
Their observation is that social media feeds often convey geo-
graphic information, as people frequently comment on events hap-
pening at their location, or refer to locations that represent mo-
mentary social hotspots. In this sense, humans perform the role 
of sensing and event detection. An event catches their attention, 
and they capture the data in the form of a written tweet and 
transmit to a central repository. However, one key difference be-
tween the tweet data and traditional sensor data is that the tweet 
information is often masked or conveyed indirectly through natu-
ral language and may not even be intended by the human source. 
Their study used data from the earthquake at Mineral in Louisa 
County (VA) in August 2011. This was the largest earthquake to hit 
the Eastern part of the U.S. since 1944.

The authors analyzed the response to this earthquake in Twitter 
by harvesting a 1% random sample of Twitter feeds for geolocation 
data in the period immediately following this event. The objec-
tive was to see how well the social media data could perform as 
a form of geosensor network. They found that the first tweet ar-
rived 54 seconds after the event. Using only a 1% sample of tweets 
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they were able to collect approximately 100 accurate geolocated 
tweets within two minutes of the event, and nearly 1000 such 
tweets within five minutes. Another key finding from this study 
is that the tweets could travel faster than the physical event to 
distant locations. An earthquake is not an instantaneous event af-
fecting all locations within its impact zone at the same time. The 
seismic waves require time to propagate away from the epicenter, 
and this “human as sensor” big data system could serve as an early 
warning system for large scale incidents.

The work in [32] discusses another big sensor data system for 
disaster management. The authors proposed a novel Disaster Be-
havior Analysis and Probabilistic Reasoning System (DBAPRS) to 
analyze and simulate people’s evacuation behaviors during the 
Great East Japan Earthquake and the Fukushima nuclear accident. 
The data for DBAPRS is obtained from approximately 1.6 million in-
dividuals throughout Japan over a one-year period (from 1 August 
2010 to 31 July 2011). The authors mined this dataset of spa-
tially referenced mobile sensor data (daily GPS records) to discover 
and analyze the evacuation behaviors of people during the disas-
ters. The DBAPRS big data architecture consists of four modules: 
database server and visualization, discovery and analysis, learn-
ing, and probabilistic reasoning. The database server stores and 
manages the GPS data for all the people being tracked. For each 
person, the geographic location history is a series of geographic po-
sitions including longitude, latitude, and time period. The discov-
ery and analysis module analyzes the behaviors during the disaster, 
and discovers long-term or short-term population evacuations. The 
learning module uses the discovered evacuation behaviors (move-
ment trajectories) to train its parameters for a machine learning 
technique (inverse reinforcement learning) and build a probabilis-
tic model. The probabilistic reasoning module gives the value for 
this system and predicts population mobility or evacuations in 
various cities impacted by possible disasters throughout Japan to 
inform future disaster relief management strategies.

A related work on tracking large population movement for 
discerning behavior change during crisis situations is by the re-
searchers in [33]. In this study, the data was mined from Auto-GPS, 
a service provided by a leading mobile phone operator in Japan. 
An Auto-GPS cell phone provides a regular stream of highly accu-
rate location data to support services that are closely linked with 
the user’s behavior. This study used 9.2 billion records from more 
than 1 million Auto-GPS users for analysis. Each record contains 
a unique ID, timestamp, geolocation (latitude and longitude), al-
titude, and error level. The error level indicates the strength of 
the GPS signal available to the cell phone. The authors showed 
the potential of using Auto-GPS data as the basis for a near real-
time model of an intelligent system for optimal crisis response and 
evacuation management to support responsive decision-making. 
Other works can be found in [61,62].

2.4. Big sensor data systems for intelligent transportation

The previous section has discussed the notion of “human as 
sensors” in big sensor data systems. Recently, using vehicles to 
form vehicular ad-hoc networks (VANETs) or Internet of Vehicles 
(IoV) has become very popular. Other than from dedicated vehicle 
sensor networks, there are many other sensor types in transporta-
tion environments where real-time traffic data can be sourced (e.g. 
onsite roadside sensors, radars, cameras, social media). This section 
will review big sensor data systems using the notion of vehicles 
as sensing elements in a large networked system for intelligent 
transportation, focusing on mitigating traffic congestion, predicting 
traffic flow, and carpooling recommendation.

Traffic congestion results in travel delays, wasted fuel consump-
tion, and also contributes to air pollution. A possible modeling so-
lution is to use mathematical simulation techniques (e.g. complex 
network theory [37]) or visualization techniques [38]. However, 
complex network methods generated traffic flow dynamics may 
not correspond to the real-world scenario. Visualization viewing 
techniques can show the spatio-temporal distribution of network 
congestion but are unable to explain the mechanism of conges-
tion generation and predicting future trends. The authors in [34]
proposed a big sensor data system for traffic congestion evolu-
tion using deep learning techniques. Deep learning algorithms use 
multiple-layer architectures to extract inherent features in data at 
different levels to discover structure in data. This study used data 
obtained from approximately 4000 GPS-equipped taxis in Ningbo, 
China from April 13, 2014 to May 9, 2014 for a total of 5,521,294 
GPS records. Each GPS record contains three pieces of data: loca-
tion, timestamp, and travel speed. The GPS records (updated every 
two minutes) were used to determine the status of a travel link 
(congested or not congested). The average speed of a link was cal-
culated, and if it was lower than a threshold value (20 km/hour), 
then the link was marked to be congested (i.e. set as 1). For links 
without GPS data, the speed was calculated by using the historical 
records for the link. The traffic congestions for a network with N
links within T time intervals is modeled as
⎡
⎢⎢⎢⎢⎣
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1 c2

1 · · · cT
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where ct
n represents the traffic congestion condition on the nth 

link at time t (a binary value of 0 or 1). The objective is to pre-
dict the elements in each row (link). The authors utilized a deep 
learning neural network approach to perform the prediction where 
the spatio-temporal correlations amongst the links are inherently 
learnt in the network modeling. Their solution uses a deep Re-
stricted Boltzmann Machine (RBM) and Recurrent Neural Network 
(RNN) architecture. The authors showed that their model achieved 
a prediction accuracy as high as 88% within less than six minutes 
in a GPU-based (CUDA) parallel computing environment.

A related work for traffic flow prediction using deep learning 
is by the researchers in [35]. Accurate and timely traffic flow in-
formation has the potential to help road users make better travel 
decisions and alleviate traffic congestion. The evolution of traffic 
flow can be considered as a temporal and spatial process. The traf-
fic flow prediction problem can be stated as follows [35]. Let Xt

i
denote the observed traffic flow quantity during the tth time in-
terval at the ith observation location in a transportation network. 
Given a sequence {Xt

i } of observed traffic flow data, i = 1, 2, . . . , m, 
t = 1, 2, . . . , T , the problem is to predict the traffic flow at time in-
terval (t +�) for some prediction horizon �. Researchers have pro-
posed a variety of approaches for traffic flow prediction based on 
time series methods (e.g. autoregressive integrated moving average 
(ARIMA) [39], KohonenARIMA [40]) and non-parametric methods 
(e.g. k-nearest neighbor (k-NN) [41], Bayesian [42], neural net-
works [43,44]). However, the limitations of these current methods 
are that they were developed with only a small amount of traf-
fic data which may not model the traffic flow features embedded 
in the spatio-temporal data with much accuracy. The work in [35]
used a large-scale study using a data-driven approach to improve 
prediction accuracy. Their big sensor data model used data ob-
tained from the Caltrans Performance Measurement System (PeMS) 
database [45] which consists of three months of traffic flow data 
collected every 30 seconds from over 15,000 individual detectors 
in freeway systems across California in 2013. For each detector 
station, the collected data are aggregated in five minute intervals. 
The authors used a deep learning traffic flow prediction method 
by training a stacked autoencoder (SAE) model to learn generic 
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traffic flow features. The SAE network was trained in a layerwise 
greedy fashion. The spatial and temporal correlations amongst the 
big sensor data are inherently considered in the SAE modeling. For 
the 60-minutes traffic flow prediction problem, their best archi-
tecture consisted of four hidden layers, and the number of hid-
den units in each hidden layer was 300. The authors showed that 
their deep learning model gave better performance than conven-
tional neural network models (Backpropagation, SVM, RBF). For 
the 60-minutes prediction, their model achieved a prediction ac-
curacy of more than 90% for over 90% of freeways. Similar good 
performances were reported for the 15-minutes, 30-minutes, and 
45-minutes prediction problems.

One of the biggest successes of conventional big data systems 
is its application in recommender systems. In general, two tech-
niques can be employed in recommender systems: content-based 
filtering and collaborative-based filtering. Content-based filtering 
performs recommendations based on an individual user’s previous 
responses (i.e. temporal correlations) whereas collaborative-based 
filtering performs recommendations based on what other similar 
users have preferred (i.e. spatio-temporal correlations). The authors 
in [36] proposed a recommender system for carpooling taxicab ser-
vices. The objective of the system (termed as CallCab) is to assist 
passengers to find a successful taxicab ride with carpooling. In the 
CallCab service, a passenger can hail an occupied taxicab on streets 
or wait at a taxicab stand to carpool with the existing passengers. 
The key idea is to schedule and group related passengers (in terms 
of similar destination directions) into a single taxicab trip with the 
minimum detour mileage, thus delivering the same number of pas-
sengers with fewer taxicabs and lower mileage.

This study used six months of a real-world dataset containing 
GPS data from 14,453 taxicabs in the Shenzhen Municipality, with 
a total of almost four billion GPS records. The large GPS dataset 
and contexts provide the big data system with the availability to 
predict the future directions of occupied taxicabs (and provide rec-
ommendation services) from historical data because the taxicab 
trips are highly patterned. Thus, this system uses collaborative-
based filtering since the recommendations are based on previous 
responses from other similar users. The authors showed that their 
system reduced 60% of the total mileage to deliver all passengers, 
saved 41% of passengers waiting time, reduced 23% of passengers 
fares, and increased 28% of drivers profits. Other works for intelli-
gent transportation can be found in [63,64].

2.5. Discussions on case studies

The previous sections have discussed various representative 
studies for big sensor data research in urban environments. This 
section gives a critical and brief discussion on the case stud-
ies, pointing out advantages and disadvantages for different ap-
proaches, and also to relate to the issues faced by big sensor data 
systems. As discussed in Section 1, the big sensor data framework 
evolved from three inter-related branches: wireless microsensor 
networks or WSNs, diverse deployment platforms, and social-
sensor networks. The first branch of traditional WSNs is shown by 
many representative works [16–19,21–23]. The work in [21] fur-
ther illustrated the abstract concept of using a building as a sensor. 
The work in [23] showed the advantages of using a small number 
of mobile sensors to cover a large spatial sensing space. The second 
branch is concerned with using diverse deployment platforms, and 
not just terrestrial-based WSNs for big data sensing. Networking of 
satellite sensors combined with ground-based sensing have been 
proposed and are becoming popular for environmental monitoring 
and climate prediction [66,67]. Similarly, ocean-based sensor net-
works have been increasingly used for monitoring aquatic environ-
ments [68] and marine shellfish monitoring [69]. The third branch 
of social-sensor networks is shown by the works in [20] and [31]. 
These works used social media postings to address different big 
data problems. The work in [20] used postings on Sina Weibo to 
predict the AQI information for cities in China, whereas the work 
in [31] used Twitter data for earthquake prediction. These two 
works demonstrated the effectiveness of the “human as sensor” 
approach. The works in [32] and [33] used another form of human-
influenced sensor data in the form of GPS records for disaster relief 
and crisis management. Compared to the works in [20] and [31], 
the works in [32] and [33] had access to a larger amount of GPS 
data (millions to billions of records) compared to just thousands of 
social media postings.

3. Big sensor data technologies

Fig. 1 shows five stages of the big data pipeline from data ac-
quisition, to modeling and interpretation. This section will review 
some recent techniques for big sensor data systems. The final part 
will also give some discussion on cross-domain and multimodal 
inference and analytical techniques to be applied towards the big 
sensor data challenge.

3.1. Data acquisition

The big data pipeline begins with data acquisition from sen-
sor sources. A key challenge at this stage is to reduce the amount 
of data to be collected or sampled from the sensing fields. If the 
sources have non-rechargeable power sources to be negotiated, 
then another significant consideration is energy efficiency. This is 
often the case for small battery-powered sensor nodes, and also 
applies to larger sensing devices like smartphones. The energy con-
sumption for sensing is determined by its sampling rate. Thus, new 
techniques like compressive sensing (CS) have been shown to be 
effective to reduce the node energy consumption [46,47]. CS tech-
niques work by exploiting the sparseness found in typical sensed 
signals where the data can be efficiently represented in some basis 
(e.g. Fourier, wavelet). Although traditional compression techniques 
can reduce the amount of data to be transmitted by removing re-
dundancies, they still need to sample the data at high rates, and 
thus incurs high energy consumption for sampling. Furthermore, 
the compression process itself incurs additional energy and re-
quires more computational power from sensor nodes.

CS techniques work by trading off a simpler data acquisition re-
quirement at the node level with a heavier computational require-
ment to reconstruct the CS sampled data at the base station. This 
asymmetric arrangement is well-suited for big sensor data systems 
where substantial processing power (without energy constraints) 
is available at the central station. The authors in [48] proposed 
another approach for reducing node energy consumption for data 
collection by scheduling nodes to sleep (i.e. turn off their radios). 
The challenge is that sleeping nodes cannot participate in network 
functions (e.g. routing), with the possibility that parts of the net-
work become partitioned and are not reachable by any node. The 
authors showed that their management protocol could maintain 
both full connectivity and higher than 90% coverage in large-scale 
sensor networks.

3.2. Data information extraction and cleaning

Data captured from the physical world through sensor devices 
tends to be noisy, incomplete, and unreliable. Traditional data 
cleaning techniques for conventional big data (e.g. data warehous-
ing) do not take into account the strong spatial and temporal 
correlations typically present in sensor-based data types. Informa-
tion about an event in sensor data is usually reflected in multiple 
measurement points due to overlapping areas of coverage. Thus, 
the inconsistency among multiple sensor measurements serves as 
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Fig. 3. Analytical/statistical methods for big data systems.

an indicator for the data quality. Some useful approaches for data 
cleaning for sensor data have used techniques like spatio-temporal 
regression and Kalman filters [49]. The authors in [50] proposed 
three models to detect and identify erroneous data among incon-
sistent observations based on the inherent structure of various sen-
sor measurements from a group of sensors. The first model used 
multivariate Gaussian model to explore the correlated data changes 
of a group of sensors. The second model used principal compo-
nent analysis (PCA) to capture the sparse geometric relationship 
among sensors, and the third model used kernel functions to map 
the original data into a high dimensional feature space prior to 
using the PCA model (i.e. kernel PCA). Their results demonstrated 
good detection rates with limited false alarms.

3.3. Data integration, aggregation and representation

The authors in [51] defined two types of sensor-based appli-
cations depending on the information that is needed at the sink: 
(1) functional – where only statistical summary values (e.g. maxi-
mum, average, median) are required, and (2) recoverable – where 
the full dataset is required. For functional applications, data inte-
gration and aggregation can be easily performed during the data 
collection and transmission process as part of a hierarchical data 
gathering tree. On the other hand, the challenges of recoverable 
applications pose more difficulty for data aggregation due to the 
lack of prior knowledge on the spatial data correlation structure. 
The recent work in [51] for a functional sensor application, pro-
posed a data aggregation approach based on compressed sensing 
(CS). The authors showed that their CS scheme based on diffusion 
wavelets could achieve high fidelity recovery for aggregated sensor 
data while achieving significant energy savings.

3.4. Data modeling and analysis

The aim of data modeling and analysis is to derive value 
from the big data system and discover new insight or knowledge 
through analytical and statistical methods. Fig. 3 shows some ana-
lytical/statistical methods used for big data systems. In this section, 
we will discuss some of the techniques, and point to the reviewed 
case studies in Section 2 when relevant. Recommender systems 
are arguably the defining analytic method for big data systems. 
Examples of such systems are used by Amazon and Netflix to rec-
ommend books and movies to users. A recommender system con-
tains two classes of entities (users and objects) which are grouped 
into two different sets (set of users U = {u1, . . . , un}, and set of 
objects O  = {o1, . . . , om}). Users have preferences that must be in-
ferred from the data. Let R be the rating (or utility) matrix, where 
r(u, o) denotes the rating (preference) of a user u for an object o. 
The rating/utility matrix R is usually sparse, and the goal of a rec-
ommender system is to predict the unknown entries in the utility 
matrix to infer the preferences of a user. The study in [36] used 
a recommender system for carpooling. A recent trend for machine 
learning in big data is to use deep learning techniques [52]. Deep 
learning exploits multiple layers of information-processing in a hi-
erarchical architecture for pattern classification and representation 
learning. The studies in [16,17,19,22,32,34,35] used machine learn-
ing techniques, with the studies in [34,35] using deep learning 
neural network models. Ensemble learning use multiple models to 
obtain better performance than those that could be obtained from 
any of the constituent models [53].

3.5. Data interpretation

To aid human interpretation and decision-making for big data 
systems, visualization tools can be used. Useful visualization tools 
include Tableau [54] for map/location-based data and Cytoscape 
[55] for network specific visualization.

3.6. Cross-domain and multimodal inference and analytics

An assumption made in traditional machine learning techniques 
is that the training and testing data are obtained from the same 
data domain and has the same distribution. This may not be the 
case in big sensor systems where data is collected and drawn from 
a variety of sensing sources and domains. Furthermore both real-
time and historical sources may be required to be utilized. An 
example can be seen in the work by [16] for inferring air quality 
pollution where data from multiple sources and different domains 
are required to solve the big data problem. This necessitates the 
development of cross-domain machine or also known as trans-
fer learning techniques to integrate together data from related but 
different information sources or coming from different historical 
times. The work in [70] showed an application of cross-domain 
learning to reduce the calibration effort of learning a model for cal-
culating where a client device is located in a wireless network. The 
works in [71] and [72] proposed to apply transfer learning tech-
niques towards solving sensor-based activity recognition in indoor 
environments. Even when the sensor data are collected from the 
same domain, they may require multimodal techniques to fuse the 
collective information contained in the data for decision-making. 
As an example, a single video stream contains two modalities 
(audio-based data and visual-based data) which have to be com-
bined. Examples of multimodal fusion for multimedia analysis can 
be found in the survey paper by [73] which classifies the meth-
ods into three categories (rule-based methods, classification-based 
methods and estimation-based methods). The work in [74] further 
elaborated on using a linear weighted rule-based method for per-
son identification from audio-visual sources.

4. Future perspectives and challenges

This paper has reviewed some case studies for big sensor data 
systems. In this section, we extract some lessons learnt from the 
studies, and put forward some factors/challenges for designing and 
building big sensor data systems.

• Spatiotemporal correlations in sensor data – the big sensor 
data model which treats any form of data containing [value, 
timestamp, location] records is useful to exploit spatiotempo-
ral correlations in the sensing field for many forms of analyt-
ics/applications. The concept is to consider the spatial sensing 
field as evolving in a time series. This model can be extended 
for (higher) three dimensional spatial sensing applications (e.g. 
structural building monitoring). This will require the develop-
ment of new spatiotemporal stream processing techniques.

• V ’s and E – Other than the 5V ’s, big sensor data systems 
also need to consider an E (energy efficiency) to be fulfilled. 
This requirement of energy efficiency should be applied at 
all stages in the big data pipeline whenever there is a non-
rechargeable power source to be negotiated. This may require 
the development of new data gathering/routing models where 
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for example, sensors can itself serve as relays to transmit di-
rectly to the base station or AP if energy efficiency can be 
increased. The energy efficiency requirement can be consid-
ered in two ways: network energy consumption or network 
lifetime. The network energy consumption refers to the total 
energy expenditure for all sensor nodes and components (i.e. 
a global measure). The network lifetime is defined as the time 
span from the deployment to the instant when the network 
becomes non-functional (e.g. when x number of nodes die or 
the network becomes partitioned). In wireless sensor-based 
systems, optimizing the network lifetime (a local measure) is 
becoming the more important metric.

• Importance of “Variety” – Conventional big data systems have 
been mostly focused on resolving the “Volume” characteris-
tic (e.g. through high-performance distributed processing and 
storage techniques), although some researchers have advo-
cated a changing emphasis towards “Variety” [56]. From the 
various case studies, we see that a strong emphasis for big 
sensor data systems is towards using a variety of data sources 
or historical data to infer missing data or predict future trends 
in the spatial-temporal sensing field. The challenge is to find 
suitable models to integrate the various sources of data to 
solve the big data problem.

• From mathematical/simulation-driven to data-driven research 
– Whereas mathematical models and simulation techniques 
have been useful for studying the characteristics and behav-
iors of smaller scale systems, the move to study large-scale 
systems necessitate the development of new data-driven mod-
eling techniques. Conventional mathematical and simulation 
models face difficulty in acquiring the correct parameters or 
in dealing with unpredictable/unknown factors.

• The emergence of sensor-social networks – Many studies use 
a combination of data from both machine-generated (e.g. GPS) 
and human-generated sources (e.g. Twitter). This fusion of 
sensor network and social network give a diversity of sources 
for data-driven research where new data can be inferred from 
one domain and applied in another domain.

• Importance of machine learning techniques – Machine learn-
ing techniques aim to develop models from data without any 
prior assumptions. Thus, they are a good fit for data-driven re-
search techniques. Amongst, the machine learning approaches, 
the emergence of deep learning techniques compared to con-
ventional (shallow) techniques show potential to discover hid-
den insights and trends in big data systems.

• The need for (near) real-time systems – Many applications 
(e.g. air pollution monitoring, earthquake early warning sys-
tem) need (near) real-time performance to serve its function. 
This will drive the “Velocity” characteristic for big sensor data 
systems. Currently, most (if not all) research on big sensor data 
systems do not consider this aspect (performed offline), and 
research is conducted using historical or past data.

In the future, we anticipate the research and development of 
big sensor data systems where real-time analytics will be per-
formed on large volumes of recently acquired data from (multi-
ple) sensor farms, and using a number of diverse and historical 
sources, to produce valuable outcomes for human society. Other 
issues would be to do with security/privacy and the veracity chal-
lenge in big sensor data systems.

5. Conclusion

This paper has reviewed several research works for big sensor 
data systems in urban environments, and its applications for air 
pollution monitoring, assistive living, disaster management, and in-
telligent transportation. We have discussed how value is extracted 
from the big data system using analytical and statistical techniques 
like machine learning, recommender system, and network analysis. 
Many studies use techniques to exploit the spatiotemporal rela-
tionships found in big sensor data. We have also discussed how 
the big data pipeline can be applied towards large-scale networked 
sensor systems, and identified some challenges and trends for fu-
ture work.
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