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Recent LHC data provides precise values of coupling constants of the Higgs field, however, these mea- 

surements do not determine its coupling with gravity. We explore this freedom to see whether Higgs

field non-minimally coupled to Gauss–Bonnet term in 4-dimensions can lead to inflation generating the

observed density fluctuations. We obtain analytical solution for this model and that the exit of inflation

(with a finite number of e-folding) demands that the energy scale of inflation is close to Electro-weak

scale. We compare the scalar and tensor power spectrum of our model with PLANCK data and discuss its

implications.
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. Introduction

Cosmological Inflation [1–5] provides a causal mechanism to

enerate the primordial density perturbations that are responsible

or the anisotropies in the cosmic microwave background (CMB)

nd the formation of the large scale structure (LSS). CMB and LSS

ata have been used to constrain the parameters of the inflationary

odel. In the case of canonical scalar field, the CMB and LSS data

rovide constraints on the height and the slope of the potential ref

6–8] . 

The fact that the temperature fluctuations of the CMB is close

o scale-invariance is a highly demanding requirement for infla-

ion model building ref [9–12] than providing approximately 60

-foldings of inflation needed to solve the various initial conditions

roblems. More specifically, the near scale-invariance imposes a

ondition that the canonical scalar field potential should be almost

at — almost like cosmological constant — so that the quantum

uctuations that exit the horizon during inflation is nearly scale-

nvariant. While these flat potentials are phenomenologically suc-

essful, however, in the standard model of particle physics there

s no candidate with such flat potentials that could sustain infla-

ion [9–12] . For instance, the renormalizability of the Higgs field

n 4-dimensions puts a constraint on the scalar field potential

 V (φ) = m 

2 φ2 + λφ4 , where m is the mass and λ is the coupling

arameter), however, inflationary models require potentials of the

orm V (φ) = 

∑ N 
n =0 c 2 n φ

2 n where c 2 n ’s are real numbers and N > 2.

To achieve the flatness of the potential, inflationary models

sing the standard model Higgs field as the inflaton, couples

iggs field non-minimally with gravity [13–18] . In Higgs Inflation
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13–15,19–25] , the flatness of the Higgs potential is achieved by

arge non-minimal coupling of the Higgs field to the Ricci scalar

 ∼ ξR φ2 where ξ is the coupling constant and R is the Ricci scalar)

. e. ξ ∼ 10 4 . 

One of the main assumptions in the above models of Higgs

nflation is that the standard model physics remains to hold un-

il Planck energy. Which may be consistent with the current LHC

easurements — since there are no evidence of new physics so

ar (e.g., supersymmetry or extra dimension(s), etc.) ref [26–28] —

owever, it also points to the fact that λ can be negative at high

nergies [29–35] . But a non-minimal Higgs Ricci coupling may pre-

ent this up to inflationary scale [20,23] . 

In this work, we ask the following question: Can Higgs field

rive inflation without invoking any new Physics in the particle

hysics sector with exit at low-energies, order of 100 GeV to

0 0 0 GeV? While the LHC measurements determine the coupling

onstants of the Higgs field precisely, it does not determine its cou-

ling with Gravity. We use this freedom and assume that the Higgs

eld couples with the Gauss-Bonnet Gravity, instead of Ricci Scalar.

Gauss-Bonnet Gravity is a part of the general extension of Grav-

ty theories referred to as Lovelock theories of gravity [36] . One

mportant feature of Lovelock theories, as against the f ( R ) grav-

ty theories, is that the gravity equations of motion remain sec-

nd order (and quasilinear in second order). They provide a nat-

ral arena for understanding many deep features of gravity and

ecently they have been a subject of study. (For a recent review

ee [37] .) Some higher dimensional Lovelock theories arise also as

 weak field limit of string theory [38,39] . While a pure Gauss-

onnet term is non-dynamical in 4-dimensions — topologically in-

ariant in 4-dimensions — non-minimal coupling with the Higgs

eld makes it dynamical. 

http://dx.doi.org/10.1016/j.astropartphys.2016.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/astropartphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.astropartphys.2016.07.004&domain=pdf
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Since Gauss-Bonnet term is higher-derivative term, it may be

natural to expect that non-minimal coupling of the scalar field may

only lead to modifications at high-energies. However, in this work,

we show explicitly that the non-minimal coupling of the Higgs

scalar lead to exit of inflation at low-energies i.e. close to Elec-

troweak scale. This an unique feature of our model. We also ex-

plicitly compute the power-spectrum and show that it is consistent

with the recent PLANCK data [8] . There has been recent interest in

coupling scalar field with Gauss-Bonnet gravity (see, for instance,

[18,40] ). Our analysis differs from their analyses: In Ref. [40] , au-

thors have assumed that Einstein–Hilbert term is irrelevant and,

hence, have ignored the linear term. In Ref. [18] , the authors have

coupled the scalar field to both the Ricci and Gauss-Bonnet gravity.

Their analysis is based on slow-roll and makes predictions similar

to [15] . It is important to note that they found the Gauss-Bonnet

term to be significant only at late times where as the Higgs-Ricci

coupling dominating the initial epoch and was responsible for the

spectrum. As mentioned earlier, our model couples the Higgs scalar

with Gauss-Bonnet gravity leading to a dynamical model of infla-

tion. 

The paper is organized as follows: In the next section, to get

the physical picture of the dynamical equations, we obtain exact

generalized power-law inflation for our model. We show that the

generalized power-law solution exists only when the mass of the

scalar field is identically zero. In Section 3 , we show that the Higgs

potential leads to dynamical model of inflation where the exit oc-

curs close to the electro-weak scale. We show that the non-zero

Higgs mass lead to the exit. In Section 4 , we compute the power-

spectrum of our model and compare the results with the recent

PLANCK data. We discuss the key results and possible implications

of our model in Section 5 . 

In this work, we consider (−, + , + , +) metric signature. We use

natural units c = h̄ = 1 , κ = 1 /M 

2 
Pl 

, and M 

2 
Pl 

= 

h̄ c 
8 πG is the reduced

Planck mass. We denote dot as derivative with respect to cosmic

time t and H(t) ≡ ˙ a (t ) /a (t ) . 

2. Generalized power-law inflation 

Consider the following action where the scalar field φ is non-

minimally coupled of Gauss–Bonnet ( L GB ) term: 

S = 

∫ 
d 4 x 

√ −g 

[ 
R 

2 κ
+ f (φ) L GB − 1 

2 

∇ a φ∇ 

a φ − V ( φ) 

] 
, (1)

where R is the Ricci scalar, V ( φ) is the scalar field potential, f ( φ) is

the coupling parameter and 

L GB = R 

2 − 4 R 

ab R ab + R 

abcd R abcd (2)

Varying the action (1) w.r.t the field φ and the metric leads to the

following equations of motion [41] : 

�φ + L GB f ,φ ( φ) − V ,φ ( φ) = 0 (3)

1 

κ
G pq = 

(
8 G pq g 

ab ∇ ab f ( φ) + 4 R ∇ pq f ( φ) − 8 R 

a 
p ∇ aq f ( φ) 

− 8 R 

a 
q ∇ ap f ( φ) 8 ∇ ab f ( φ) R 

ab g pq − 8 ∇ ab f ( φ) R 

a b 
p q 

+ ∇ p φ∇ q φ − g pq 

(1 

2 

g ab ∇ a φ∇ b φ + V (φ) 
))

(4)

It must be noted that the field equations being second order im-

plies that this model doesn’t have the problem of unitarity. 

In this section, we are interested in obtaining exact solution for

the above set of equations of motion for a spatially flat Friedmann–

Robertson–Walker (FRW) background 

d s 2 = −d t 2 + a (t) 2 
(
d x 2 + d y 2 + d z 2 

)
(5)

where a ( t ) is the scale factor. The equation of the field φ( t ) and the

scale factor a ( t ) follows from Eqs. (3) and ( 4 ), respectively 
24 H 

2 ä 

a 
f ,φ ( φ) + φ̈ + V ,φ ( φ) + 3 H 

˙ φ = 0 (6a)

3 H 

2 
(

1 

κ
+ 8 H 

˙ f ( φ) 

)
+ 

1 

2 

˙ φ2 + V ( φ) = 0 (6b)

H 

2 
(

1 

κ
+ 8 ̈f ( φ) 

)
− 2 ̈a 

a 

(
1 

κ
+ 8 H 

˙ f ( φ) 

)
+ V ( φ) − 1 

2 

˙ φ2 = 0 (6c)

It is important to note that the above differential equations are

uasilinear i.e. they are linear with respect to all the highest order

erivatives of a ( t ) and φ( t ). Rewriting Eqs. (6a) and ( 6b ), we get 

2 H 

2 + κ ˙ φ2 − 24 κ H 

3 ˙ f ( φ) + 2 

ä 

a 
+ 16 κH 

ä 

a 
˙ f ( φ) 

+ 8 κH 

2 f̈ ( φ) = 0 (7)

n the rest of this section, we consider the solution of (6) for the

ollowing ansatz 

 (t) = a 0 

(
t 

t 0 
+ ϒ

)p 

and φ = φ0 

(
t 

t 0 
+ ϒ

)n 

(8)

here p > 1 is a constant; n is a constant; a 0 , t 0 are arbitrary

onstants whose values will not appear in any physical measured

uantities and Y is given by 

= 

(
φ(t 0 ) 

φ0 

)1 /n 

− 1 . (9)

sually in cosmology, power-law inflation is given by a ( t ) ∝ t p .

nsatz (8) is a generalization. For real integer p , we have 

 (t) = a p t 
p + a p−1 t 

p−1 + a p−2 t 
p−2 + · · · + a 0 

here in our case the coefficients a p , a p−1 , · · · a 0 are related. Since,

 ( t ) is a series, φ should also be a series like 

(t) = φn t 
n + φn −1 t 

n −1 + φn −2 t 
n −2 + · · · + φ0 

here, again, all the coefficients φn , φn −1 , · · ·φ0 . At t = t 0 , φ( t 0 ) � =
0 and φ0 is an independent parameter. We refer to the above

nsatz (8) for the scale factor as generalized power-law inflation. 

Substituting the above ansatz (8) in Eq. (6) , we get the follow-

ng exact relations 

 ( φ) = 

˜ λ1 φ
− 2 

n + 

˜ λ2 φ
2(n −1) 

n + 

˜ λ3 φ
p−1 

n (10a)

f ( φ) = ˜ α1 φ
2 
n + ˜ α2 φ

2(n +1) 
n + ˜ α3 φ

3+ p 
n (10b)

where 

˜ λ1 = 

3 ( p − 1 ) p 2 

κ( p + 1 ) 

(
φ1 /n 

0 

t 0 

)2 

˜ λ2 = 

(5 n 

2 p − n 

2 + 2 n 

3 ) 

2(1 − 2 n + p) 

(
φ1 /n 

0 

t 0 

)2 

˜ λ3 = 24 p 3 C 

(
φ1 /n 

0 

t 0 

)1 −p 

˜ α1 = 

−1 

8 κ p(1 + p) 

(
φ1 /n 

0 

t 0 

)−2 

˜ 2 = 

n 

2 

16 p 2 (1 + n )(1 − 2 n + p) 

(
φ1 /n 

0 

t 0 

)−2 

˜ 3 = 

C 

p + 3 

(
φ1 /n 

0 

t 0 

)−(p+3) 

(11)

nd C is the constant of integration. 

The following points are important to note regarding the above

eneralized power-law solution: (i) The ansatz (8) is the most gen-

ral power-law exact solution satisfying Eqs. (6) for the potential

nd coupling (10) and does not depend on the constant of inte-

ration C . (ii) The above solutions are valid for any p > 1 and n .

mposing the condition that the potential be non-negative leads to

 > −2 and C ≥ 0. (iii) The coefficient of the first term in RHS of

10a) dominates the coefficients of the other two terms. Similarly,
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Fig. 1. Slow roll parameters ε and η Vs number of e-foldings (i) ε for different values of Higgs field h ( t 0 ) (for p = 60), (ii) ε for different values of α4 ( p ) and (iii) slow-roll 

parameter η for different α4 ( p ). 
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he coefficient of the first term in RHS of (10b) dominates the co-

fficients of the other two terms: 

˜ α2 

˜ α1 

∣∣∣∣ = 

∣∣∣∣ 1 

M 

2 
Pl 

n 

2 (p + 1) 

2(n + 1) p 2 (−2 n + p + 1) 

∣∣∣∣∣∣∣∣ ˜ λ2 

˜ λ1 

∣∣∣∣ = 

∣∣∣∣ 1 

M 

2 
Pl 

n 

2 (p + 1)(2 n + 5 p − 1) 

6(p − 1) p 2 (−2 n + p + 1) 

∣∣∣∣ (12) 

ence for φ 
 M Pl ; 
˜ λ1 φ

−2 /n and ˜ α1 φ
2 /n are the dominant terms

n the potential and coupling respectively (iv) In the case of C = 0

nd φ 
 M Pl , the general solution (10) leads to 

 (φ) = 

˜ λ1 φ
˜ n f (φ) = ˜ α1 φ

− ˜ n where ˜ n = −2 /n 

nd is identical to the one studied by Guo and Schwarz [42,43] .

he authors [42] claimed that the solution has a graceful exit.

owever, our analysis clearly indicate that the above solution is

 subset of the generalized power-law inflationary solution where

here is no exit from inflation. 

To make it clear, let us now repeat the analysis of [42] in the

imit φ 
M Pl . Rewriting their variables in terms of our variables,

e have ω = 1 , V 0 = ̃

 λ1 , ξ0 = −2 ˜ α1 , α = −(8 / 3) ̃  α1 ̃
 λ1 . Hence from

q. (11) , we get α = 

p(p−1) 

(p+1) 2 
. Now 0 < α < 1 implies p > 1, i.e at

ate times when our approximations turn valid the solution asymp-

otically approaches the power-law solution (8) . For α = 0 . 25 our

nalysis shows that the slow-roll parameter asymptotically takes

he value ε = 0 . 4641 , which is also obtained numerically as the

ate time behaviour by Bruck and Longden [18] [see Fig. (1 ) in that

eference]. 

In the rest of this section, we consider the special case C = 0 ,

owever, without imposing the condition φ 
 M Pl and find an in-

eresting scenario for Higgs inflation. 

.1. Special case: C = 0 

Condition on n and C are that n > −2 and C ≥ 0. We are in-

erested in looking at the case where the scalar field potential has

he form of power-law and consistent with standard model of par-

icle physics. Hence, for the special case C = 0 and n = −1 / 2 , scalar

eld potential and the coupling function take the following simple

orm: 

 ( φ) = λ4 φ
4 + λ6 φ

6 (13a) 

f ( φ) = 

α2 

φ2 
+ 

α4 

φ4 
(13b) 

here 

λ4 = 

3 p 2 ( p − 1 ) 

φ0 
4 κ( p + 1 ) t 0 

2 
λ6 = 

1 

4 

( 5 p − 2 ) 

φ0 
4 
t 0 

2 ( 4 + 2 p ) 

2 = 

1 

32 

φ0 
4 
t 0 

2 

p 2 ( 2 + p ) 
α4 = −1 

8 

φ0 
4 
t 0 

2 

κ p ( p + 1 ) 
(14) 
his is one of the main results of this work regarding which we

ould like to stress the following points: (i) The dominant term in

he potential and coupling function are λ4 and α4 , respectively: 

λ4 

λ6 

∣∣∣∣ ≈
∣∣5 p 2 M 

2 
Pl 

∣∣ ∣∣∣α4 

α2 

∣∣∣ ≈
∣∣4 pM 

2 
Pl 

∣∣ . (15) 

n other words, approximating 

 (φ) � λ4 φ
4 f ( φ) � 

α4 

φ4 
(16)

ead to power-law expansion. While (8) is an exact solution of

he background field Eqs. (6) for the form of potential and cou-

ling given by (13) , including the sub-dominant terms. The ansatz

8) is an approximate solution for the form of potential and cou- 

ling given by (16) . It is interesting to note that the above approx-

mate scalar field potential is the potential for the chaotic inflation

44] . In the case of chaotic inflation, the scalar field is not coupled

o the Gauss-Bonnet gravity, here, the non-minimal coupling cat-

lyzes scalar field to accelerate and, hence, there is no exit with a

ure φ4 potential. (ii) For inflation to occur, Eq. (14) implies α4 < 0

nd λ4 > 0. (iii) Physical relevance of φ0 can be seen from Eq. (14) .

he value of Gauss–Bonnet coupling parameter at the epoch of in-

ation depends on the ratio of φ0 and φ( t 0 ), i. e., 

f (φ(t 0 )) ∝ 

(
φ0 

φ(t 0 ) 

)4 
1 

κ
(17) 

0 decides the epoch of inflation in our model. Since, this can not

e fixed ab initio , it can be fixed from observations. (iv) From (14) ,

e obtain a relation between λ4 and α4 

4 | α4 | = 

3 p(p − 1) 

8(p + 1) 2 κ2 
(18) 

he above relation shows that for a given power-law inflation, λ4 

nd α4 are inversely related to each other. We show that the above

elation is approximately satisfied also for Higgs inflation. This is

nteresting because λ4 is measured precisely, and our model makes

 precise prediction for α4 and can lead to potential signatures at

he LHC. We discuss this in the Conclusion. (v) The above relations

lso provide interesting connection between φ0 (the initial value

f the field) with the coupling constants. From (14) , we get, 

2 
0 = 

1 

t 0 

(
24 p 3 (p − 1) 

| α4 | 
λ4 

)1 / 4 

(19) 

ur model makes a precise prediction on the initial value of the in-

aton field once we fix the inflation epoch of inflation and hence,

etting the scale of inflation. Our model does not impose any re-

triction on the epoch of power-law inflation. As we show explic-

tly in the next section, including the mass term in the potential

eads to exit from inflation, interestingly, the exit occurs at low-

nergies. 
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Fig. 2. The evolution of Higgs field h ( t ) (i) for different values of initial field value h ( t 0 ) (for p = 60) and (ii) for different values of the parameter α4 ( p ). 
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3. Higgs inflation 

Following the discussion in the previous section, the tree-level

SM Higgs Lagrangian is 

S = 

∫ 
d 

4 x 
√ −g 

[ 
R 

2 κ
+ f (H) L GB − | D μH| 2 − λ( |H| 2 − v 2 ) 

2 
] 
, (20)

where D μ is the covariant derivative with respect to the SM gauge

symmetry, H is the SM Higgs boson, v is its vacuum expectation

value ( v = 246 GeV ), and λ is the self-coupling constant. 

Taking the gauge t H = (0 , v + h ) / 
√ 

2 (where h stands for the

real, neutral component of the Higgs doublet H) — the action

(20) becomes 

S = 

∫ 
d 4 x 

√ −g 

[ 
R 

2 κ
+ f (h ) L GB − 1 

2 

g μν∂ μh∂ νh − λ4 

(
h 

2 − v 2 
)2 

] 
, 

(21)

where λ4 = λ/ 4 

In the limit h  v , this is identical to the action (1) — with

the coupling constant and potential given by (16) — that lead to

power-law inflation. While the condition h  v may be valid at the

initial epoch of inflation, it may not be a good approximation at

the end of inflation. 

As in the previous section, we set the Gauss-Bonnet coupling

function to be 

f (h ) = 

α4 

h 

4 
(22)

Before we proceed to obtain the background solutions, we would

like to point the following: (i) As mentioned above, at the initial

epoch of inflation, the value of the Higgs h is much larger than

the vacuum expectation value. During this epoch, the background

dynamics can be expressed as described in the previous section.

(ii) However, as the Universe cools down during inflation, the value

of the Higgs field is of the order of the vacuum expectation value

and hence, the potential term will be sub-dominant. This suggests

that the background dynamics may change dramatically. 

Unlike the earlier case, the background equations of motion

(6) can not be computed analytically especially in the region when

the field value h is of the order of vacuum expectation value v . We

solved the equations of motion (6) numerically for a time step of

10 −16 secs and precision of the field h / h 0 (in dimensionless units)

to be 10 −16 . Using LHC results of λ = 0 . 1291 ( λ = 

M 

2 
H 

2 v 2 , where M H

is the Higgs mass and v its vacuum expectation value), we have

λ4 = λ/ 4 = 0 . 032275 . ( Appendix contains the details of the numer-

ics.) 

In Figs. (1 and 2 ), we have plotted different physically relevant

background quantities, from which we infer the following: 
1. In Fig. (1 ), we have plotted the slow-roll parameters ε and η

ε = −
˙ H 

H 

2 
η = ε − 1 

2 

˙ ε

Hε
(23)

as a function of Number of e-foldings N(t) =
ln [ a (t end ) /a (t)] = 

∫ t end 
t Hdt for (i) for different initial values

of the field h ( t 0 ), (ii) assuming that initial epoch as a

power-law p > 1 and (iii) assuming that initial epoch as a

power-law p > 1. This clearly indicates that our model leads

to a minimum of 100 e-foldings of inflation for any initial

field value h ( t 0 ), greater than 5 TeV. Fig. (1 ) also shows that

larger the initial value of the field it leads to longer number

of e-foldings and η is a constant for all through the inflation

and varies rapidly at the exit of inflation. 

2. In Fig. (2 ), we have plotted the evolution of the Higgs field

h ( t ) as a function of number of e-foldings for by assuming

(i) different initial values of the field h ( t 0 ) and (ii) assuming

that initial epoch as a power-law p > 1. It is important to

note, in our model like any other model of inflation the field

value remains almost a constant throughout the evolution,

however close to the exit it changes rapidly. From Figs. (2 ),

we infer that whatever be the initial value of the field or

power-law p , the exit of inflation — when ε becomes greater

than 1 — occurs around the Electroweak scale. 

We have explicitly shown that the Higgs neutral scalar field,

on-minimally coupled to Gauss-Bonnet gravity leads to a dynam-

cal model of inflation and exit of Inflation occurs around Elec-

roweak scale ∼ 250GeV. 

. Power spectrum 

In this section, we compute the scalar and tensor power-

pectrum for the Higgs inflation model, and compare it with the

LANCK data [8] . In this section we use the results obtained by

wang and Noh [45] for our analysis. At linear order, the scalar

erturbations can be simplified by writing in the uniform-field

auge. Mukhanov–Sasaki equation in the Fourier domain is given

y, see Ref. [45] for details: 

′′ 
k + 

(
c 2 k 2 − z ′′ 

z 

)
νk = 0 (24)

here 

 = a 
√ 

Q R 

(25a)

 R 

= 

˙ φ2 + 12 H 

2 ˙ f �

( H + �/ 2 ) 
2 

� = 

8 H 

2 ˙ f 

1 /κ + 8 H 

˙ f 
(25b)
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d
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m  

t  

o  
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t

 

d  
 

2 = 1 − 256 

˙ f �2 f̈ / ˙ f − H − 4 

˙ H / �

˙ φ2 + 12 H 

2 ˙ f �
(25c) 

nd prime denotes differentiation with respect to conformal time

. For the Higgs inflation, c turns out to be approximately constant

ith value slightly less than one and Q R 

also is approximately a

onstant, see the equations below, for p = 60 : 

 

2 = 

1392 M 

2 
Pl 

(
60 

√ 

10797 t 0 

√ 

M 

2 
Pl 

λt 2 
0 

+ 61 tφ(t 0 ) 
2 − 61 t 0 φ(t 0 ) 

2 

)
+ 35

1440 M 

2 
Pl 

(
60 

√ 

10797 t 0 

√ 

M 

2 
Pl 

λt 0 
2 + 61 tφ(t 0 ) 2 − 61 t 0 φ(t 0 ) 2 

)
+ 35

 R 

= 0 . 0017 

( 

M 

2 
Pl + M 

2 
Pl 

( 

1 

0 . 235 

√ 

λ(t − t 0 ) M Pl + 

24 M 

2 
Pl 

φ(t 0 ) 2 

) ) 

≈ 0 . 0017 M 

2 
Pl . (27) 

Hence for our model Eq. (24) becomes : 

′′ 
k + 

(
c 2 k 2 − σ 2 − 1 / 4 

η2 

)
ν = 0 (28) 

here 

= 

3 p − 1 

2(p − 1) 
(29) 

nd the general solution for Eq. (28) are a linear combination of

ankel functions. 

k = 

√ | η| (AH 

(1) 
σ (ck | η| ) + BH 

(2) 
σ (ck | η| ) ) (30) 

hoosing the Bunch-Davies vacuum at past infinity ( ck | η| → ∞ ),

e get 

 = 

√ 

π

4 

e i (2 σ+1) π/ 4 and B = 0 . (31)

he power spectrum of scalar curvature perturbations 

 R 

= 

k 3 

2 π2 

∣∣∣νk 

z 

∣∣∣2 

(32) 

valuated when the modes leave the Hubble radius leads to 

 R 

= C k 3 −2 σ ;

C = 2 

4(σ−1) c −2 σ

(
�(σ ) 

�(3 / 2) 

)2 
1 

4 π2 

(
a 0 /t 0 

2 σ − 3 

)2 σ−1 1 

a 2 
0 
Q R 

. (33) 

he scalar spectral index n R 

− 1 = 3 − 2 σ . 

The Fourier modes of the tensor perturbations satisfy, see Ref.

45] for details: 

 

′′ + 

(
c 2 T k 

2 − z ′′ T 
z T 

)
u = 0 (34)

here 

 T = a 
√ 

Q g ; Q g = 

1 

κ
+ 8 H 

˙ f , c 2 T = 

1 + 8 κ f̈ 

1 + 8 κH 

˙ f 
. (35)

ike in the case of scalar-perturbations, Q g and c T are approxi-

ately constants during inflation. So proceeding in the same way

s like scalar perturbations, the tensor power-spectrum is given

y: 

 T = C T k 3 −2 σT 

C T = 8 × 2 

4(σT −1) c −2 σT 
T 

(
�(σT ) 

�(3 / 2) 

)2 
1 

4 π2 

(
a 0 /t 0 

2 σT − 3 

)2 σT −1 1 

a 2 
0 
Q g 

(36) 

p  
 

10797 t 0 φ(t 0 ) 
2 
√ 

M 

2 
Pl 

λt 0 
2 

 

10797 t 0 φ(t 0 ) 2 
√ 

M 

2 
Pl 

λt 0 
2 

(26) 

The spectral index of scalar and tensor perturbations obey n R 

−
 = n T . The tensor to scalar ratio, which is defined as 

 ≡ P T 
P R 

≈ 8 ×
(

c 

c T 

)2 σ Q R 

Q g 
(37) 

.1. Constraints from PLANCK 

PLANCK [8] provides stringent constraints on the scalar spectral

ndex n R 

= 0 . 968 ± 0 . 006 . Approximating inflation to be general-

zed power-law (for large part during inflation), Eq. (33) leads to p

60. For p ≈ 60, from Eq. (37) , tensor to scalar ratio turns out to

e r = 0 . 012 . The above result is in agreement with PLANCK con-

traint of r < 0.1. It is important to note that as like other Higgs

nflation model [15] , our model predicts that the contribution from

he tensor is significantly smaller than that of scalar perturbations.

Since our model does not have any free parameter, we can con-

traint all the parameters of the model by comparing the model’s

redicted power-spectrum and the observed power-spectrum val-

es at the pivot scale k ∗ = 0 . 05 Mpc −1 . The observed power-

pectrum at the pivot scale is P R 

( k ∗) = 2 . 2 × 10 −9 [8] . From

q. (33) , the time at which the perturbations exited the horizon

adius during inflation is given as 

 ∗ = 5 . 273 × 10 

−36 secs + t 0 − 60 

√ 

8 | f ( h (t 0 ) ) | κ (38)

he field value at hubble crossing, h ∗ ≈ 10 16 GeV. The above rela-

ions are the one of the main results of our work, regarding which

e would like to stress the following: (i) Given that λ4 is precisely

easured leads to 

 

2 
0 t 0 ∼ 5 . 7 × 10 

2 M Pl . (39)

he above expression clearly shows that while h 2 
0 
t 0 can be deter-

ined, however, h 0 and t 0 can not be determined independently.

ii) The time of exit of the perturbations depends on the value of

he Gauss-Bonnet parameter at the epoch of inflation. As can be

een from above, t ∗ depends on t 0 and h 0 . (iii) The scale at the

ime perturbations left the Hubble scale is H ∗ ≈ 10 12 GeV. 

. Discussions 

In this work, we presented a model of inflation in which

he Higgs scalar is the inflaton. In our model, we have assumed

iggs is non-minimally coupled to Gauss-Bonnet Gravity in 4-

imensions. We have shown analytically that scalar field with φ4 

otential term leads to power-law inflation, however, adding a

ass leads to the exit of inflation. We have explicitly shown that

he exit is close to the Electroweak scale. Power-spectrum gener-

ted from our model is consistent with the PLANCK observations. 

There have been earlier attempts to look for an inflationary

odel at electro-weak scales [46–51] . Our model leads to infla-

ion with exit at Electroweak scale due to non-minimal coupling

f the Higgs to Gauss-Bonnet gravity term. In the model proposed

y German et al.Ref. [49] , thermal effects lead to low-scale infla-

ion in supersymmetric or large extra dimensions. 

It is intriguing that Gauss-Bonnet gravity which are higher-

erivative gravity corrections to Einstein gravity and hence are ex-

ected to have strong effects only in the early universe. However,
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we have explicitly shown that Gauss-Bonnet gravity leads a dy-

namical model at low-energies. 

Our model is in spirit with Chaotic inflationary model of Linde

[44] . Our model does not require an extension of standard model

but is a natural phenomenon within standard model at the cost of

a non minimal coupling of Higgs field with the Gauss-Bonnet cou-

pling. Our analysis also indicate possible implications of the Gauss-

Bonnet coupling at LHC. 1 

As mentioned in the previous section, PLANCK observations

constrain all parameters of our model, however, it does not con-

strain the epoch of inflation. Using the non-Gaussianity constraints

of PLANCK may help to break the degeneracy between h 0 and t 0 .

This is currently under investigation. 
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Appendix. Numerical evaluation 

In order to solve the time evolution of the Higgs field h ( t ), we

obtain the expression for d 2 h 
dt 2 

as a function only of h and 

dh 
dt 

. We

then use RK4 to numerically evaluate h ( t ). 

We solve the Hubble constant H from (6b) . The cubic equation

leads to three solutions for H, given by: 

H1 = 

B 

1 
3 

24 k df (t) 
dt 

+ 

1 

24 k df (t) 
dt 

B 

1 
3 

− 1 

24 k df (t) 
dt 

(40a)

H2 = 

−B 

1 
3 

48 k df (t) 
dt 

− 1 

48 k df (t) 
dt 

B 

1 
3 

− 1 

24 k df (t) 
dt 

+ I 
√ 

3 

(
B 

1 
3 

48 k df (t) 
dt 

− 1 

48 k df (t) 
dt 

B 

1 
3 

)
(40b)

H3 = 

−B 

1 
3 

48 k df (t) 
dt 

− 1 

48 k df (t) 
dt 

B 

1 
3 

− 1 

24 k df (t) 
dt 

− I 
√ 

3 

(
B 

1 
3 

48 k df (t) 
dt 

− 1 

48 k df (t) 
dt 

B 

1 
3 

)
(40c)

where 

B = 144 

(
d 

dt 
f ( t ) 

)2 

k 3 
(

d 

dt 
h (t) 

)2 

+ 288 

(
d 

dt 
f ( t ) 

)2 

k 3 V ( t ) − 1 

+ 12 

√ 

2 

(
d 

dt 
f ( t ) 

)
k 2 

√ 

A 

A = 

1 

k 

( 

72 

(
d 

dt 
f ( t ) 

)2 

k 3 
(

d 

dt 
h (t) 

)4 

+ 288 

(
d 

dt 
f ( t ) 

)2 

k 3 
(

d 

dt 
h (t) 

)2

× V ( t ) −
(

d 

dt 
h (t) 

)2 

+ 288 

(
d 

dt 
f ( t ) 

)2 

k 3 ( V ( t ) ) 
2 − 2 V ( t ) 

) 

Among the three solutions for H, only one solution satisfy the

Eqns. (6) all through the evolution and that is the physical solution.

Substituting the corresponding solution in (6a) , we get the second

order differential equation in h ( t ). From the fact that we can split
1 Inflation reheating requires coupling of the inflaton with the standard model 

particles. More precisely, to have efficient reheating the coupling has to be stronger 

so that the energy gets transferred from inflaton to standard model particles. If the 

xit happens close to EW scale, then this implies that the reheating process can 

provide some hint about the coupling of the inflaton with standard model. 

 

 

 

 

 

dH 
dt 

as a sum of H t 1 and H t2 
d 2 h 
dt 2 

, where H t 1 and H t 2 are independent

f d 2 h 
dt 2 

. we have: 

d 2 h 

dt 2 
= 

24 H 

2 df (h ) 
dt 

H t1 + 24 H 

4 df (h ) 
dt 

− dV (h ) 
dt 

− 3 

(
dh 
dt 

)2 
H 

dh 
dt 

− 24 H 

2 df (h ) 
dt 

H t2 

(41)
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