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a b s t r a c t

Astronomical scheduling problem has several external conditions that change dynamically at any time
during observations, likeweather condition (humidity, temperature, wind speed, opacity, etc.), and target
visibility conditions (target over the horizon, Sun/Moon blocking the target). Therefore, a dynamic re-
scheduling is needed. An astronomical project will be scheduled as one or more Scheduling Blocks (SBs)
as an atomic unit of astronomical observations. We propose a mixed integer linear programming (MILP)
solution to select the best SBs, favors SBs with high scientific values, and thus maximizing the quantity
of completed observation projects. The data content of Atacama Large Millimeter/Submillimeter Array
(ALMA) projects of cycle 0 and cycle 1 were analyzed, and a synthetic set of tests of the real instances was
created. Two configurations, one of 5000 SBs in a 3 months season and another 10,000 SBs a 6 months
season were created. These instances were evaluated with excellent results. Through the testing it is
showed that the MILP proposal has optimal solutions.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The telescope is the most important part of an observatory and
astronomers want to use it as much as possible. An astronomical
scheduler system acts as the organizer of the observatory.
However, the main problem of an astronomical scheduler is not
to manage observation requests, but also decides when each
observation will be executed taking into consideration that use
time is limited and the cost of observing time (specially in large
astronomical projects) is expensive (Spotts, 2010).

The astronomical observation schedule process is a complex
problem (Gómez de Castro and Yáñez, 2003). In first place, the
scheduler has to deal with several constraints such as techni-
cal requirements, weather conditions, target pointing feasibilities,
maintenance dates, telescope time availabilities, percentage of ob-
servational time of each associated institution, cost of opportunity
between an observation and other ones ready to be executed in a
specific time, etc.

Secondly, most of these constraints can change at any moment,
making even more difficult to achieve a schedule of observations.
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Lastly, the astronomical observation scheduling problem is amulti-
objective problem, several optimizations can be made to optimize
different aspects of the observatory simultaneously.

Considering that most modern astronomical observatories
already have some tools to perform a schedule process, there is
still a huge part of human intervention (Mora and Solar, 2010). That
means that is highly desirable to have a fully-automated dynamic
scheduler to be able to react against any unexpected change of
present conditions.

The astronomical observation scheduling problem faces several
issues. One of them is that it is extremely relevant to optimize as
much as possible the observatory resources, but also one of the
most important aspects is that the scheduler must be able to adapt
dynamically due changes in observing conditions.

Modern observatories like Atacama Large Millimeter/Submilli
meter Array (ALMA) have a systematic methodology to achieve
the process of scheduling observations. This process starts with
a ‘‘Call For Proposals’’ in the early stage of an observation
season in order to receive observational proposals (Nyman et al.,
2010). Later, each of those pass through a revision process in
which a specialized committee approves or rejects each proposal
considering some aspects like: research impact of the proposal,
technical requirements, telescope required time, nationality, etc.,
assigning an observation time for the approved ones. These
approved proposals pass to a queue process in which the telescope
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scheduler decideswhenwill be proper to execute each observation
considering their specific requirements, priority and current
observing conditions.

This work presents the design, implementation details and re-
sults of aMixed Integer Linear Programming (MILP) based schedul-
ing algorithm to solve a simplified version of ALMA scheduling
problem.We decided to use MILP because of its rigorousness, flex-
ibility and extensive modeling capability (Floudas and Lin, 2005).
Even when MILP has become one of the most widely explored
methods for process scheduling problems, there is no documenta-
tion in the use of MILP to solve the astronomical scheduling prob-
lem.

The work aims the following:

1. Identify and study the main constraints necessary to develop a
scheduling model for ALMA observatory.

2. Present a model of a scheduling algorithm using a MILP
approach to solve the ALMA scheduling problem.

3. Implement a prototype of the proposed scheduling model.
4. Describe the instance data and generate several classes of

instances under different scenarios that ALMA will face in the
future.

5. Identify the main variables to analyze the performance of the
proposed solution.

The present article is structured in five main parts. In Section 2,
the state of the art is presented, where not only the main
techniques already studied in the literature are described but
also, the current status of how the most important astronomical
observatories are facing their scheduling problems. Section 3
describes the theoretical model of the proposed solution and the
global view of the algorithm. Section 4 shows themain statistics of
real instances of ALMA, the testing methodology of the algorithm
and the obtained results. Finally, Section 5 presents the main
conclusions and describes some ideas to the future work.

2. Related work

A wide range of research related to the field of scheduling
is possible to find in literature. Problems such as the ‘‘Job Shop
Scheduling Problem’’ (JSSP) (Graham, 1966) are relevant in the field
of dynamic scheduling because inmost cases it is used as a base for
constructing new scheduling algorithms. JSSP is considered to be a
NP-Complete problem. It is based in trying to assign Ji tasks (each
onewith variable duration) overMj machines in order tominimize
the total makespan (total length of the schedule).

On the other hand, the ‘‘Flexible Job Shop Scheduling Problem’’
(FJSSP) is a natural extension of the JSSP. It allows that any task Ji
can be assigned in anymachineMj without anyparticular consider-
ation to minimize the makespan. This previous consideration also
maximize the utilization of the machines allowing to have more
free time to add more tasks.

Even though JSSP and FJSSP are theoretical models, several
applications in the literature can be found using mainly Mixed
Integer Linear Programming (MILP). In Floudas and Lin (2005)
several formulations of short-term time schedulingmodels using a
MILP representation are described and classified by their temporal
representation in order to determine the most efficient way to
produce a series of chemical products in a given timehorizon. Some
of themain constraint considered in all the representations are the
limited production resources and that each product is created by
a specific receipt and an established production chain. The facility
can also produce different type of products and the resources to
make chemical products are shared between all product chains.
This research concludes that all MILP approaches solve efficiently
the scheduling problem and also to continue researching in this
topic using a reactive scheduling technique taking in consideration
unexpected changes in a given period of the scheduling process by
using stochastical variables.

Also, in Ierapetritou and Floudas (1998) another MILP-based
scheduling model is described to solve a short-term time
scheduling for continuous batch processes using an innovative
approach. This study not only describes the model itself but also,
two real applications based on consumption goods dispatching
which their associated results are presented. The research
concludes that the presented models obtain a higher performance
in comparison to other models referenced in the research.

Other studies like Lee et al. (1996) and Chang et al. (2001)
show other type of short-term time scheduling models using
a MILP-based approach. The first study describes a model that
solves an inventory management scheduling problem of a petrol
industry. The production process line has two main parts: in the
first process line, barrels are loaded into trucks and then, barrels
are sent into several distiller machines. The study shows that a
MILP-based approach using a discretization of time and supported
by branch and bound technique is able to solve successfully
real case scenarios. The second study describes another MILP-
based scheduling model oriented to solve the hydro scheduling
problem consisting on finding a proper schedule to fill several
water tanks considering the customers demand and the current
capacity of each water tank in each time. Also, this problem allows
the cooperation of water tanks to supply the existing demand
making the problem quite complex. The study describes a model
formulation oriented to solve a simplified version of the problem
for a real hidric central which solves efficiently the scheduling
process using real-scale instances.

Castro and Grossmann (2006) show a short-termMILP schedul-
ing model for a single layer batch process. The model tries to
minimize the total cost of delayed processes supported by a time
discretization by defining time slots in the schedule process. The
study concludes that the use of time discretization improves no-
ticeably the performance against other existing solutions specially
when large periods of time are used.

Finally, it is important to mention that there are several
heuristics and meta-heuristics, such as Genetic Algorithm (GA),
Simulated Annealing (SA), Tabu Search (TS), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and others
which are used to model and solve different applications of the
scheduling problem. Wetter et al. (2015) show a greedy heuristic
to construct an initial candidate solution to solve the scheduling
astronomical observation providing a good compromise between
time complexity and solution quality. The initial solution of this
greedy algorithm is used as input to a simple local search technique
(hill climbing) to construct a neighborhood of a given solution.
Hill climbing (and any local search technique) is known to get
trapped in local optima restricting the quality of solutions it may
discover. Wetter et al. (2015) show an application of a SA as a
way to overcome this short coming of local search algorithms.
Next section explains the application of a GA in the CARMENES
telescope (Garcia-Piquer et al., 2014), in SKA (Buchner, 2011), and
an ACO algorithm used in CTA (Colome et al., 2012).

2.1. Scheduling in astronomy

Astronomy has had a constant interest in looking with more
details the deep space in order to understand our origins. Hence,
more observatories are being constructed with more advanced
hardware and software technologies, more precise and sensible
astronomical instruments like larger optical mirrors or more
antennas. The construction of advanced infrastructure requires a
huge amount of investment (in the order of billions of dollars)
which can only be possible by a partnership between several
institutions. The operative costs of a mega-scale observatory are



92 M. Solar et al. / Astronomy and Computing 15 (2016) 90–104
quite high and so, is highly relevant to have some mechanisms to
optimize the use of resources provided by observatories based on
their demand. Consequently, many studies related to scheduling in
astronomy have emerged these last decades.

In a general matter each astronomer applies for observing
time in a telescope and the observatories manage these type
of information to schedule those observing proposals for each
season (Mora and Solar, 2010). Astronomical proposals include
attached information that is relevant for the scheduling process.
Most common information are observational requirements but in
other cases, information like the association that each astronomer
belongs to or the potential impact of each research are also
relevant for the schedule process. In Bridger and Butler (2008)
the ALMA Project Data Model (APDM, the document schema that
ALMA uses to receive observation proposals) is described. When
the observation proposals are sent by the astronomers, a Time
Assignment Committee (TAC) evaluates those proposals being able
to accept or reject according to several aspects like the observation
feasibility or the scientific impact of the observation. For the
accepted proposals a scientific priority score is used to represent
the priority of every observation proposal to be executed into
the telescope. In Hiriart (2010) the scientific priority score that
ALMA uses to rank its projects is detailed. This ranking value
is generated by a function that is defined by three numbers:
(score, rank, grade). The score number is assigned by
a specialized committee in an early stage of the scoring process.
Later, the scored proposals which have been evaluated by different
specialized committees are assembled in one ordered set. Since
there is a possibility of collision of multiple projects with same
score, theranknumber is used to resolve these scoring collisions.
Finally, grade number is used depending the project’s type (A, B,
C or D). Using the defined numbers, the scientific priority score Si
for project i is defined as Eq. (1) shows.

Si =
Np − (ranki − 1)

Np
+ Ki. (1)

Where Np is the total number of observational proposals and Ki
according to Eq. (2).

Ki =


4 if project is grade A
2 if project is grade B
1 if project is grade C
0 if project is grade D.

(2)

Most observatories are composed by a joint-venture between
several institutions. In this case, the assigned time to each proposal
must fulfill the percentage of total time that each institution has
right. Also, some observatories distinguish different methods to
execute the observations. In the case of VLT, observations can
be executed either ‘‘Visitor Mode’’ (requires the presence of the
astronomer to execute the observation) or ‘‘Service Mode’’ (the
observation is executed by an internal telescope operator). This
last mode allows certain degree of flexibility to the observatory to
handle an observation.

In Colome et al. (2012), the main components of an astronom-
ical scheduler are described. Also a conceptual map of a generic
control system of an astronomical observatory is described which
reveals the role of an astronomical scheduler from the other sub-
systems.

The astronomical scheduling problem is an NP-Hard prob-
lem (Gómez de Castro and Yáñez, 2003). One of themain complex-
ities of this problem are the unexpected changes of the variables
involved in each schedule decision such as: weather conditions,
telescope failures, unplanned maintenance, and others which
make the problem hard to solve.

This problem can be treated as a multi-objective optimization
problem: several optimizations can be made simultaneously
in the observatory. In Gómez de Castro and Yáñez (2003), a
scheduling model with the scientific priority score associated to
the executed observations aremaximized in a complete scheduling
period. In Mora (2011) a different approach is described by a
bi-objective model which both scientific priority score of the
scheduled observations and the utilization time of the telescope
are maximized. Finally, in Colome et al. (2012) and Granzer (2004)
a list of relevant aspects of an observatory that can be optimized
are discussed. The summarized list is as follows:

• Minimization of the inactivity periods of the telescope/
observatory.

• Maximization of the assigned times to the scientific projects.
• Maximization of the scientific priority score of the executed

projects.
• Maximization of the quality of the data obtained in the obser-

vations.

2.2. Scheduling in astronomical observatories

In this section a description of themost important astronomical
observatories are presentedwith their current situation about how
each handles at date their own scheduling process. Firstly, we
will show the most important space-based telescope, then the
ground-based telescope will be presented from optical telescopes
to radioastronomy observatories.

2.2.1. Hubble Space Telescope (HST)
Hubble is a space-based telescope created by NASA and the

European Aerospace Agency (ESA). Hubble is equipped with a
2.3 m telescope and several instruments to observe from near-
UV to near-IR spectrum. The main purpose of this telescope is to
explore the deep space taking advantage of not suffering problems
produced by the atmosphere.

In Johnston andMiller (1994) Spike is introduced as a scheduling
tool constructed initially to solve theHubble’s scheduling problem.
Its design is quite flexible, able to be adapted easily to other
scheduling problems (in fact, other astronomical projects already
adopted Spike). It was developed using Lisp and its algorithm
is based on a constraint satisfaction problem (CSP)-solver which
considers both long-term and short-term scheduling phases.
Several heuristics, such as conflict-minimization, reparation (using
Artificial Neural Networks) and elimination (using Priority Lists)
heuristics are used to support the scheduling process. All details
of mathematical models and algorithms of Spike can be found
in Johnston and Adorf (1992).

2.2.2. Chandra X-ray observatory
Chandra is nowadays one of the most important space-based

telescope operated by NASA. It was launched to make X-ray
based observations. The telescope follows a 64 h orbit around
the Earth and is equipped with an ultrasensible instrument to
capture weak X-ray signals which cannot be captured on Earth due
atmospheric absorption. Chandra’s telescope has several servos to
adjust position over the current orbit and velocity.

In Bucher et al. (2008) a complete study of the main aspects
of Chandra’s scheduler are detailed starting with a complete
description of how all the observation proposals are managed in
the scheduling process and also the main factors that Chandra
considers in its scheduler.

One of the particularities of Chandra scheduler is that several
optimizations are considered, enumerated (by priority) as:

1. Minimize risk of the telescope
2. Maximize scientific objectives
3. Maximize observation time
4. Minimize the consumption energy of the telescope.
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2.2.3. Joan Oró Robotic Telescope (TJO)
TJO is a small class observatory (0.8m telescopewith a robotized

dome) operated by Parc Astronomic Montsec Observatory located
in the mountains of Montsec (1570 mosl) in Spain. One of the
particularities of this small observatory is that its location is quite
difficult to access, so the observatory is operated remotely. In that
way, an effective scheduling system is crucial to optimize the use
of the observatory avoiding any operational risk.

The TJO scheduling system considers a long, medium and
short-term schedule process in which the best observations in
the present period are considered to be observed during the
respective night. The long-term schedule process observes the
feasible observation proposals considering long-term attributes
like visibility periods, planned maintenance periods and phases
where some other object interferes the observation target. Later,
a mid-term schedule process is used to select those observations
that are feasible to be made during the night of the same
day. Finally, the short-term schedule process uses short-term
attributes, like weather conditions, to assign those observations to
be executed in the telescope.

In Colome et al. (2010), a technical report describes the main
aspects of the TJO scheduling system.

2.2.4. CARMENES instrument
Calar Alto high-Resolution search for M dwarfs with Exo-earths

with Near-infrared and optical Echelle Spectrographs (CARMENES), a
new generation 3.5moptical telescope,will start its science survey
in the year 2016. Located in Spain it is operated by a consortium of
German and Spanish institutions.

CARMENES scheduler considers a short-term, mid-term and
long-term scheduling phases and the scheduler is expected to
handle thousands of observations to be scheduled in a whole
observation season. The long-term and mid-term schedulers are
based on Genetic Algorithms (GA), and the short-term scheduler
is an astronomy-based heuristic in order to dynamic reschedule in
less than 5 s.

CARMENES scheduler considers some simplifications such as:
The number of targets to be observed are known, there are no
dependencies between observations, and there is only a single
telescope that is allowed to execute the observations. Despite, the
scheduler considers some other factors that make the schedule
process quite difficult to solve. One of this factor, the number of
integrations, is dynamically calculated in the schedule process due
to weather conditions are unknown.

Garcia-Piquer et al. (2014) describes in a general way the main
components of the CARMENES telescope, including the scheduling
system. This technical report describes how the scheduling system
interacts with other subsystems of the observatory.

2.2.5. Green Bank Telescope (GBT)
The GBT is until now the largest single-dish ground based radio

telescope and also the biggest movable structure in the world. It
is located in West Virginia (USA) being part of the National Radio
Astronomy Observatory (NRAO).

GBT adopted recently a prototype of an automatic dynamic
scheduling system (formerly known as DSS) developed by NRAO.
A complete description of DSS can be found in National Radio
Astronomy Observatory (NRAO) (2013). The GBT ‘‘core-algorithm’’
is based on a rank-based solution to establish priorities between
the observation proposals. In Balser et al. (2009) the ranking
formula used by the algorithm to classify each observation to
generate a priority list between all observations is described.
The ranking formula used in the GBT algorithm including several
variables such as: forecasted weather conditions, observation
efficiency, target coordinates, and some other specific variables
used for schedule observations are described.
Also, in Sessoms et al. (2009) a two-phase scheduling algorithm
is described. In the first one, a Sudoku solver is used to find a
solution on continuous-time observations. In the second phase,
a Knapsack based algorithm is used to schedule into the rest of
available time.

InMcCarty et al. (2012) a functional prototype of the scheduling
system is described. The prototype was implemented using
Haskell. The source code of the implementation is given as part
of several projects that NRAO has as an Open-Source Software
(https://github.com/nrao).

2.2.6. Low Frequency Array Telescope (LOFAR)
LOFAR is the largest low-range radio telescope in the world

and is composed by a distributed network of multipurpose low-
cost sensors used mainly as an astronomical radio-telescope for
10MHz–250MHz range observations. LOFAR is also used for other
fields such as geophysics or agronomy but in a less percentage.

One of the main features of LOFAR is the ability to execute
multiple parallel observations at a time. For that reason, it is
composed by several ground-based facilities that contain several
antennas that can work in collaboration. The main one is located
in Holland with 13 antennas and also, other 18 more facilities in
the same country with less number of antennas. Other facilities
are located in Germany, Sweden, France and UK, adding 31 more
antennas.

At date, LOFAR does hundreds of observations weekly and it
is expected that this number will grow in the following years,
so the LOFAR scheduling system should react effectively at this
scenario (De Jong, 2012).

In De Jong (2012) the main components of the current
scheduling system of LOFAR are described. Scheduler system
of LOFAR is defined as a tool that is used to support human-
based decisions and also to solve execution conflicts during
the execution of the observations. In fact, the operator is able
to check several scheduling solutions, compare them, modify
the scheduling solutions, or leave the scheduler to schedule
by itself using a simulated annealing based algorithm. On the
other part, the same paper describes the main restrictions of
the LOFAR scheduling problem. The most relevant ones are:
Current hardware status (current antenna operating frequency,
current filters installed, data slots available, etc.), visibility of the
observational target in the whole observation period, processing
constraints and data-storage constraints.

Finally, in Grim et al. (2002) an implementation of an evolutive
algorithm for LOFAR is discussed describing the main restrictions
and variables for the simplified problem. The paper concludes
that an evolutive approach for the LOFAR scheduling problem gets
effective results.

2.2.7. Atacama Large Millimeter/Submillimeter Array (ALMA)
ALMA is at date the world’s largest radio-astronomical tele-

scope in the world and it is located at an altitude of 5000 mosl in
the driest desert of the world. It was designed to observe in the
millimetric range specter. During 2013 the observatory operated
in Early Science mode (Cycle 0 and Cycle 1) and it was fully opera-
tive in 2015.

ALMA is one of the biggest efforts in the astronomical area ever
made andwas carried out by the partnership of themost important
astronomical entities in the astronomical field such as: ESO, NRAO
and NAOJ.

ALMA is composed by 66 antennas. These antennas can be
grouped up to 6 sub-arrays which can perform observations
independently, and also these sub-array configurations can be able
to change its distribution during the observation season. Also, the
antenna array is distributed in a physical extension and its baseline
(the length of the farthest antennas of the array) can beup to 16 km.

https://github.com/nrao
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Unlike optical observatories, ALMA can observe continuously 24 h
a day.

ALMA platform is mainly based on the ALMA Common
Software (ACS) which is a distributed instrumentation and control
system that ALMA uses to construct most of their subsystems.
These subsystems have a specific function inside the observatory
operations. In particular, the scheduling subsystem receives the
approved observations and dispatches the selected ones from the
scheduler to the telescope control system. When the observation
has been made, the corresponding data is delivered to the pipeline
subsystemwhich is in charge of store and pre-process the data, and
finally deliver a final product to the astronomer.

ALMAwill exclusively operate in ‘‘ServiceMode’’, so a real-time
scheduler tool will be in charge to assignwhich observationwill be
executed considering the current restrictions.

InMora and Solar (2010) a brief summary of the ALMA schedul-
ing subsystem design is described. In first place, observation
projects are divided in aminimal observation unit called ‘‘Schedul-
ing Blocks’’ (SBs). Each SBhas special attributes like execution time,
execution feasibility in the observation season and also a depen-
dency with other SBs. Also, observation proposals are stored (af-
ter the committee approval) into an initial queue maintained by a
‘‘Project Manager’’. A ‘‘Master Scheduler’’ (which has a constant in-
teraction with the ‘‘Project Manager’’) coordinates the schedule of
each sub-array in order to finally decides which observation will
be made in each period of time in each sub-array.

In the vast literature about ALMA and its scheduling subsystem,
some of the main researches are interesting to highlight:

• In Hoffstadt (2010) the design and implementation of a
prototype of the planning mode simulator for ALMA is widely
detailed. The main purpose of the planning mode simulator in
the scheduling subsystem is to make scheduling simulations to
study several scheduling algorithms under different simulated
scenarios. Also, the projected scenarios of demand that ALMA
expects to receive is around 18.000 SBs (peak), so ALMA’s
scheduler must be able to deal with that scale of demand.

• In Mora (2011) an ALMA scheduling model based on dynamic
priorities is described. This model seeks to solve efficiently the
ALMA scheduling problem taking in consideration that some
dynamic constraints are present in the problem and affects
the scheduling process. In it, some relevant assumptions are
made highlighting two of them: The first one, the proposed
scheduling model solves a simplified version of the ALMA
scheduling problem in which only one array of all antennas is
considered. Lastly, a time discretization is used assuming that
each time slot has a duration of 1 h which is consistent with
the maximum duration time of a SB. Finally, the work shows
that the presented model was able to schedule a real set of
observation projects of ALMA efficiently.

• In Colome et al. (2012) a survey of the main researches about
astronomical scheduling is presented. In it, the ones listed
concerning ALMA are algorithms based on Simulated Annealing
(SA), Tabu Search (TS) and Evolutionary Algorithms (EA).

• Finally, in Clarke and Avarias (2012) the main variables
considered for the dynamic scheduling problem of ALMA are
presented and also the main requirements that ALMA needs for
its scheduler.

2.2.8. Cherenkov telescope array (CTA)
CTA is a next generation ground-based very high energy

gamma-ray instrument. The project is planned to start the opera-
tion phase in 2018. The CTA is expected to be themost powerful ob-
servatory for gamma-ray observations. This astronomical project is
supported by more than 200 institutions and its construction cost
is estimated to be around of e150 millions.
The observatory will be composed by 2 big arrays, each one
located in each terrestrial hemisphere in order to have a full
coverage of the whole observing horizon. The first array will
be located in the southern hemisphere considering 60 antennas
distributed over a surface area of 3 km2, and the second one in
the northern hemisphere considering 30 antennas distributed in
a surface area of 1 km2.

The preliminary design of the CTA Observatory is described
in Actis et al. (2012). In it, ALMA Platform (ACS) is considered to be
used as a base formost subsystems of CTA and so, themost relevant
parts of ACS considered to be used in CTA platform are detailed. On
the other hand, CTA considers ambicious requirements (e.g., dead
time of the telescope less than 10 s) and also the observatory
expects to provide several types of observation modes.

The scheduling problem that CTA is expecting to have is quite
similar that ALMA’s one. In fact, the main purpose of CTA is the
assignment of multiple observations to multiple arrays that can
be formed in order to maximize certain criteria like the scientific
impact of the observations that have been executed.

In Colome et al. (2012) a summary of themajor requirements of
CTA are described. The preliminary design of the CTA scheduling
system expects to have two phases of schedule (short-term and
long-term) and also a dynamic algorithm with a fast response
time if a re-schedule is needed. In the same document, a
preliminary design of the dynamic algorithm based on Artificial
Intelligence is detailed. In summary, the scheduler for CTA is
based on an algorithm composed by a Guarded Discrete Stochastic
Neural Network and using Constraint Satisfaction Problem (CSP)
for constraint propagation. An Ant Colony Optimization (ACO)
algorithm is also used to avoid hard constraint violations. One of
the benefits of this algorithm is that scheduling conditions can be
changed during execution without the need to start from scratch.

2.2.9. Square Kilometre Array (SKA)
The SKA, which Australia and South Africa were chosen

as co-host, is aiming for scales where current approaches—
in construction, operation but also scheduling are insufficient.
Although manual scheduling is common today, the problem
is becoming complicated by the demand for: (1) independent
sub-arrays doing simultaneous observations, which requires the
scheduler to plan parallel observations; and (2) dynamic re-
scheduling on changed conditions. Both of these requirements
apply to the SKA, especially in the construction phase. An
automated long-term scheduling system is sought that allows
parallel observations, is reactive to resource availability and
operator preferences, can re-schedule once these change and,
last but not least, is scalable. One interesting aspect of the SKA
scheduler, as in ALMA and LOFAR, is to allow parallel execution
of observations. This means that a job needs several machines at
a time (e.g. any subset of a given size), while another uses another,
distinct, subset. This formalism is incompatible with job-shop
scheduling that requires a job to go through machines in order,
but does not allow it to use multiple (possibly varying) machines
sets. Accepted proposals are input to the Observation Design
process, creating Scheduling Blocks (SBs). SBs allow the planning
function to create long- and short-term queues, and the short-
term queue is then carried out at the telescope, with SBs executed
in the form of their science scripts, interacting with Telescope
Management sub-system. There are distinct off-line tasks related
to proposal preparation and submission, proposal review and
long-term observation planning and preparation, as well as on-
line functions that relate to short-term observation planning and
execution, including handling special requirements like Target of
Opportunity (ToO) observations. The Genetic Algorithm (GA) is
well-known to perform poorly in order-based encodings. This is
due to the fact that mutation operations are difficult to write so
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that the GA can efficiently sample the problem space. Hence the
recommended time-indexed encoding has been used by Buchner
(2011). In his work, Buchner (2011) found that simple algorithms,
in particular just going through the schedule and allocating the
highest-priority observation possible at each time slot, lead to very
good first-cut solution in the test dataset looked at. The GA can
select the best heuristic and thus keep the approach robust to
changes in the characteristics of the problem. It may help to make
minor improvements, but also allow to update the schedule on
changed requirements.

2.2.10. Large Synoptic Survey Telescope (LSST)
The LSST science specifications require operating the telescope

for a 10-year survey of the visible sky with frequent revisits in
multiple filters. During regular night operation, an observatory
scheduler will be used to select fields to be observed on a
cadence of one every 30 s. To maximize the survey efficiency, real
time adjustments to the observation schedule will be assessed
using input parameters like cloud cover. During regular night
operation, LSST will use an observatory scheduler based on the
same principle, that will select fields to be observed in a specific
filter for overall survey efficiency. One of the input parameters of
the scheduler will be the cloud cover of the sky during the night.
In astronomy, nights are usually classified in terms of photometric
hours and image quality. The photometricity of the night is
related to the meteorological cloud cover of the sky. Traditionally,
observations are taken during photometric and spectroscopic
hours. During spectroscopic nights, LSST observations will be
carried out since it gathers temporal information, and because
image quality can still be good. The scheduler will be able to
adjust the sequence of observations based on the photometric
conditions of the different areas on the sky in real time, which is
a hard requirement for the scheduling application. The purpose
is to maximize the efficiency of the data collection time and the
efficiency of the survey mission. See detailed information in Sebag
et al. (2007).

2.2.11. Thirty Meter Telescope (TMT)
According to the information provided in http://ast.noao.edu/

system/us-tmt-liaison/survey-faq, each TMTpartnerwill establish
and operate its own observing proposal and time allocation
process. Partner shares of observing timewill be divided into equal
amounts of bright, gray and dark time, evenly spread across each
semester’s available time. TMTwill receive the information on time
allocation from the partners and will produce a merged observing
schedule for each semester.

TMT will initially support two main observing modes (http://
www.tmt.org):

• PI-directed mode: Classically scheduled blocks of observing
time (generally in units of full or half-nights, but in some cir-
cumstances shorter) will be assigned to PIs or to TMT Partners.
The PIs are responsible for carrying out the observations. Re-
mote observing will be supported.

• Service observing: TMT staff members execute shorter, pre-
defined observations on behalf of PIs in an ordered sequence.
PI eavesdropping will be supported.

There are also other requirements to special assignations:

• Queue scheduling: Initially, TMT will not use observatory-wide
adaptive queue scheduling. However, tools will be provided to
allowadaptive schedulingwithin a PI- or partner-directed block
of observing time. Partnersmay then run their ownqueues. TMT
could implement observatory-wide adaptive queue scheduling
at a future time, depending on the wishes of the partner
communities, but additional staffingwould be required, beyond
what is in the baseline science operations plan.
Fig. 1. Scheduling techniques in observatories.

• Cadence observing: Programs that require monitoring obser-
vations at particular times will be accommodated in the pre-
planned service observing mode.

• Target of opportunity (ToO): There is a TMT policy for cross-
partner ToO interrupts, with detailed accounting for how ToO
observing time is charged to the partners. Typical response time
from trigger notification to ToO observing, including telescope
slew and acquisition time, is expected to be 10–15 min.

Like TMT there are currently two more Extreme Large Tele-
scope (ELT) projects: the Giant Magellan Telescope (GMT) project
(http://www.gmto.org) fully commissioned in 2024, and the Euro-
pean Extremely Large Telescope (E-ELT) project (www.eso.org/e-
elt), which first light is targeted for 2024.

2.2.12. Summary of scheduling techniques
In Mora and Solar (2010) and Colome et al. (2012) it can

be possible to find a summary of the most common scheduling
techniques used in themost important astronomical observatories
and also their interaction between other subsystems are described.
In particular, in Colome et al. (2012) a comparative chart of
the different scheduling techniques for several astronomical
observatories is described to summarize the most relevant
studies related to scheduling applied to astronomy (Fig. 1). In
this comparative chart, the algorithms/solutions included among
astronomical observatories are: Spike, Ant Colony Optimization
(ACO), Dispatcher (Disp), Squeaky Wheel Optimization (SWO),
Dynamic Programming (DP), Evolutionary Algorithm (EA), Tabu
Search (TS) and Simulated Annealing (SA).

There are other studies of astronomical scheduling problem like
the case of the Stratospheric Observatory For Infrared Astronomy
(SOFIA) detailed in Civeit (2013), the Very Large Telescope (VLT)
detailed in Johnston (1988), Colome et al. (2012), Silva (2002),
Gemini observatory that consists on two identical telescope
facilities, one located in northern hemisphere (Hawaii) and the
second one in southern hemisphere (Chile) (a detailed description
of the scheduling system can be found in Puxley (1997)), and so on.

Most astronomical observatories still have some scheduling
phases in which human intervention is necessary. This reveals that
there is a lot of open opportunities to still work in other approaches
to solve this problem in order to have a fully automatized
scheduling tool that optimizes efficiently the observation process
of an observatory and responding efficiently to any unexpected
change that can affect the scheduling process.

3. Solution model

The ALMA scheduling problem is a complex problem with a
huge amount of variables to be considered. Below, some main
variables that affect the ALMA scheduling problem are described
while detailing the respective assumptions taken in account:

http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://ast.noao.edu/system/us-tmt-liaison/survey-faq
http://www.tmt.org
http://www.tmt.org
http://www.tmt.org
http://www.tmt.org
http://www.gmto.org
http://www.eso.org/e-elt
http://www.eso.org/e-elt
http://www.eso.org/e-elt
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1. Antenna-array configurations: ALMA is composed by 66mov-
able antennas of different characteristics which can operate in-
dependently or in collaboration. In collaborative mode, each
antenna can be moved from one place to another according to
the observation requirements, and so each antenna-array can
be more or less convenient for different observation necessi-
ties. In the hardest scenario, to check which antenna array is
best suitable for a specific observation, a combination of 66! ≈

5 × 1092 different antennas’ configuration should be analyzed.
Also, each sub-array canwork independentlymaking feasible to
run in parallel multiple scheduling algorithms at a timemaking
the problemmore difficult than it already is. Avarias (2014) pro-
vides a scheduling algorithm for different array configurations
within an observing season. In this study, only a unique all-
antenna array (working together as a single telescope) is con-
sidered, so the multi-array scheduling problem will not be an-
alyzed in this work (see Avarias (2014)).

2. Unexpected unavailable periods: Some unexpected mainte-
nance periods can appear randomly during the operations of
ALMA and also, other technical failuresmay force the shutdown
of an antenna for a specific period of time. In this work, all the
antennas are assumed to be fully available tomake observations
without any unexpected failure or unavailable periods of time
during the full observational season.

3. Observational season: The observational season is considered
to be a 6 months fully-available period.

4. Time assignment percentages per institution: The time as-
signment percentages are not taken in account. Thatmeans that
all observations are treated equally without any distinction ac-
cording to which institution each observational proposal be-
longs.

5. Observational proposals: Observational proposals are already
known at the beginning of the scheduling process. This means
that some relevant information like their scientific priority
score, Scheduling Blocks and their availability to be executed
in the whole season (using basic information like target avail-
ability in the sky) are also included.

6. Scheduling Block (SB) duration: Every SB has a variable dura-
tion. A SB is themost basic unit that can be executed in the tele-
scope but it does not necessarily mean a unique observation.
Some observations to a specific target need a huge amount of
integration time and therefore, observations are divided in sev-
eral SBs of a given amount of time each. This study considers
that all SBs have a static duration of 30min as an approximation
based on the past experiences in ALMA’s early science program
(Cycle 0).

7. Time discretization: The scheduling model considers a time
discretization with a Time Slot duration of one SB (30 min).

8. Weather conditions:Weather conditions are assumed to be al-
ready known in the short-term period (48 h).

3.1. Formalization of the problem

Considering the previous assumptions and considerations, the
problem can be formalized. In first place, a time horizon H is
defined to represent the total available time of the observation
season of the observatory. A set of n observational projects P =

{P1, . . . , Pn} is defined to represent the accepted observation
proposals that will be scheduled. Each observational project
Pi is composed by a variable set of Scheduling Blocks Oi =

{SBi1, . . . , SBij}.Oi must contain at least one SB and also, a scientific
priority score Si is defined as a value that represents the priority
based on the scientific impact of the observation project.

A set of Time Slots Fij = {TS1, . . . , TSℓ} tells when the SBij is
feasible to be executed (considering only static variables) during
the whole time horizon. Static variables are statically provided at
the beginning of the period and do not vary during the execution.
Some of these static variables are: the number of total projects
to be scheduled, the number of SBs by project, the scientific
priority score of each project, total execution time for each SB, total
period time, long-term time slot duration, etc. Finally, some SBs
may depend on other SBs of the same project. For this reason, a
Scheduling Block SBij may define another Scheduling Block SBij∗ to
establish a precedence constraint which means that SBij∗ must be
executed before than SBij in the telescope.

3.2. Key components of the proposed solution

The proposed solution solves the astronomical scheduling
problem inspired in the ALMA observatory considering the above
described assumptions. The proposed algorithm collects the most
important aspects of some other scheduling models applied in
astronomical observatories proposing to establish a greedy-based
heuristic to optimize as much as possible this complex problem.
In particular, this algorithm is mostly based on the study made
in Mora (2011) in which a dynamic scheduling model based on
priority queues is described to solve theALMA scheduling problem.
In this work, a complete technique is proposed instead of using
priority queue to force the algorithm to get the optimal solution
in each short-term period of the schedule season.

Fig. 2 shows the ALMA dataflow, which describes the lifecycle
of the observation data and also, how the scheduling subsystem is
involved to decidewhich observation should bemade in each lapse
of time.

In the following sections, some main components of the
scheduling solution are described.

3.2.1. Long-Term scheduling process
The proposed algorithm is based in a two-phase scheduling

process because the astronomical scheduling problem can vary
over time due dynamic variables. The first phase is a long-term
schedule process in which SBs are arranged into long-term time
intervals. These long-term time intervals are constructed by a
discretization of the whole season time by trying to set a proper
lapse of time in which SBs are feasible (considering only static
variables) to be executed in the telescope. It is important to remark
that every long-term time slot (LTSi in Fig. 3) must be an exact
multiple of the value of time of TSi.

During the schedule process, whenever something changes
during the scheduling process (i.e. SB was executed in the
telescope, a project concludes or a project is unfeasible), the long-
term schedule process adapts its schedule map. Fig. 3 shows the
relation between LTS and TS, as an example LTS could be a 24 h
window, and TS could be a 30min slot. Each TSk has an x indicating
that the SBij is feasible to be executed in that TSk.

3.2.2. Short-term scheduling process
The second phase in the proposed algorithm is a short-term

scheduling process in which a definitive schedule is calculated for
eachperiod of timeof thewhole observing season. During a specific
short-term period of time, feasible observations that were already
arranged in the long-term phase are introduced to a new schedule
phase in whichmore variables are considered (dynamic variables).
This schedule phase can be treated as a Constraint Satisfaction
Problem (CSP), so several techniques can be used. In this particular
case, a complete heuristic is used to obtain the optimal value of the
objective function used in the scheduling model.

Fig. 4 is an example of how a schedule for a specific lapse of time
is constructed.

3.2.3. Dynamic parameters
One of the main aspects to handle every scheduling solution

oriented to solve the astronomical scheduling problem is to
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Fig. 2. ALMA’s dataflow schema.
Fig. 3. Representation of a long-term schedule.

Fig. 4. Representation of a short-term schedule.

deal with dynamic constraints. Dynamic variables cause that the
problem changes and so, a re-schedule is required to re-calculate a
new proper schedule that considers the updated conditions. Some
of the main dynamic parameters present in this problem are:

1. Weather conditions: Some observations require very specific
ranges of certain weather variables such as: atmosphere
vapor water percentages, temperature, atmosphere opacity,
etc. Those data in general are obtained by an online-forecast.

2. SB precedency: SB precedency does not allow that any SB with
precedence constraint can be executed if its predecessor is still
pending. This condition is constantly updated whenever the
predecessor is executed. Over the time, new opportunities can
arise if any SB gets free of any precedence constraints.

3. Project percentage completion: Considering that the main
idea is to conclude observation projects, it is important to know
the actual status in terms of completion percentage of projects
linked to the SBs that are taken in account for the present
scheduling decision.
4. Derived stochastic data: Probabilities are also useful to take
in account specially in dynamic problems. Information like the
probability that a SB is feasible in the future is also relevant to
take in account for the present decision.

3.3. Mathematical formulation

The scheduling process can be modeled as a CSP problem. The
proposed mathematical formulation for this scheduling solution is
described below.

3.3.1. Parameters and assumptions
1. Total scheduling time of short-term period (h) is discretized

in equal-sized time slots. The size of each time slot must be
as big as possible in order to wrap at least one SB (ℓ). Also
0 ≤ ℓ ≤ h ≤ H .

2. The remaining percentage for the observational project i (Pi) to
be completed is defined as ρi, defined according to Eq. (3). In
mathematical terms, by considering PendingSBs(Pi) as the sum
of SBs of the project Pi that are still pending to be executed, and
totalSBs(Pi) as the sum of all SBs of the project Pi, then:

ρi =
#PendingSBs(Pi)

totalSBs(Pi)
. (3)

3. The future feasibility of a SB j that belongs to a project i is
defined as ϕij and means the probability in which the SB j
will be available in the future. In other terms, by considering
feasibleSlots(SBij, t) = 1 if SBij is feasible in the Long-Term Time
Slot t or zero otherwise, then:

ϕij =


t=τ

feasibleSlots(SBij)

#longTermTimeSlotst=τ (SBij)
. (4)

3.3.2. Variables
• Xijt =


1, If SBj of the project i is executed in the timeSlot t
0, Otherwise

• Yi =


1, If the project i has been completed
0, Otherwise.

It is important to mention that Yi is treated as a soft variable
in the CSP model. This means that Yi will only be present in the
model when a Project Pi is near to be finished (all their SBs are
present in the current short-termperiod, so not necessarily already
executed).
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3.3.3. Model formulation
• Objective functions:

1. Maximize the Scientific Throughput (ST ) or the number of
executed projects with higher scientific priority score Si
defined in Eq. (1) (Eq. (5)).

ST = max


i

Si · Yi. (5)

2. Maximize the effective telescope time utilization of each
short-term period (Eq. (6)). In other way, this can also be
understood as a minimization of the telescope idle time by
choosing the best SBs configuration as soon possible but
also taking in consideration that project completions are
also desirable. This decision tradeoff is set up by benefit
coefficients detailed in Eqs. (7) and (8).

max


i

Bi · Yi +


i


j

hn
t=h0

bijt · Xijt (6)

where:

Bi =
S2i

ρi · totalSBs(Pi)
(7)

bijt =
Si

ρi · ϕijt
. (8)

As an aside, it is important to clarify that the proposed algorithm
optimizes directly Eq. (6) in each short-term period but Eq. (5)
is not explicitly optimized.

• Subject to:
1. Consider only feasible SBs for each project in each TimeSlot

(Remember that Fij is a set of Time Slots indicating when the
SBij is feasible to be executed considering only static variables
during the whole time horizon):

Xijt = 0 ∀t ∉ Fij. (9)

2. The telescope array can only execute one SB in a specific
time:

n
i=1

ni
j=1

Xijt ≤ 1 ∀t ∈ {1, . . . , h}. (10)

3. Precedence constraints between SBs of same project:

Xijt ≤

t−1
τ=1

Xij′τ

∀i = 1, . . . , n; ∀j = 1, . . . , ni; ∀t = 1, . . . , h; (11)

if j′ is a predecessor of j.
4. Each SB is executed at most once:

h
t=1

Xijt ≤ 1 ∀i, j. (12)

4. Analysis and results

The implementation of the proposed solution described in
Section 3 was used to analyze the performance of this algorithm
by investigating the behavior of how different parameters affect
important performance metrics such as the objective function
value or execution time. The results of real scale instances are
presented by detailing the obtained results of the most relevant
performance metrics of the proposed algorithm.
Table 1
Main characteristics of ALMA cycle 0 data.

Number of projects 463
Total number of SBs 950
Number of SBs with precedence 0

Table 2
Main characteristics of ALMA cycle 1 data.

Number of projects 515
Total number of SBs 1379
Number of SBs with precedence 0

The implementation was developed using C++ compiled with
the Clang 500.2.79 under the OSX 10.9 (Unix environment). The
framework IBM ILOG (CPLEX, 2014; Watson and Cacioppi, 2014),
a high performance multipurpose solver which use advanced
techniques to solve MILP problems, was used to implement the
MILP model described in Section 3.3.

4.1. Simulation environment

Considering that ALMA is still under development, there is still
a lack of a consistent volume of real data to analyze the proposed
algorithm. In this way, synthetical instances were generated
looking forward to be as close as real as ALMA’s scheduling data.
It is important to clarify that ALMA is still in early science program
and each operation phase are identified as ‘‘Cycle’’. At date, only
two operation cycles have been completed (Cycle 0 and Cycle 1
of early science program). By using general characteristics of the
scheduling data of each Cycle, real-scale and test-scale instances
were generated to analyze the behavior of the algorithm. The
characterization of each ALMA Cycle are detailed below:

• ALMA Cycle 0 scheduling data: ALMA’s Cycle 0 call for
proposals started on the first quarter of 2011 and operations
began in September of 2011 with approximately 500 h of
telescope time availability (without considering maintenance
periods). The main characteristics about the volume of data of
Cycle 0 ALMA operations are detailed in Table 1.

Also, some main distributions are detailed in Fig. 5.
Distribution (a) shows that in average 84% of the projects have
two SBs, 11% of projects have one SB and the final 5% of projects
have either 3, 4, 5, 7 or 14 SBs. Concerning distribution (b), it
shows that 77, 6% of SBs have 6441 feasible Time Slots and the
rest may have between 0 and 6441 Time Slots or 6441 and 8468
feasible Time Slots distributed in a pseudo-linear way.

• ALMA Cycle 1 scheduling data: ALMA’s Cycle 1 call for
proposals started on May 31st of 2012 and began operations
in January of 2013 with a similar telescope availability time
of Cycle 0 operations. Some of the main characteristics about
the volume of data of ALMA’s Cycle 1 operations are detailed in
Table 2.

The main distributions of ALMA’s Cycle 1 scheduling data
are detailed in Fig. 6. Distribution (a) shows that 34% of total
projects have one SB, 22, 9% have two SBs, 13, 2% have three
SBs, 14% have 4 SBs, 12, 6% have 5 SBs and the final 3, 3% have
between5 and24 SBs. Distribution (b) shows that the Time Slots
and SBs follow a pseudo-linear pattern.

Concerning the composition of the instance files, each instance
is composed by an adapted text file in which the observational
season, observational projects and their specific information are
literally described. In particular, initial SB time availabilities can be
calculated in advance by using information like target coordinates
(RA/DEC) and popular astronomical mathematical procedures and
so, time slots can be generated by splitting all SB feasible times
in equal-sized time lapse of 30 min and later, allocating each
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(a) Distribution of SBs among projects. (b) Distribution of time slots among SBs.

Fig. 5. Main distributions in ALMA Cycle 0 operations.
(a) Distribution of SBs among projects. (b) Distribution of time slots among SBs.

Fig. 6. Main distributions in ALMA cycle 1 operations.
split lapse of time in their corresponding time slot representation.
Also, for simulation purposes, all weather data is intended to be
known in advance so, all feasible Time Slots that not meet weather
constraints are filtered. Finally, SB duration is considered to have a
static length of 30 min.

4.2. Execution parameters

The implementation of the proposed algorithm has a wide
variety of parameters to change the behavior of the algorithm.
CPLEX adds the possibility to modify internal parameters of
the heuristics that are being used, but other parameters linked
specifically to the algorithm can also be modified. The main
parameters that are considered to be modified for the execution
of the algorithm are described below:
• Long Term Time Slot Size (lts): Corresponds to the size of each

long-term TimeSlot used to calculate a long-term schedule.
• Size of Gliding Window (h): Value of the size of the short-term

time window used to calculate every short-term schedule.
• Hop of Gliding Window (s): Corresponds to the value of

executed SBs between each short-term schedule process.
• Limit Time of Each Subproblem: Value of CPLEX time limit of

each subproblem. If a subproblem could not obtain the optimal
solution in the specified time then the best feasible solution is
considered.

• Number of CPU’s: Number of CPU’s used for the parallelization
of the B&C process of each subproblem. By default, all CPU’s are
used.
4.3. Results

This section describes the obtained results by executing the pro-
posed scheduling algorithmusing several real scale instances. Tests
were performed using OSX 10.9 (Unix based) with Clang-500.2.79
compiler (C++) and CPLEX Optimization Studio v12.5 (CPLEX,
2014). About the main hardware characteristics, an Intel Core i7
4850HQ CPU clocked at 2.3 GHz and 16 GB of RAM were used to
run the algorithm.

4.3.1. Instances and configuration
The results of the execution of the proposed scheduling

algorithm using several generated instances divided in two main
scenarios (Scen1 and Scen2) are detailed in Table 3. What
both scenarios have in common is that they allow the study
of the behavior of the algorithm on a projected situation of
ALMA in which the demand to use the observatory is bigger
than the available observation time. Inevitably, a percentage of
observational projects will not be executed (in practice those
projects are transferred to the next season with a higher priority).

Also, scientific priority rank scores were generated using a
standard uniform distribution between 0,0 and 7,0. On the other
hand, the algorithm parameter configuration used to execute all
instances are detailed below:
• Long Term Time Slot Size (lts): 48 [TimeSlots] (24 h)
• Size of Gliding Window (h): 96 [TimeSlots]
• Hop of Gliding Window (s): 48 [TimeSlots per Iteration]
• Limit Time of Each Subproblem: 30 min
• Number of CPU’s: All Available.
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Table 3
Characteristics of real-scale instances per scenario.

Scen1 Scen2

Total observation time (months) 3 6
Number of projects 2.500 5.000
Number of SBs 5.000 10.000
Number of SBs with precedence 0 0

Table 4
Summary of results of scenario 1 instances.

ALMA cycle 0 ALMA cycle 1
Average σ 2 Average σ 2

ST 8591 96.84 8538.2 57.27
η(TS) 99.958% 0.0004 99.949% 0.0003
N.O.S. 0% 0 0% 0

Table 5
Summary of results of scenario 2 instances.

ALMA cycle 0 ALMA cycle 1
Average σ 2 Average σ 2

ST 17259.4 100.22 17198 160.02
η(TS) 99.94% 0.0284 99.89% 0.049
N.O.S. 0% 0 0% 0

Table 6
Execution time for scenario 1 instances.

Cycle 0 Cycle 1
Average σ 2 Average σ 2

ttotal (s) 2032.66 40.20 1622.03 46.98
tShort−Term (s) 22.58 0.44 18.02 0.52

Table 7
Execution time for scenario 2 instances.

Cycle 0 Cycle 1
Average σ 2 Average σ 2

ttotal (s) 13014.36 241.72 10524.60 190.79
tShort−Term (s) 72.30 1.34 58.47 1.05

4.3.2. Obtained results
Using both Cycle 0 and Cycle 1 characteristics, five different

instances were used for each scenario. After executing the
algorithm over all generated instances, a summary of the obtained
results bymeasuring the scientific throughput (ST ) (Eq. (5)) and the
number of Non-Optimal Solutions (N.O.S.) obtained in each short-
term schedule process are detailed in Table 4 for Scenario 1 and
in Table 5 for Scenario 2. Also, the Time Slot Allocation Efficiency
(η(TS)) (Eq. (13)) is detailed on each table to analyze the precision
of allocation of the algorithm.

η(TS) =


1 −

WastedTS
TotalTS − NotUsedTS


× 100% (13)

where WastedTS is the sum of time slots assigned to SBs of
uncompleted projects and NotUsedTS the number of time slots not
used at the end of the schedule process.

Execution times of the algorithm were also measured by not
only considering the total execution time of each instance but
also, the average execution time of each Short-Term schedule. A
summary of the execution time of the algorithmover the described
instances are detailed in Tables 6 and 7 for scenario 1 and 2,
respectively.

Finally, for all test executions, the highest CPU load average
obtained was around 1.97/8 and the average RAM usage was
around 1.28 GB.
Table 8
Main characteristics of instances to evaluate the perfor-
mance.

Total observation time 1 month
Number of projects 500
Number of SBs 1000
SBs with precedence 0 and 640

4.4. Algorithm performance

Some tests to evaluate the performance of the proposed algo-
rithm were made. Considering that the astronomical scheduling
problem is NP-Hard, using real scale instances can take a lot of time
and computer resources to solve, specially when the optimal solu-
tion of the problem is desired to be found. According to the previ-
ous statement, more simple instances were generated in order to
get the optimal solution (using an optimal solver) in a reasonable
time while not getting out of computer resources during the solv-
ing process. In that way, in Table 8 instances used to evaluate the
performance of the algorithm are described.

4.4.1. Objective function
The performance of the proposed algorithm by studying be-

havior of the scientific throughput (Eq. (5)) is analyzed in this
section. To perform the analysis, an optimal solver was imple-
mented to measure the gap between the obtained objective func-
tion value and the optimal solution. The optimal solver was
constructed using CPLEX (2014) with the same constraints de-
scribed in Section 3.3 and defined explicitly in the model the ob-
jective function detailed in Eq. (5).

Considering the optimal values obtained by running all test-
scale instances, the average relative gap (defined in Eq. (14))
between the optimal values and the obtained by different
configurations of h and s parameter are detailed in Fig. 7.

RelativeGap(x) =


x − OptimalValue

x


· 100[%]. (14)

In Fig. 7(a), different values of hwere tested by setting statically
s = 1 and lts = 48, and in Fig. 7(b) different values of swere tested
by setting h = 96 and lts = 48.

4.4.2. Execution times
In this section, the execution time of the algorithm is analyzed.

In the same way as the objective function was analyzed, the total
elapsed time that the algorithm takes to run each instance was
analyzed and detailed in Fig. 8. In Fig. 8(a), the relation of the total
execution time of the algorithm in terms of h is shown by setting
s = 1 and lts = 48 and in Fig. 8(b), different values of swere tested
by setting h = 96 and lts = 48.

Following the same methodology, in Fig. 9 the relation of the
average elapsed time of each short-term schedule process (or
algorithm iteration) with h and s parameters are shown.

4.4.3. CPLEX model attributes
Some specific attributes of the short-term schedule model are

also analyzed. In first place, the total number of CPLEX variables
created to solve each short-term schedule was analyzed using the
same methodology as other analysis in previous sections and the
results are detailed in Fig. 10.

In the same way, the total number of constraints created by
CPLEX to solve each short-term schedule are detailed in Fig. 11.

Finally, the total number of nodes used by CPLEX was analyzed.
In Fig. 12 the total number of nodes are detailed by varying s and h
parameter.
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(a) Varying h parameter. (b) Varying s parameter.

Fig. 7. Average gap from optimal ST (less is better).
(a) Varying h parameter. (b) Varying s parameter.

Fig. 8. Total execution time (less is better).
(a) Varying h parameter. (b) Varying s parameter.

Fig. 9. Average short-term schedule execution time (less is better).
4.5. Analysis of results

According to the results obtained by executing the algorithm
over real scale instances (see Section 4.3.2), some important
observations can be highlighted:
• The algorithm solved real scale instances with a high rate of
time slot allocation efficiency (Eq. (13)) which means only a
few percentage of observation time is wasted because of bad
scheduling decisions in the scheduling process of the algorithm.

• In a real application scenario the scheduling algorithm will run
in an online mode (as Fig. 2 shows) and so, one of the more
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(a) Varying h parameter. (b) Varying s parameter.

Fig. 10. Number of total variables created.
(a) Varying h parameter. (b) Varying s parameter.

Fig. 11. Number of total constraints created.
(a) Varying h parameter. (b) Varying s parameter.

Fig. 12. Number of nodes explored.
important variables is the reaction time of the next schedule
plan for the current short-termperiod. In thatway, the obtained
results show that the reaction time of the algorithm for each
short-term schedule (or re-schedule if any dynamic condition
changes) is around 1 min in the heaviest tests (Tables 6 and 7).
On the other side, a complete schedule simulation took about
an hour in the heaviest test to be completed.
• In all execution tests, non-optimal short-term schedule solu-
tions have not been found. This means that in general schedul-
ing subproblem is not too complex and so, a heavier short-term
schedule configuration can be made in order to optimize even
more the scientific throughput (Eq. (5)).
According to the results obtained by running the algorithmover

test-scale instances (Section 4.4), the following statements can be
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made:

• Average gap between the optimal objective function and
the obtained through running the algorithm with different
configurations (Fig. 7) shows that the best average gap from
the optimal solution was around 7.4%. Also, Fig. 7(b) reveals
that whenever the s parameter increases (letting constant h
parameter) the objective function decreases.

• There is a direct relation between the size of the gliding
window used to solve each short-term schedule problem and
the objective function value. On the other hand, there is an
inverse relation between the hop of the glidingwindow and the
objective function value.

• There is an inverse relation between the size of the gliding
window used to solve each short-term schedule problem and
execution times. In the same way, there is a direct relation
between the hop of the gliding window and the execution
times. Both relations follow a non-linear pattern as might be
expected for an NP-Hard problem type.

• In most cases there is a difference in the results between in-
stances with and without precedence constraints. This differ-
ence reveals that the performed instances with precedence
constraints aremore difficult to solve (in average) due the extra
amount of time needed to execute them, although, this differ-
ence is small.

5. Conclusions

This study has proved that the scheduling problem in astron-
omy is a very challenging problemand there is still enough space to
contribute. Even when the proposed algorithm takes advantage of
some assumptions that simplifies the real problem, this work was
able to produce amathematical model and a prototype implemen-
tation of a scheduling solution that solves successfully a simplified
version of ALMA’s scheduling problem considering projected vol-
umes of demand for the next years.

This scheduling algorithm features a multi-layer model that
performs a schedule process in both long-term and short-term
phases. Also, a time discretization and both static and dynamic
variables are considered in this scheduling model in which
Scheduling Blocks are arranged over the planning time thanks by
a MILP-based solver that performs the core task of the scheduling
process.

The main objectives detailed in Section 1 were accomplished
successfully, while their respective results can be checked as
follow:

1. A list of static and dynamic parameters, and scheduling
constraints of ALMA observatory was researched to build the
proposed scheduling algorithm.

2. A mathematical scheduling model based on a MILP approach to
solve the simplified ALMA’s scheduling problem was proposed
taking in consideration the identified variables, constraints and
assumptions described in Section 2.

3. A prototype of the proposed algorithmwas programmed in C++
using CPLEX framework.

4. ALMA scheduling data of both Cycle 0 and Cycle 1 was
characterized and used to simulate data and test the proposed
algorithm.

5. The results of the gap of the obtained solution from the optimal,
execution times and internal model attributes was presented
by executing synthetical instances over the implementation
prototype.

According to the obtained results we conclude the following:

• Tested instances reveal that the algorithm achieves an accept-
able performance according to the obtained percentages of time
slot allocation efficiency (Eq. (13)) and the relative gap between
the calculated objective function value and the optimal one
(Eq. (14)). Also, results reveal that this gap can be minimized
even more by tuning the algorithm with a higher value of h pa-
rameter.

• Under a real case scenario with the proposed execution
parameters, the implementation of the algorithm takes a
considerable amount of time and resources compared to
other scheduling solutions in the literature. Despite that, the
established parameter configuration was able to solve all real
scale instances in a feasible amount of time without using any
sophisticated hardware environment. On the other hand, this
behavior may be reversed if another parameter configuration is
used (with a possible yield decreasement).

• An aspect that is extremely important in practice is the reaction
time of the algorithm if a re-schedule is needed due to any
changes in the current conditions that affect the scheduling
process. In that way, the results showed that the proposed
algorithm needs about a minute for a re-schedule in the worst
case tested (considering the used parameters and instance
scales).

• Instances with precedence constraints took more time to be
solved than those without precedence constraints. At some
point it should not be strange that this relation can be
inverted due the well known statement in complexity theory
about the relation between the number of constraints and the
complexity of a problem. Unfortunately, this last behavior was
not evidenced in the performed tests.

Finally, this work provides an algorithm solution that can be
improved and also motivates to continue researching in more
algorithms and heuristics applied to the scheduling in astronomy
in which there is a huge field that is still uncovered.
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