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a b s t r a c t

Inmolecular clouds, stars are formed fromamixture of gas, plasma anddust particles. The dynamics of this
formation is still actively investigated and a study of dust coagulation canhelp to shed light on this process.
Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its
properties and its suitability for numerical validation. The crucial step is in our reinterpretation from
its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski
coagulation equation. This opens up the possibility of exploiting previous results in order to prove the
existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution.
Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-
linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is
demonstrated that there is an exact numerical agreement with the initial discrete model, with improved
accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The matter which fills the space between the stars consists
of rarefied gas, small dust particles – the so called interstellar
medium (ISM) – magnetic fields and background radiation. While
dust accounts only for a small part of the total mass of the ISM
(∼1% (Spitzer, 1954)), its presence is of the utmost importance
as its absorption and scattering (mainly at ultraviolet and optical
wavelengths) and its (re-)emission (mainly in (far) infrared
wavelengths) of incoming radiation provides the possibility to gain
detailed knowledge of the ISM. Furthermore, as demonstrated in
coupled gas–dust simulations of well-observed shear flow regions
in the Orion nebula, performed in Hendrix et al. (2015), dust can
influence the dynamics of the ISM, leading to the formation of
observable structures in molecular cloud environments, in which
stars and planets are ultimately formed. From recent observational
data it is known that in molecular clouds, dust grains can reach
micrometre scales (Pagani et al., 2010; Steinacker et al., 2010),
becoming much larger than their typical size in the diffuse ISM
∼250 nm (Kim et al., 1994). By using adequate models of grain
coagulation and accretion to simulate growth of dust grains in
molecular clouds, one can try to understand the environment in

∗ Corresponding author.
E-mail address: paola.paruta@epfl.ch (P. Paruta).

http://dx.doi.org/10.1016/j.ascom.2016.05.002
2213-1337/© 2016 Elsevier B.V. All rights reserved.
which grains grow to a substantial size, and on which time scales
such growth is to be expected. In combination with observations,
this allows an estimation of the life expectancy of a molecular
cloud, and can even provide insight into the typical time scales of
star formation processes (Hirashita and Li, 2013).

The role of dust coagulation is also important in protoplanetary
disks, and in that context, it has been investigated intensely
in the last decade. We limit ourselves to discuss a selection of
findings that are likely also relevant for dense molecular cloud
cores. Dust evolution in terms of its particle size distribution
and its tendency to settle towards the midplane of a (quiescent
or turbulent) protoplanetary disk was studied by Nomura and
Nakagawa (2006), for the case of the solar nebula. The authors
solve a coagulation equation (their Eq. (12)) that includes a vertical
mass transport term of interest for dust settling in protoplanetary
disks, and use it to obtain dust size distributions as a function of
time and disk height at the orbits of Earth, Jupiter or Neptune.
The main finding was that a gravitationally unstable layer of dust,
with particles up to centimetre sizes, can form at distances 1–30
AU in a quiescent disk. Ormel et al. (2007) also investigated the
solar nebula case, and used a Monte Carlo approach to, in essence,
avoid the direct numerical integration of the collision/coagulation
model expressed by an (extended) Smoluchowski equation (their
Eq. (20)). Using Monte Carlo traces growth of individual particles
directly, and can recover the evolution of the particle size
distribution function, when binning over particle masses. In the
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protoplanetary disk context, it was found that the collisional
evolutions are influenced by the coupling between dust and gas
motions, depending intricately on the internal structure of the
grains (in particular, on their porosity). In the present paper, we
will discuss equivalent ways to handle the direct integration of the
Smoluchowski equation, inspired by the work by Hirashita (2012).

Mathematical models for grain–grain interactions have been
improved in the last decade, and Hirashita’s work in Hirashita and
Yan (2009), Hirashita (2012) and Hirashita and Li (2013) presents
discrete models for coagulation, accretion and fragmentation of
dust, whilst keeping the dust decoupled from the gas dynamics.
Focusing only on coagulation, the purpose of this paper is
to validate the discrete model in Hirashita (2012), study its
properties, and propose a different numerical implementation
adapted to improve the coupling with gas dynamics. The crux
of the study is the relationship identified with the well known
Smoluchowski equation, introduced first in 1916 Smoluchowski
(1916) andwidely studied since. This result is obtained by deriving
the continuous form of the discrete coagulationmodel in Hirashita
(2012), which yields the Smoluchowski equation with a specific
kernel.

The role of the Smoluchowski equation in coagulation and
porosity evolution of dust species in protoplanetary disks is
exploited fully in Okuzumi et al. (2009), where the distribution
function of aggregates, whose evolution is governed by a
Smoluchowski equation (their Eq. (1)), was allowed to depend on
both mass and volume of the dust aggregates. A so-called volume-
averaging procedure rephrases attention to evolution equations for
the moments of the distribution function. In doing so, one needs a
suitable truncation to circumvent the problem that this procedure
introduces ever higher order moment dependences. In our work,
we will use a simple dust coagulation model and demonstrate
clearly the various equivalent means to formulate it discretely or
continuously, and show the advantages of using a conservative
formulation. This is needed in preparation for fully dynamic
gas–dust evolutions, which simultaneously handle evolving dust
size distributions. Once more, protoplanetary studies by Birnstiel
et al. (2010) already made progress in handling the coupled gas
plus dust evolution consistently, where a time-dependent viscous
disk is incorporated as far as its radial dependences are concerned.
In Birnstiel et al. (2010), the governing Smoluchowski equation
was vertically integrated, using Gaussian kernels to handle some
of the involved integrals analytically. A flux-conserving donor-cell
scheme was then used to numerically integrate the set of two
advection–diffusion equations for the surface densities of gas and
dust species, togetherwith the vertically integrated Smoluchowski
equation.

The computational cost of correctly simulating dust in full
3D dynamical models (i.e. not relying on vertically integrated
prescriptions) is considerable, as dust grains are highly diverse and
have complex compositions and morphologies. Most importantly,
they cover a size distribution range which spans more than
ten orders of magnitude in locations such as protoplanetary
disks (Testi et al., 2014). Only few numerical simulations have
taken the effect of dust into account, and those that do have made
simplifying assumptions: e.g. the works of Saito (2002), Miniati
(2010) and Laibe and Price (2012) used a two-fluid approach in
which only one discrete dust size is considered, while the work
by Hendrix and Keppens (2014), Hendrix et al. (2015) and Hendrix
and Keppens (2015) adopted a fixed size distribution for all times,
where individual grain size bins do not communicate through
coagulation or shattering processes, but where each size bin is
coupled dynamically to the gas as a pressureless fluid subject
to (size-dependent) drag-forces. This approach was pioneered
in protoplanetary disk studies in Paardekooper and Mellema
(2006). In an early study of protoplanetary disks, a 2.5D (axially
symmetric) model by Suttner and Yorke (2001) did explore the
coupling of gas with dust using up to 30 dust size bins, and showed
the importance of dust coagulation in the first 1000 years of the
protostellar accretion disk.

The outline of this paper is as follows. Since we focus on a
specific model as studied in discrete form by Hirashita and Li
(2013), Hirashita (2012) and Hirashita and Yan (2009), we opt
to summarise Hirashita’s work as presented in Section 2. The
corresponding continuous model is derived in Section 3. The
properties of the model are then studied in Section 4, where the
existence of a unique mass conserving solution is proven, relying
heavily on existing literature on the Smoluchowski equation. In
Sections 5 and 6, a continuously conservative alternative form is
outlined, together with its finite volume approximation, following
the work in Filbet and Laurençot (2004). Ultimately, the initial and
the modified numerical models are compared in Section 7.

2. The discrete model

This section focuses on the discrete coagulation model by Hi-
rashita (2012), which describes how dust grain size distribution
n evolves in time, in dense cores of molecular clouds. Discarding
the spatial dynamics; which would require a coupling with the
gas dynamics; it is possible to write the distribution as a function
n(a, t) only of particle size a and time t . In the discrete model used
in Hirashita (2012), n is hidden in the discrete variable ρi which
represents the mass density of all grains with mass in the range
[mi−1/2,mi+1/2]:

ρi(t) =

 mi+1/2

mi−1/2

n̂(m, t)mdm ∼ n̂(mi, t)mi[mi+1/2 − mi−1/2], (1)

where n̂(m, t) is the number density as a function of the grain
massm instead of the grain size, which is related to n(a, t) through
dNgr/V = n(a, t) da = n̂(m, t) dm, where Ngr(t) is the total
number of dust grains at time t in a volume V . The index i ranges
from 1 to N , with N the total number of dust bins in the discrete
model such that∪i(mi−1/2,mi+1/2) covers the total interval of grain
masses considered.

The discrete model for dust coagulation taken from Hirashita
(2012) reads:

ρn+1
i − ρn

i

∆t
= −Q−

+ Q+, (2)

at the left hand side, an explicit Euler scheme is used for the time
evolution of the discrete variable ρi and the superscript index n
(here, n is not the grain size distribution anymore) accounts for the
time discretisation. At the right hand side, Q− represents the loss
term of the ith bin, due to the coagulation between grains in the
ith bin and all grain sizes. Q+ instead is the gain term of the ith bin,
given by all the interactions between smaller grains that give rise
to grains of ith mass. These terms are all evaluated at time level n
(explicit) and characterised as follows

Q−
= miρi

N
l=1

αliρl, (3)

Q+
=

N
j=1

N
l=1

αljρlρjmlj
coag(i). (4)

In the expressions, αlk is a weight matrix:

αlk =
σlkvlk

mkml
. (5)

Here, σlk = π(al + ak)2 is the cross section, note that the sizes
al, ak can be seen as function of grain mass m, since the grains are
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Table 1
The table groups all the parameters necessary for the code, from right to left, in the first line: gas temperature, hydrogen number density,
hydrogen atomic mass (u = 1.660538921 × 10−24 g), mass density of silicate grains, mass dust to gas ratio and the mean molecular
weight. The bottom rowmentions minimal grain size, maximal grain size for the initial distribution, maximal grain size considered for the
simulation, and the total time simulated. For reference, the free-fall time and a year expressed in seconds are also listed. All the parameters
are in accordance with (Hirashita and Li, 2013).

Tgas [K] nH [cm−3] mH [u] ρgr [g cm−3] R µ

10 10 × 105 1.00749 3.3 0.01 1.4

amin [cm] amax [cm] atop [cm] Tmax tff [yr] yr [s]

3 × 10−7 2.5 × 10−5 1.2 × 10−3 10tff 1.38 × 105 31556926
considered spherical,1 thereforem = (4/3)πρgra3 where a typical
constant grain density is ρgr . The quantity vlk stands for v(al, ak),
which is the magnitude of the relative velocity between particles
k and l. Computing the relative velocity of two particles when
space is not taken into account requiresmodelling. The assumption
Hirashitamakes is that particles do notmove in a specific direction
and therefore the incident collision angle θ between two particles
is random:

v(ai, aj) = (v(ai)2 + v(aj)2 + 2v(ai)v(aj) cos θ)1/2. (6)

Such formulation introduces stochasticity in the model, cos(θ)
in the above equation is in Hirashita and Li (2013) taken from
a realisation of a uniform distribution in [−1, 1] (which should
reflect the process of randomly choosing the angle in three
dimensions). From Appendix A of Ormel et al. (2009), the particle
velocity is written in Hirashita and Li (2013) as a function of the
size through

v(a) = Ca1/2, (7)

which follows from the full dependence

1.1 × 103


Tgas
10 K

 1
4


nH

105 cm−3

−
1
4

×


ρgr

3.3 g cm−3

 1
2


a
0.1 µm

 1
2

cm s−1

under the assumption of constant gas temperature Tgas, number
of hydrogen atoms nH and typical grain density ρgr (listing
typical values in the denominators, our Table 1 groups all
parameter values we used in further computations). Note that this
expression for the particle velocities as function of size and other
thermodynamic parameters relates to the intermediate velocity
regime, whereas in reality the relative velocities between two
particles in turbulence will depend on the ordering between the
particle friction times (relating to the coupling between the gas
and the dust) and the (turbulent) eddy turn-over time (Ormel
et al., 2009, and references therein). Here we again make specific
simplifying assumptions, e.g. also assuming spherical grains that
behave as compact spheres.

The last term in (4),mlj
coag(i), takes into account the fact that the

gain term describes interaction between two grains ofmassmj and
ml such that the resulting grain is of massmi. Hencemlj

coag(i) = ml
if mi−1/2 < mj + ml < mi+1/2, and zero otherwise. Hirashita’s
model in Hirashita and Li (2013) considers three possible scenarios
called the standard silicate model, the sticky coagulation model
and the maximal coagulation model, which differ by the cross
section σlk and the presence of a threshold for the relative velocity
vlk, above which no coagulation occurs. The equations reported

1 The cross section expression stated here adopts a perfect sticking efficiency and
is purely geometrically determined. It is conceivable to relax this assumption, as
well as the one on the grains being purely spherical.
above correspond to the sticky coagulation model, chosen because
it is consistent with molecular cloud physics where grains are
ice-coated (sticky) and therefore the velocity threshold can be
neglected.

3. From discrete to continuous

The following contains a mathematical derivation step by step
of the continuous form of Eq. (2), for a better understanding of the
model and its properties. The left hand side of Eq. (2) can be seen
as dρi(t)

dt , and using Eq. (1) it follows:

d
dt

 mi+1/2

mi−1/2

mn̂(m, t)dm = −Q−

sc + Q+

sc . (8)

The loss term Q−
sc (where sc stands for semi-continuous approxi-

mation), obtained by using Eq. (1) in the expression for Q−, reads:

Q−

sc =

 mi+1/2

mi−1/2

mn̂(m, t) dm


∞

0
σ(mi, m̄)v(mi, m̄)n̂(m̄, t) dm̄. (9)

A semi-continuous expression for Q+
sc is slightly more complicated

to derive. From Eq. (4), mlj
coag(i) can be substituted with ml as long

as the sum over l is restricted to those grains whosemassml added
tomj belongs to the ith bin. When Iij denotes such set, it is possible
to write:

Q+

sc =

N
j=1

ρj


l∈Iij

vljσlj

mlmj
ml

 ml+1/2

ml−1/2

m̃n̂(m̃, t)dm̃. (10)

The sum over l can be re-written as an integral2 from mi−1/2 − mj
to mi+1/2 − mj (withmj smaller thatmi+1/2):

Q+

sc =

i
j=1

ρj

 mi+1/2−mj

mi−1/2−mj

v(m̃,mj)σ (m̃,mj)

mj
m̃n̂(m̃, t) dm̃. (11)

The same can be done with ρj and the sum over j:

Q+

sc =

 mi+1/2

0
m̄n̂(m̄, t)

×

 mi+1/2−m̄

mi−1/2−m̄

v(m̃, m̄)σ (m̃, m̄)

m̄
m̃n̂(m̃, t) dm̃


dm̄. (12)

Note that the relative velocity and the cross section are now
considered as functions of the particlemass, withρgr the (constant,
species-specific) mass density of the grain. The cross section σ
reads:

σ = π(a + ā)2 = π


3

4πρgr

2/3

(m1/3
+ m̄1/3)2, (13)

2 Note thatwe do not assume that all bins have equal lengths here, but do assume
that they do not overlap. We simply rewrite the discrete summations to integral
form.
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while the resulting expression for the velocity is explicitly:

v(m) = C


m

4
3ρgrπ

1/6

= C̃m1/6. (14)

C̃ is constant and its unit measure is [cm s−1 g−1/6]. Note that
this expression is specific for the simple turbulence model we
adopted here, and more sophisticated parametrisations have been
put forward, e.g. in Yan et al. (2004) where magnetic field induced
anisotropy due to magnetohydrodynamic processes for charged
dust grains were analysed.

In a continuous setting, the relative velocity cannot be
computed through a stochastic process; it would mean doing an
infinite number of realisations and it would lead to discontinuous
functions which are mathematically impossible to integrate.
Of course, by numerically computing the integral, the desired
stochasticity could be reproduced. Nonetheless, a deterministic
model is preferable and therefore the idea is to look for an upper
and lower bound for analysing the relative velocity instead. The
maximal relative velocity is reached when the two particles hit
frontally (cos(θ) = −1):

vmax(m, m̄) = C̃(m1/6
+ m̄1/6). (15)

On the other hand, the lowest relative velocity is obtained when
the particles aremoving (almost) parallel to each other in the same
direction (cos(θ) = +1):

vmin(m, m̄) = C̃ |m1/6
− m̄1/6

|. (16)

The final step from semi continuous to fully continuous is carried
out by dividing by ∆mi = mi+1/2 − mi+1/2 and taking the number
of bins to infinity (∆mi → 0).

lim
∆mi→0

1
∆mi

d
dt

 mi−1/2+∆mi

mi−1/2

mn̂(m, t) dm

= lim
h→0

1
∆mi

(−Q−

sc + Q+

sc ). (17)

Since the length of the ith interval goes to zero in this limit
process, the ith bin boundaries mi−1/2 and mi+1/2 as well as the
representative bin mass mi all attain the same value, that can be
simply identified with m. The resulting equation, after evaluating
the limit, is:

∂

∂t
n̂(m, t) = −Q−

c + Q+

c ,

Q−

c = n̂(m, t)


∞

0
σ(m, m̄)v(m, m̄)n̂(m̄, t) dm̄,

Q+

c =

 m

0

m − m̄
m

σ(m − m̄, m̄)v(m − m̄, m̄)

× n̂(m̄, t)n̂(m − m̄, t) dm̄, (18)

where v(m, m̄) is given by either Eq. (15) or Eq. (16). Since themass
m is not time dependent, both sides have been divided bym.

The gain term can be further simplified exploiting the
symmetry of σ and v, with a change of the integration variable
from m̄ to m − m̄:

Q+

c =

 0

m
−

m̄
m

σ(m̄,m − m̄)v(m̄,m − m̄)

× n̂(m − m̄, t)n̂(m̄, t) dm̄. (19)

Physically this is simply a change in perspective, there are two
particles merging in a particle of size m and it does not matter
which of the two is considered. By adding the two formulations for
Q+
c and dividing by two the mass fractions sum to unity. Eq. (18)

can hence be written with the following notation:

∂

∂t
n̂(m, t) = −n̂(m, t)


∞

0
K(m, m̄)n̂(m̄, t) dm̄

+
1
2

 m

0
K(m − m̄, m̄)n̂(m̄, t)n̂(m − m̄, t) dm̄, (20)

with K(m, m̄) = σ(m, m̄)v(m, m̄) and the integral over the mass
of the grains limited to the range of interest. This is thewell known
Smoluchowski equation for coagulation, firstly introduced in 1916
in Smoluchowski (1916). All kinds of different physical processes
can be reproduced only by changing the kernel K(m, m̄) in Eq.
(20). As a consequence, the kernel is what requires most of the
modelling effort. The idea behind the equation, in itself, is simple:
the rate of change in the grain distribution (∂t n̂) of particles with
massm (size can be used instead), is due to the difference between
m particles created by two smaller onesmerging ({m̄}+{m−m̄} →

{m}) and m particles depleted due to their coagulation into bigger
grains ({m} + {m̄} → {m + m̄}).

To avoid confusion, the different reformulations for the
coagulation model are grouped in Table 3, where in addition
to the discrete initial form and the newly derived continuous
one, the conservative formulation and its numerical interpretation
(presented in the upcoming Sections 5 and 6) are also gathered.

4. Analytical properties

In Dubovskiǐ (1994) Dubovskiǐ presents conditions for the
kernel and the initial condition that allow for the existence and
uniqueness of mass conserving solutions for the Smoluchowski
equation enriched with a fragmentation term. The mathematical
analysis in Filbet and Laurençot (2004) summarises the hypothesis
and proof in case of pure coagulation. If the kernel respects the
so called mild growth condition (mathematically, this condition
expresses that the kernel behaves sublinearly, physically it is
important to have limited growth for larger and larger mass
ranges),

K(m, m̄) ≤ A(m0 + m + m̄), (m, m̄) ∈ R2, (21)

for some A > 0 and reference massm0, and the initial distribution
is such that:

n̂(m, 0) ∈ L1(R+; (m0 + m)dm), (22)

then it can be proven that Smoluchowski equations have a unique
mass conserving solution. The requirement on the initial condition
means that

∞

0
n̂(m, 0)(m0 + m)dm (23)

has to be finite. It is not hard to verify whether (21) and (22) are
satisfied with Hirashita’s kernel and initial conditions. The kernel
is:

K(m, m̄) = v(m, m̄)σ (m, m̄) ≤ vmax(m, m̄)σ (m, m̄). (24)

Gathering Eqs. (13) and (15) together, the following inequality for
the kernel holds:

K(m, m̄) ≤ Ĉ(m1/3
+ m̄1/3)2(m1/6

+ m̄1/6)

≤ A(m0 + m + m̄) (25)

for some A in R, hence Eq. (21) is verified. Here Ĉ contains the
product between (3

√
π/4ρgr)

2/3 and C̃ .
Verifying the initial condition is a bit more delicate. Typically

in the study of dust growth, the initial condition of the size
distribution is chosen to follow n(a) ∝ a−3.5 as was determined by
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observations of the ISM (Mathis et al., 1977 and Kim et al., 1994).
Thus;

n(a, 0) =
D

(a0.5max − a0.5min)
a−3.5, a ∈ (amin, amax) (26)

with D a normalising dimensionless constant derived as a function
of ρ(0), by plugging n(a, 0) in the equation for ρ (cfr. Eq. (1)):

ρ(0) =
8
3
πρgr

D
(a0.5max − a0.5min)


a0.5

amax
amin

. (27)

This then gives D = 3ρ(0)/8πρgr . Finally, the initial dust mass
density ρ(0) is determined using the dust-to-gas mass ratio R =

0.01 (Ormel et al., 2009):

ρ(0) = RµmHnH (28)

where mH is the hydrogen atom mass and µ is a dimensionless
parameter, namely the atomicweight per hydrogen, set to 1.4 here.
In Eq. (28) the hydrogen number density is written as nH . The value
of nH is a parameter often used to classify molecular clouds. Here
we use 105 cm−3, a value typical for dense molecular cloud cores.
The initial condition for the grain size distribution can be written
as function of grain mass:

n̂(m, 0) =
D

(a0.5max − a0.5min)

a−5.5

4πρgr

=
D

(a0.5max − a0.5min)


1
3

 11
6

(4πρgr)
5
6 m−

11
6

= Cinm−11/6, mmin < m < mmax. (29)

Hence, condition (22) is verified since n̂(m, t) is not negative and
its integral with measure (m0 + m)dm is finite, being the integral
of a continuous function on the limited set (mmin,mmax). The above
reasoning could be also repeated for different assumptions on the
initial power law size distribution n(a) ∝ a−γ . In conclusion, given
the problem:

∂

∂t
n̂(m, t) = −n̂(m, t)


∞

0
K(m, m̄)n̂(m̄, t) dm̄

+
1
2

 m

0
K(m − m̄, m̄)n̂(m̄, t)n̂(m − m̄, t) dm̄, (m, t) ∈ R2

+

n̂(m, 0) = Cinm−11/6
1(mmin,mmax), m ∈ R+ (30)

a unique mass conservative solution n̄(m, t) exists, which satisfies
Eq. (30) ∀(m, t) ∈ R2

+
. In Eq. (30) K(m, m̄) is the kernel in deter-

ministic form computed with either the maximum or minimum
relative velocity from Eqs. (15)–(16).

5. Conservative formulation

Following the approach of Filbet and Laurençot (2004), the
Smoluchowski coagulation equation is now rewritten in its
conservative hyperbolic formulation:

m ∂t n̂(m, t) = −∂mJ(n̂)(m, t),

J(n̂)(m, t) =

 m

0


∞

u−m
un̂(u)n̂(v)K(u, v) dv du

n̂(m, 0) = Cinm−11/6
1(mmin,mmax), m ∈ R+ (31)

which is suited for codes designed to solve hyperbolic equations.
This conservative formulation is equivalent to the Smoluchowski
set of Eq. (30) multiplied by m, the equivalence of which can be
Fig. 1. Visual scheme to show mbi,k subinterval. (mi+1/2 − mk,mbi,k+1/2) is the
integration domain of Bi,k and mbi,k+1/2 is the beginning of the integration domain
for Akj .

shown by recursively applying the general relation

∂x

 g(x)

h(x)
f (x, y)dy = f (x, g(x))g ′(x) − f (x, h(x))h′(x)

+

 g(x)

h(x)
∂xf (x, y)dy, (32)

to the RHS of the first equation in (31).
In Filbet and Laurençot (2004), another proposed change

of function variable for a more direct observation of mass
conservation is made. Since mass variable m does not depend on
time, it can be brought inside the partial time derivative in Eq.
(31), allowing for a change in variable, from n̂(m, t) to g(m, t) =

mn̂(m, t) and the problem reads:

∂tg(m, t) = −∂m

 m

0


∞

m−u
K(u, v)g(u)

g(v)

v
du dv, (33)

g(m, 0) = mCinm−11/6
1(mmin,mmax), m ∈ R+.

Mass is conserved if ∥g∥L1 is constant in time.
Eq. (33) is collected in Table 3 together with the previous two

formulations.

6. Numerical method

For the validation of themodel aMATLAB codewas constructed.
Following Filbet and Laurençot (2004) a finite volume approach
was applied, leading to the numerical problem:

∂tgi(t) = −
1

∆mi


Ji+1/2(t) − Ji−1/2(t)


∀i = {1, . . . ,N}, ∀t > 0

(34)

g0
i = 6

Cin

∆mi


m1/6

1(mmin,mmax)

mi+1/2
mi−1/2

, ∀i = {1, . . . ,N}

with ∆mi mass interval and flux at the boundary

Ji+1/2(t) =

i
k=1

∆mk gk(t)

Bi,kgbi,k(t) +

N
j=bi,k+1

Akjgj(t)

 . (35)

Even though in the analytical expression (33), m ∈ R+, for
the code implementation an upper bound of the computational
domain, mtop, has to be chosen. Given the initial distribution
with support (mmin,mmax) (the values used in the code are
(9.5 × 10−21, 9.5 × 10−12) g), a conservative upper value mtop is
selected such that no larger grains are formed in the time range
considered (since only coagulation is considered, the grains mass
will become larger and largerwith time). Eventually an appropriate
computational domain (mmin,mtop) is chosen and then divided
into N subintervals, indexed by i. The meaning of the index bi,k
(appearing as index for some termswithin the brackets of Eq. (35))
is represented in Fig. 1. The matrix A and the vector B (at fixed
index i) are

Akj =

 mj+1/2

mj−1/2

K(mk, v)/v dv, (36)

Bi,k =

 mbi,k+1/2

mi+1/2−mk

K(mk, v)/v dv. (37)
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For the time derivative, an explicit Euler scheme is chosen, with
a time step stability constraint relaxed with respect to the one
proposed in Filbet and Laurençot (2004), to the expression

∆t


supi,n g

n
1

 m1+1/2

m1

K(mi,m)

m
dm

+

N
k=2

gn
k

 mk+1/2

mk−1/2

K(mi,m)

m
dm


< 1. (38)

In the Appendix the analytical proof of this relaxation is shown
in detail. The practical effect is that the upper limit for the
time step goes from 12 h to 105 years, on a simulation of the
order of 106 years, which means going from 108 to just 10–20
time iterations. One can also verify the stability of the method
with numerical experiments using different timesteps, and all our
numerical results adopted this constraint.

Finally, for the boundary conditions, the underlying assumption
is that g is zero form < mmin, since through coagulation the grains
can only grow bigger, moreover no grains bigger than mtop are
created and therefore g is again zero for m > mtop. The latter can
be verified by numerically computing the outflow flux JN+1/2.

Eq. (35) is the last reformulation for the coagulation model to
appear in Table 3.

7. Numerical results

The coagulation model by Hirashita has been presented, its
continuous formulation has been derived and analysed from
a mathematical point of view and ultimately rewritten in a
conservative form, following the work of Filbet and Laurençot
(2004). The core of all models is the Smoluchowski coagulation
equationwith a particular kernel to describe the specific physics of
the phenomenon. Two possible numerical implementations were
also presented, one is the initial discrete model itself, the other has
been derived from the conservative formulation in the previous
section. Hereafter the two methods implemented in MATLAB are
tested and compared. Theywill be referred to as the discretemodel:

ρn+1
i − ρn

i

∆t
= miρi

N
l=1

αliρl +

N
j=1

N
l=1

αljρlρjmlj
coag(i),

ρ0
i = Cinm

−5/6
i ∆mi,

(39)

and the conservativemodel:
gn+1
i = gn

i −
∆t
∆mi


Jni+1/2 − Jni−1/2


,

g0
i = 6

Cin

∆mi


m1/6

1(mmin,mmax)

mi+1/2
mi−1/2

.
(40)

Both have cell (grain size bin) index i = {1, . . . ,N} and time levels
indicated by n = {0, . . . ,M − 1}. The two models differ in their
unknowns, since the discrete one controls the evolution of the total
dust mass density contained in each bin (ρi), whereas the other
looks at the average dust mass density gi of the ith bin:

ρn
i = n̂(mi, tn)mi∆mi, gn

i =
1

∆mi

 mi+1/2

mi−1/2

n̂(mi, 0)midm. (41)

Therefore, a quantity that allows to compare the codes directly is
the total volume/mass occupied by the bins,

f ni = a4i
n(ai, tn)

nH
=

9m2
i

4πρgr

n̂(mi, tn)
nH

. (42)
Fig. 2. Simulation with stochastic kernel, obtained using N = 128 and dt = 10 yr,
showing the time evolution of f (a, t).

The parameters used to match values typical for molecular clouds
are listed in Table 1. The size of the grains is discretised with an
exponential grid:

ai+1/2 = ai−1/2δ, ai =
ai+1/2 − ai−1/2

2
, i ∈ {1, . . . ,N}. (43)

Where a1/2 = amin in order to treat the initial left boundary
layer, δ = (atop/amin)

1/N and, as a result, aN+1/2 = atop. The
respective quantities for the mass are obtained with the relation
m = (4/3)πρgra3.N can be chosen arbitrarily, and here it will take
one of the values {8, 16, 32, 64, 128}, while the results in Hirashita
and Li (2013) use N = 128.

Forwhat concerns the time, the typical scale is the free-fall time
tff which is the time within which the molecular cloud collapses
under its own gravitational attraction if no other forces exist to
oppose the collapse,

tff =


3π

32GµmH nH
= 1.38 × 105 yr, (44)

with G the gravitational constant. The typical setup is run up to
10tff, with a time step that ranges from 10 to 100 years.

7.1. Validation of the code

Validation of the code is not straightforward. The matching
with Hirashita’s results should be the starting point, but with
the continuous formalism the stochastic process was substituted
with the maximum or minimum relative velocity, and therefore
the results are not directly comparable. To solve this issue,
the discrete code is initially run with the stochastic kernel and
this is shown in Fig. 2. This matches Hirashita’s results in a recent
erratum (Hirashita and Li, 2014), which reports the corrected
simulations of Hirashita and Li (2013). In the remainder of this
paper, the deterministic maximum and minimum kernel will
always be used in the discrete model, and will be referred to as
Hmax,min.

7.2. Comparing the discrete and conservative cases

At this point the discrete code is run with the maximum and
minimum kernel, to be compared with the results obtained with
the conservative code. When the resolution is high, i.e. the size
refinement goes up to N = 128 and the time step is small
(100 years or less), the output of the two codes overlap both
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Fig. 3. Overlap in the results from discrete (in colour with solid line)
and conservative (black dotted line) codes at four different times in the evolution.
The outputs are for minimum (top) and maximum (bottom) kernels. N = 128,
dt = 100 yr. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

for the minimum and the maximum kernel (see Fig. 3). It is
interesting to notice from an astrophysical point of view that with
the maximum kernel above 10tff the peak of the mass distribution
is at 1 µm, which means that 1 µm grains constitute the majority
of the mass. A similar distribution would be consistent with the
coreshine phenomenon observed in molecular clouds, where stars
are formed.

To gain confidence in the models and understand better how
the time step and the number of bins influence the results, the
numerical convergence is studied by testing various settings.

7.3. Time convergence

An estimate of the relative error is done to compare the time
convergence performances. The exact solution is approximated
with the most refined result computed (dt = 10 yr, N = 128),
namely

errdt =
∥fdt − f10∥2

∥f10∥2
=


N
i=1

(f dti − f 10i )2dai

1/2


N
i=1

(f 10i )2dai

1/2 , (45)

where the suffix 2 indicates the L2 norm. In Table 2, the errors at
t = 10tff are reported for the two codes and both kernels, high-
lighting that the code is very stable in time and the performance
Fig. 4. First order time convergence. The relative errors of Table 2 for maximum
kernels are plotted in a logarithmic graph, the linear behaviour confirms the explicit
Euler scheme accuracy.

of the conservative code for the maximal velocity is almost one or-
der of magnitude better than the discrete one. By representing the
values with a logarithmic plot (Fig. 4 for maximal kernel), the first
order convergence given by the explicit Euler method is recovered
for both models. Obviously, one may now extend the temporal ac-
curacy in standard ways (using multistep approaches), but this is
left for future work. Second order accuracy has e.g. been shown for
the conservative method in Filbet and Laurençot (2004).

7.4. Changing number of bins

With the aim of expanding these equations to the scenario
where space dependence is also taken into account (for example
as part of a full fluid simulation), avoiding excessive computational
cost is important, and testing the code for coarser grids is essential.
A high number of bins does not only bring additional cost to solve
the coagulation process, but has a great impact on the dust to gas
coupling as well as when the resulting aim is to add dust growth to
the dynamical simulations. It is therefore important to have good
numerical behaviour even when the grid is coarse.

As can be seen in Fig. 5, the conservative model is quite robust
for low number of bins, while the output of the discrete one for
N = 8 and N = 16, does not resemble the desired profile.
More quantitatively, along the lines of what was done for the time
convergence, it is possible to estimate the error in the L2 norm.
The numerical computation is complicated by the fact that the grid
discretisation changes and there is no unique N in Eq. (45). To
overcome this problem, the final distributions are projected on a
finer grid (N = 1000) and Eq. (45) is used with N = 1000, the
exact solution is now approximated with the final distribution for
N = 128 and dt = 100 yr.

In Fig. 6 the relative errors,

errN =
∥fN − f128∥2

∥f128∥2
(46)

are shown for simulations with 8 to 80 bins. Unlike the time
convergence, the errors are not aligned but they do follow a
linearly decreasing pattern. A regression line is plotted to highlight
this behaviour, with slopes of 1.07 for the discrete and 0.88 for
the conservative cases, leading to a slightly lower magnitude of
error. By looking at the vertical axis, the relative errors range from
0.1 to 0.9. Considering that the errors for dt = 104 yr were of
the order 10−3–10−2 (Table 2), it can be stated that both methods
behave considerably better in time than in space.
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Table 2
This table gathers estimated relative errors in L2 norm for the final distributions (N = 128). The values for discrete Hmax,min
and conservative Fmax,min computations are reported, where maximal or minimal kernels are adopted, for different time
step choices.

Fmax Hmax Fmin Hmin

dt = 102 [yr] 7.11 × 10−5 2.53 × 10−4 2.99 × 10−5 2.87× 10−5

dt = 103 [yr] 7.85 × 10−4 3.60 × 10−3 3.29 × 10−4 5.89× 10−4

dt = 104 [yr] 8.21 × 10−3 3.54 × 10−2 3.32 × 10−3 5.32× 10−3
Fig. 5. Behaviour for lownumber of bins for discrete (top) and conservative (bottom)
codes for maximum final distribution (dt = 100 yr). The continuous code performs
better with coarser grids.

7.5. Mass conservation

While discussing the property of the Smoluchowski coagulation
equation with Hirashita’s kernel (Section 4), it was proven that
the initial condition and the maximum and minimum kernels
were such that the mass was (analytically) conserved. Here mass
conservation is tested numerically. Fig. 7 shows that both kernels
conserve mass, but the conservative scheme has a performance
which is three orders of magnitude better. The values plotted are
the relative difference in mass between time 0 and time 10tff,
showing no specific pattern when N changes.

8. Conclusions

The equivalence between the discrete coagulation model and
the Smoluchowski continuous formulation has been proved and
the kernel identified. With the specific kernel and initial condition
Fig. 6. Discrete (top) and conservative (bottom) logarithmic error plot (dt = 100
yr). X indicates the actual error values, while the dotted line is obtained through
linear regression.

it was possible to analytically infer existence of a unique,
mass conserving solution. The continuous model, rewritten in
the conservative form, allowed the use of a finite-volume
discretisation, and both numerical approaches were demonstrated
to producemass conserving evolutions. Numerical properties such
as convergence in the temporal as well as in the grain size bin
discretisation were analysed. For the latter, it was shown that
even a fairly coarse bin size distribution can yield satisfactory
results of coagulation processeswhen the conservative formulation
is used. This is of interest for future work, where we target
spatio-temporally evolving gas–dust mixtures in molecular cloud
contexts. All the different reformulations for the coagulationmodel
are gathered in Table 3. Besides dynamic coupling through drag-
forces as was done to date, the present work paves the way to
create a method that also accounts for coagulation processes in
the dust distribution, thereby extending work like Birnstiel et al.
(2010) to full 3D dynamical computations.

When one wants to enrich a 3D fluid code with dust evolution
and coagulation, the additional computational cost will come



P. Paruta et al. / Astronomy and Computing 16 (2016) 155–165 163
Fig. 7. Relative mass gain for the discrete (top) and the conservative (bottom)
codes for maximum and minimum kernels (dt = 100 yr). Both methods show
conservation of mass (note the scale factor, going to near machine precision)
independent of the number of bins, but the first has an accuracy of 10−12 , while
the second has 10−15 .

Table 3
A collection of all the possible formulations of the same dust coagulation model
presented within this paper. From top to bottom: the discrete form from Hirashita,
the continuous Smoluchowski equation, the conservative continuous and also
the conservative discrete form. Each equation and notation is explained in the
corresponding sections from top to bottom: 2, 3, 5 and 6.

Coagulation models

ρn+1
i −ρn

i
∆t = −miρi

N
l=1

αliρl −
N
j=1

N
l=1

αljρlρjm
lj
coag (i)

∂
∂t n̂(m, t) = −n̂(m, t)


∞

0 K(m, m̄)n̂(m̄, t) dm̄
+

1
2

 m
0 K(m − m̄, m̄)n̂(m̄, t)n̂(m − m̄, t) dm̄

∂tg(m, t) = −∂m
 m
0


∞

m−u K(u, v)g(u) g(v)

v
du dv

gn+1
i = gn

i −
∆t

∆mi


Jni+1/2 − Jni−1/2


Ji+1/2(t) =

i
k=1

∆mk gk(t)


Bi,kgbi,k (t) +

N
j=bi,k+1

Akjgj(t)



mainly from resolving the spatial dynamics of dust rather than
its coagulation. The coagulation process has a characteristic
time scale much longer than the one required to resolve the
gas–dust turbulent dynamics, and the rebinning can be performed
locally on every single spatial cell. By suitably exploiting these
two aspects (for example by highly parallelising the code), the
computational cost for the coagulation can be greatly reduced and
made comparable to the one of the simulations reported in this
paper,which are all feasible on laptops or desktopswithinminutes.
Their cost is set by (a power of) the number of mass intervals
adopted, along with the time step criterion as expressed by our
Eq. (38). This cost is marginal compared to the cost needed for full
3D dynamical gas plus dust evolutions, where we are restricted by
the usual CFL condition on the time step in explicit schemes, and
by a desire to spatially resolve a significant fraction of the inertial
range when turbulent conditions prevail (requiring massively
parallel computations, also for gas–dust coupled settings, as
reported in Porth et al. (2014)). A simulation of 3D coupled
gas–dust evolutionswithout accounting for coagulation processes,
such as that by Hendrix et al. (2015) for the Kelvin–Helmholtz
ripples seen in infrared images of the Orion nebula, using block-
adaptive meshes to achieve effective resolutions of 448 × 1792 ×

448 grid cells (in a 0.33 pc3 volume) and followed for order
105 years, requires heavy supercomputer resources (hours to
days on hundreds of processors). In such scenarios the number
of bins used is of crucial importance for determining the cost.
These considerations will become clearer only when an actual
investigation is carried out on coupled gas–dust with evolving dust
size distributions.

Finally, although we purposely discussed the specific coagu-
lation model as used in discrete form by Hirashita (2012), and
adopted parameters typical for molecular cloud cores, we gave all
details needed for adapting the same approach to more advanced
coagulations models. These have typically been pioneered in pro-
toplanetary disk context, where ultimately centimetre-sized ag-
gregates are desired, that may settle towards the disk mid-plane
and form the seeds for planetesimal formation through further
gravitational instability (e.g., Ormel and Cuzzi, 2007; Nomura and
Nakagawa, 2006). Further realism can be expected when study-
ing truly coupled gas–dust or plasma–dust mixtures (involving
magnetohydrodynamics turbulence and the complexity of charg-
ing dust particles), an aspect that has been studied e.g. by Yan et al.
(2004). Note that we have, following closely Hirashita (2012), also
made very simple assumptions on the prevailing particle velocity
behaviour with size, our Eq. (7). More recent insights have been
acquired for collisional growth in protoplanetary disks, where
Windmark et al. (2012) and Garaud et al. (2013) have pioneered
the use of probability distribution functions that include both de-
terministicmotions (settling, drifts) and stochasticmotions (due to
turbulence and Brownian motion). This has alleviated the barrier
problem and allowed even emergence of metre to decametre sized
objects, while maintaining a considerable long-term micrometre
sized grain population.
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Appendix

Time discretisation and stability condition

The explicit Euler scheme can be unstable if the chosen time
step ∆t is not small enough. Filbet and Laurençot (2004) proposes
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the following stability condition:

∆t sup
i,n

 mtop

mmin+δm

K(mi,m)

m
g(m, tn) dm


< 1. (47)

Where δm = mini ∆mi/2, which for the kind of exponential bin
discretisation used for this work coincides with ∆m1/2.

In fact, within this context, this stability constraint can be
relaxed to

∆t sup
i,n

 mtop

mi+1/2−mi

K(mi,m)

m
g(m, tn) dm


< 1. (48)

In essence, Filbet takes the maximum integration interval (mmin +

δm,mtop) and then finds the supremum of the function on
that fixed interval, whereas, to carry out the proof, it is not
necessary to decouple the domain length from the function. This
difference becomes considerable when using Hirashita’s kernel, as
the relaxation permits the time step constraint to change from a
day to a million years.

The new estimate can therefore be proven by following the
sameproof found in Filbet, presentedbelowwith a slight difference
in notation, to be consistent with the work done so far. The proof
is split into two propositions.

Proposition 1. Given the continuous problem

∂tg(m, t) = −∂mJ(g)(m, t), (t,m) ∈ (R+
× (mmin,mtop))

J(g)(m, t) =

 m

mmin

 mtop

m−u

K(u, v)

v
g(v)g(u)dvdu,

g(m, 0) = mCinm−11/6χ (mmin,mmax), m ∈ (mmin,mtop)

J(g)(mmin, t) = 0, t ∈ R+ (49)

and given its numerical approximation:

gn+1
i = gn

i −
∆t
∆mi


Jni+1/2 − Jni−1/2


∀i = {1, . . . ,N}, ∀n = {0, . . . ,M-1}

Jni+1/2 =

i
k=1

∆mk gn
k

Bi,kgn
bi,k +

N
j=bi,k+1

Akjgj(t)


g0
i = 6Cin


m1/6χ (mmin,mmax)

m(r)
i

m(l)
i

∀i = {1, . . . ,N}

Jn1/2 = 00qd∀i = {1, . . . ,N}, (50)

then the following relation for the fluxes holds:

Jni+1/2 − Jni−1/2 ≤ ∆mign
i

Bi,ign
bi,i +

N
j=bi,i+1

Aijgn
j

 . (51)

where K(u, v) is a symmetric positive kernel in both (u, v) and the
discrete expressions for A and B are:

Akj =

 mj+1/2

mj−1/2

K(mk, v)/v dv (52)

Bi,k =

 mbi,k+1/2

mi+1/2−mk

K(mk, v)/v dv, (53)

with bi,k index chosen such that mi+1/2 − mk belongs to its interval
(as showed in Fig. 1).

Proof. Throughout the computation the assumption gn non-
negative (g0 ≥ 0) is used. Starting from the equation for Ji+1/2
in (50)

Jni+1/2 =

i
k=1

∆mkgn
k

 N
j=bi,k+1

Akjgn
j + Bi,kgn

bi,k


= ∆mign

i

 N
j=bi,i+1

Aijgn
j + Bi,ign

bi,i


+

i−1
k=1

∆mkgn
k

 N
j=bi,k+1

Akjgn
j + Bi,kgn

bi,k

 , (54)

where in the second passage the sum from 1 to i has been split in
the sum till i−1 plus the terms in i. Now the aim is to recover from
the first sum the left flux at i − 1/2. In the case that bi−1,k = bi,k,
Eq. (54) results in:

Jni+1/2 = ∆mign
i

 N
j=bi,i+1

Aijgn
j + Bi,ign

bi,i


+

i−1
k=1

∆mkgn
k

 N
j=bi−1,k+1

Akjgn
j + Bi,kgn

bi−1,k

 . (55)

As Filbet points out, if bi−1,k = bi,k then Bi,k ≤ Bi−1,k, because
in fact Bi,k is an integral on the domain (mi+1/2 − mk,mbi,k−1/2),
while Bi−1,k operates on thewider interval (mi−1/2−mk,mbi,k−1/2).
The second term at the right hand side is therefore less than Jni−1/2,
leading to the desired inequality (51).

Whereas if bi−1,k < bi,k, (note that the inverse inequality can
never be verified), the internal sum of the last term in Eq. (54) is
rewritten

N
j=bi,k+1

Akjgn
j =

N
j=bi−1,k+1

Akjgn
j −

bi,k
j=bi−1,k+1

Akjgn
j , (56)

Jni+1/2 ≤ ∆mign
i

 N
j=bi,i+1

Aijgn
j + Bi,ign

bi,i


+

i−1
k=1

∆mkgn
k

 N
j=bi−1,k+1

Akjgn
j + Bi−1,kgn

bi−1,k


+

i−1
k=1

∆mkgn
k

 bi,k
j=bi−1,k+1

−Akjgn
j + Bi,kgn

bi,k

 . (57)

Bi−1,kgn
bi−1,k

was added, being a non-negative term, in order to
recover Ji−1/2 in the second line. The only thing left to prove to
obtain Eq. (51), is that the third term at the right hand side is
negative.

bi,k
j=bi−1,k+1

Akjgn
j =

 mbi,k+1/2

mbi−1,k+1/2

K(mk, v)

v
g(v) dv

≥

 mbi,k+1/2

mi+1/2−mk

K(mk, v)

v
g(v) dv = Bi,kgn

bi,k . (58)

Proposition 2. Given the validity of Proposition 1, then for any time
step∆t that satisfies the stability condition (48) it can be proven that:

• gn
i is non-negative for all i,

•
N

i=1 g
n+1
i ≤

N
i=1 g

n
i ,
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for all n ∈ (1..M). The physical meaning of these results is that
the number density solution is non-negative and that the total mass
is non-increasing in time. The latter coincides with the stability
condition in norm L1: ∥gn+1

∥L1 ≤ ∥gn
∥L1 .

Proof. The stability condition (48) for ∆t can be rewritten using A
and B

∆t sup
i,n

Bi,ign
bi,i +

N
j=bi,i+1

Aijgn
j

 < 1. (59)

Then Eq. (51) becomes:

Jni+1/2 − Jni−1/2 ≤
∆mi

∆t
gn
i , ∀ i, n. (60)

Hence gn+1
i is non-negative, since

gn
i+1 = gn

i −
∆t
∆mi


Jni+1/2 − Jni−1/2


. (61)

Finally, to recover the time monotonicity of the total mass, Filbet
claims that (on an infinitive domain) it comes directly from the
non-negativity of gn and from summing the above equation over
i. Using the boundary conditions:

N
i=1

∆mign+1
i =

N
i=1

∆mign
i − (JnN+1/2 − Jn1/2). (62)

JnN+1/2 − Jn1/2 has to be≥0 for all n, which is guaranteed by the non-
negativity of the flux and the boundary condition Jn1/2 = 0.
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