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We propose and analyze a novel framework for learning sparse representations based
on two statistical techniques: kernel smoothing and marginal regression. The proposed
approach provides a flexible framework for incorporating feature similarity or temporal
information present in data sets via non-parametric kernel smoothing. We provide
generalization bounds for dictionary learning using smooth sparse coding and show how
the sample complexity depends on the L1 norm of kernel function used. Furthermore, we 
propose using marginal regression for obtaining sparse codes which significantly improves
the speed and allows one to scale to large dictionary sizes easily. We demonstrate the
advantages of the proposed approach, both in terms of accuracy and speed by extensive
experimentation on several real data sets. In addition, we demonstrate how the proposed
approach can be used for improving semi-supervised sparse coding.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sparse coding is a popular unsupervised paradigm for learning sparse representations of data samples that are subse-
quently used in classification tasks. In standard sparse coding, each data sample is coded independently with respect to 
the dictionary. We propose a smooth alternative to traditional sparse coding that incorporates feature similarity, temporal 
similarity or similar user-specified similarity measures between the samples into the coding process.

The idea of smooth sparse coding is motivated by the relevance weighted likelihood principle. Our approach constructs a 
code that is efficient in a smooth sense and as a result leads to improved statistical accuracy over traditional sparse coding. 
The smoothing operation, which can be expressed as non-parametric kernel smoothing, provides a flexible framework for 
incorporating several types of domain information that might be available for the user. For example, in image classification, 
one could use: (1) kernels in feature space for encoding similarity information for images and videos and (2) kernels in time 
space in case of videos for incorporating temporal relationship. Apart from this, the kernel could also be used to encode 
similarity information in semi-supervised learning setting.

Most sparse coding training algorithms fall under the general category of alternating procedures with a convex lasso 
regression sub-problem. While efficient algorithms for such cases exist [17], their scalability for large dictionaries remains 
a challenge. We propose a novel training method for sparse coding based on marginal regression, rather than solving the 
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traditional alternating method with lasso sub-problem. Marginal regression corresponds to performing univariate linear 
regression corresponding to each dimension, followed by a thresholding step to promote sparsity. For large dictionary sizes, 
this leads to a significant speedup compared to traditional sparse coding methods without sacrificing statistical accuracy.

Note that the notion of speedup we mention should be interpreted appropriately. There are two contributions we make: 
(i) the smoothing operation and (ii) the use of marginal regression updates in places of lasso updates. It should be noted that 
the smoothing operation requires additional computation. The source of speedup is replacing the lasso step with marginal 
regression step in the alternating minimization procedure. For a fair comparison, one needs to look at the performance of 
smooth sparse coding (or standard sparse coding) when it uses lasso updates and marginal regression updates. We report 
the overall timing comparison between the different methods in the experimental section for clarification.

We also develop theoretical analysis that extends the sample complexity result of [29] for dictionary learning using 
standard sparse coding to the smooth sparse coding case. This result specifically shows how the sample complexity depends 
on the L1 norm of the kernel function used. Our contributions lead to improved classification accuracy in conjunction with 
significant computational speedup. Below we summarize our main contributions:

1. we propose a framework based on kernel-smoothing for incorporating feature, time or other similarity information 
between the samples into sparse coding.

2. we provide sample complexity results for dictionary learning using smooth sparse coding.
3. we propose an efficient marginal regression training procedure for sparse coding.
4. We successfully apply the proposed method in various classification tasks and report improved performance in several 

situations.

2. Related work

Our approach is related to the local regression method [19,11]. More recent related work is [21] that uses smoothing 
techniques in high-dimensional lasso regression in the context of temporal data. Another recent approach [34], achieves 
code locality by approximating data points using a linear combination of nearby basis points. The main difference is that 
traditional local regression techniques [19,11,21] do not involve basis learning. In this work, we propose to learn the basis 
or dictionary along with the regression coefficients locally. This could be viewed as a high dimensional generalization of 
low dimensional local smoothing problems with no basis learning. Here we argue that one could directly learn the basis 
simultaneously while using traditional local-smoothing techniques for improved performance. Furthermore, it provides a 
natural way to incorporate various similarity information constructed from the data samples themselves in to the sparse 
coding process.

In contrast to previous sparse coding papers we propose to use marginal regression for learning the regression coeffi-
cients, which results in a significant computational speedup with no loss of accuracy. Marginal regression is a relatively old 
technique that has recently reemerged as a computationally faster alternative to lasso regression [8]. See also [10] for a 
statistical comparison of lasso regression and marginal regression.

3. Smooth sparse coding

Notation: We use lower case letters, for example x, to represent vectors and upper case letters, for example X , to 
represent matrices, in appropriately defined dimensions. We use ‖ · ‖p to represent the Lp norm of a vector (we use mostly 
use p = 1, 2 in this paper), ‖ · ‖F to represent the Frobenius norm of a matrix and | f |p to represent Lp norm of the function 
f defined as (

∫ | f |p dμ)1/p . Data samples are denoted by subscripts, for example {xi}n
i=1 corresponds to n data samples, 

where each sample xi is a d-dimensional vector.
The standard sparse coding problem consists of solving the following optimization problem,

min
D∈Rd×K

βi∈RK ,i=1,...,n

n∑
i=1

‖xi − Dβi‖2
2

subject to ‖d j‖2 ≤ 1 j = 1, . . . K

‖βi‖1 ≤ λ i = 1, . . .n,

where βi ∈ R
K corresponds to the encoding of sample xi with respected to the dictionary D ∈ R

d×K and d j ∈ R
d denotes 

the j-column of the dictionary matrix D . The dictionary is typically over-complete, implying that K > d.
Object recognition is a common sparse coding application where xi corresponds to a set of features obtained from a 

collection of image patches, for example Scale-Invariant Feature Transform (SIFT) features [20]. The dictionary D corresponds 
to an alternative coding scheme that is higher dimensional than the original feature representation. The L1 constraint 
promotes sparsity of the new encoding with respect to D . Thus, every sample is now encoded as a sparse vector that is of 
higher dimensionality than the original representation.

In some cases the data exhibits a structure that is not captured by the sparse coding setting. For example, SIFT features 
corresponding to samples from the same class are presumably closer to each other compared to SIFT features from other 
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classes. Similarly in video, neighboring frames are presumably more related to each other than frames that are farther apart. 
In this paper we propose a mechanism to incorporate such feature similarity and temporal information into sparse coding, 
leading to a sparse representation with an improved statistical accuracy, for example as measured by classification accuracy.

We consider the following smooth version of the sparse coding problem:

min
D∈Rd×K

βi∈RK ,i=1,...,n

n∑
i=1

n∑
j=1

w(x j, xi)‖x j − Dβi‖2
2 (1)

subject to ‖d j‖2 ≤ 1 j = 1, . . . K (2)

‖βi‖1 ≤ λ i = 1, . . .n, (3)

where 
∑n

j=1 w(x j, xi) = 1 for all i. It is convenient to define the weight function through a smoothing kernel

w(x j, xi) = 1

h1
K1

(
ρ(x j, xi)

h1

)

where ρ(·, ·) is a distance function that captures the feature similarity, h1 is the bandwidth, and K1 is a smoothing ker-
nel. Traditional sparse coding minimizes the reconstruction error of the encoded samples. Smooth sparse coding, on the 
other hand, minimizes the reconstruction of encoded samples with respect to their neighbors (weighted by the amount of 
similarity).

The smooth sparse coding setting leads to codes that represent a neighborhood rather than an individual sample and 
that have lower mean square reconstruction error (with respect to a given dictionary), due to lower estimation variance 
(see for example the standard theory of smoothed empirical process [7]). There are several possible ways to determine the 
weight function w . One common choice for the kernel function is the Gaussian kernel,

w(x j, xi) = 1

h1
√

2π
exp

(
−1

2

(‖x j − xi‖2

h1

)2
)

where bandwidth parameter h1 is selected using cross-validation. The bandwidth may be fixed throughout the input space, 
or may vary in order to take advantage of non-uniform samples. Other common choices for the kernel are:

Tricube (1 − ‖x j − xi‖3
2)

31{‖x j−xi‖2<1}
Triangular (1 − ‖x j − xi‖2)1{‖x j−xi‖2<1}

Uniform 2−11{‖x j−xi‖2<1}
where 1{‖x j−xi‖2<1} is the indicator function which evaluates to 1, when the condition inside the bracket is true. For more 
information about smoothing kernels, we refer the reader to [30].

The distance function ρ(·, ·) may be one of the standard distance functions, for example, based on the L p norm. Alter-
natively, ρ(·, ·) may be expressed by domain experts, learned from data before the sparse coding training, or learned jointly 
with the dictionary and codes during the sparse coding training.

3.1. Spatio-temporal smoothing

In spatio-temporal applications, where the subscript i in the data sample xi denotes time-stamps, we can extend the 
kernel to include also a term reflecting the distance between the corresponding time or space

w(x j, xi) = 1

h1
K1

(
ρ(x j, xi)

h1

)
1

h2
K2

(
j − i

h2

)
.

Above, K2 is a univariate symmetric kernel with bandwidth parameter h2. One example is video sequences, where the 
kernel combines similarity of the frame features and the time-stamp.

Alternatively, the weight function can feature only the temporal component and omit the first term containing the dis-
tance function between the feature representation. A related approach for that situation, is based on the Fused lasso which 
penalizes the absolute difference between codes for neighboring points. The main drawback of that approach is that one 
needs to fit all the data points simultaneously whereas in smooth sparse coding, the coefficient learning step decomposes as 
n separate problems and this provides a computational advantage. Also, while fused Lasso penalty is suitable for time-series 
data to capture relatedness between neighboring frames, it may not be immediately suitable for other situations that the 
proposed smooth sparse coding method could handle.

Structured smooth sparse coding: Another straightforward extension of the proposed smooth sparse coding approach is 
by using structured regularizers [4,13,12]. For many applications, there naturally exists some known structure on the codes 
that could be exploited for better sparse modeling. For example, Wavelet-based decompositions lend themselves well to a 
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tree organization because of their multi scale nature. The proposed smoothing approach to sparse coding could be extended 
to such scenarios as well.

Specifically, the L1 regularizer in Eq. (3) could be replaced by any norm R(βi) for i = 1, . . . , n. Some choices for the 
regularizer are the (p, 1)-mixed norms when the dictionary exhibits a natural grouping; tree-structured norms when the 
dictionary is assumed to be embedded in a tree-structure; hierarchical norms which are typically composition of several 
norms and graph based norms and random field norms [4,13].

4. Marginal regression for smooth sparse coding

A standard algorithm for sparse coding is the alternating bi-convex minimization procedure, where one alternates be-
tween (i) optimizing for codes (with a fixed dictionary) and (ii) optimizing for dictionary (with fixed codes). Note that step 
(i) corresponds to regression with L1 constraints and step (ii) corresponds to least squares with L2 constraints. In this sec-
tion we show how marginal regression could be used to obtain better codes faster (step (i)). In order to do so, we first give 
a brief description of the marginal regression procedure.

Marginal regression: Consider a regression model y = Xβ + z where y ∈ R
n , β ∈ R

p , X ∈ R
n×p with orthonormal 

columns (denoted by x j ), and z is the noise vector. Marginal regression proceeds as follows:

• Calculate the least squares solution

α̂( j) = xT
j y.

• Threshold the least-square coefficients

β̂( j) = α̂( j)1{|α̂( j)|>t}, j = 1, . . . , p.

Marginal regression requires just O (np) operations compared to O (p3 + np2), the typical complexity of lasso algorithms. 
When p is much larger than n, marginal regression provides two orders of speedup over Lasso based formulations. Note 
that in sparse coding, the speedup occurs for each iteration of the outer loop, thus enabling sparse coding for significantly 
larger dictionary sizes. Recent studies have suggested that marginal regression is a viable alternative for Lasso given its 
computational advantage over lasso. A comparison of the statistical properties of marginal regression and lasso is available 
in [8,10].

Code update (step (i)): Applying marginal regression to smooth sparse coding, we obtain the following scheme. The 
marginal least squares coefficients are

α̂
(k)
i =

n∑
j=1

w(x j, xi)

‖dk‖2
dT

k x j .

We sort these coefficient in terms of their absolute values, and select the top s coefficients whose L1 norm is bounded by λ:

β̂
(k)
i =

{
α̂

(k)
i k ∈ S

0 k /∈ S
, where

S =
{

1, . . . , s : s ≤ d :
s∑

k=1

|α̂(k)
i | ≤ λ

}

We select the thresholding parameter using cross validation in each of the sparse coding iterations. Note that the same 
approach could be used with structured regularizers too, for example [4,13].

Dictionary update (step (ii)): Marginal regression works well when there is minimal correlation between the different 
dictionary atoms. In the linear regression setting, marginal regression provides an exact solution with orthogonal data [10]. 
In the context of sparse coding, this corresponds to having uncorrelated or incoherent dictionaries [28]. One way to measure 
such incoherence is using the babel function, which bounds the maximum inner product between two different columns 
di, d j :

μs(D) = max
i∈{1,...,d}

max
�⊂{1,...,d}\{i};|�|=s

∑
j∈�

|d�
j di|.

Therefore, one can proceed by imposing conditions on the babel function, which is computationally challenging. An alter-
native, which leads to easier computation is by adding the term ‖DT D − I K×K ‖2

F to the reconstruction objective, when 
optimizing over the dictionary matrix D . This leads to the following optimization problem for dictionary update step:
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D̂ = arg min
D∈D

F (D) where

F (D) =
n∑

i=1

‖xi − Dβ̂i‖2
2 + γ ‖D�D − I‖2

F

and D = {D ∈R
d×K : ‖d j‖2 ≤ 1}. The regularization term γ controls the level of incoherence enforced.

This optimization problem is of the form of minimizing a differentiable function over a closed convex set. We use the 
gradient projection method [3,26] for solving the optimization problem. The gradient of the objective with respect to D at 
each iteration is given by

∇ F (D) = 2
(

D B̂ B̂� − X B̂�)
+ 4γ

(
D D�D − D

)
, (4)

where B̂ = [β̂1, . . . , β̂n] is the matrix of codes from the previous code update step, X ∈ R
d×n is the data in matrix format. 

The gradient projection descent iterations are given by

D(t + 1) = 	D (D(t) − ηt∇ F (D(t))) , (5)

where by 	D , we denote column-wise projection of the dictionary matrix on to the unit ball and t is the index for sub-
iteration count for each dictionary update step. Specifically, for each dictionary update step, we run the gradient projected 
descent algorithm until convergence. Note that projection of a vector onto the l2 ball is straightforward since we only need 
to rescale the vector towards the origin, i.e., normalize the vectors with length greater than 1.

Convergence to local point of gradient projection methods for minimizing a differentiable function over a convex set was 
analyzed in [26]. Similar guarantees could be provided for each of the dictionary update steps. A heuristic approach for 
dictionary update with incoherence constraint was proposed in [23] and more recently in [25], where the L-BFGS method 
was used for the unconstrained problem and the norm constraint was enforced at the final step. We found that the proposed 
gradient projected descent method performed empirically better than both these approaches. Furthermore both approaches 
are heuristic and do not guarantee local convergence for the dictionary update step.

Finally, a sequence of such updates corresponding to step (i) and step (ii) converges to a stationary point of the opti-
mization problem (this can be shown using Zangwill’s theorem [35]). But no provable algorithm that converges to the global 
minimum of the smooth sparse coding exists yet. Nevertheless, the main idea of this section is to speedup the existing al-
ternating minimization procedure for obtaining sparse representations, by using marginal regression. We leave a detailed 
theoretical analysis of the individual dictionary update steps and the overall alternating procedure (for codes and dictionary) 
as future work.

5. Sample complexity of smooth sparse coding

In this section, we analyze the sample complexity of the proposed smooth sparse coding framework. We provide uniform 
convergence bounds over the dictionary space and hence prove a sample complexity result for dictionary learning under 
smooth spare coding setting. We are mainly interested in studying how the sample complexity scales with respect to the 
problem parameters. We leverage the analysis for dictionary learning in the standard sparse coding setting [29] and extend 
it to the smooth sparse coding setting. The main difficulty for the smooth sparse coding setting is obtaining a covering 
number bound for an appropriately defined class of functions (see Theorem 5.1 for more details).

We begin by re-representing the smooth sparse coding problem in a convenient form for analysis. Let x1, . . . , xn be 
independent random variables with a common probability measure P with a density p. We denote by Pn = n−1 ∑n

i=1 δxi

the empirical measure over the n samples. Let Kh1 (·) = 1
h1
K1(

·
h ). With the above notations, the reconstruction error at the 

point x is given by

rλ(x) =
∫

min
β∈Sλ

‖x′ − Dβ‖2Kh1(ρ(x, x′))dPn(x′)

where

Sλ = {β : ‖β‖1 ≤ λ}.
The empirical reconstruction error is

EPn (r) =
∫∫

min
β∈Sλ

‖x′ − Dβ‖2Kh1(ρ(x, x′))dPn(x′)dPn(x)

and its population version is

EP(r) =
∫∫

min
β∈Sλ

‖x′ − Dβ‖2Kh1(ρ(x, x′))dPn(x′)dP(x).
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Algorithm 1 Smooth Sparse Coding via Marginal Regression.
Input: Data {(x1, y1), . . . , (xn, yn)} and kernel/similarity measure K1 and d1.
Precompute: Compute the weight matrix w(i, j) using the kernel/similarity measure and
Initialize: Set the dictionary at time zero to be D0.
Algorithm:
repeat

Step (i): For all i = 1, . . . , n, solve marginal regression:

α̂
(k)
i =

n∑
j=1

w(x j, xi)

‖dk‖2
dT

k x j

β̂
(k)
j =

{
α̂

(k)
j j ∈ S

0 j /∈ S
,

S = {1, . . . , s; s ≤ d :
s∑

k=1

|α̂(k)
i | ≤ λ}.

Step (ii): Update the dictionary based on codes from previous step by solving the following optimization problem

D̂ = arg min
D∈D

n∑
i=1

‖xi − Dβ̂i‖2
2 + γ ‖D� D − I‖2

F

where D = {D ∈ R
d×K : ‖d j‖2 ≤ 1},

using the gradient descent step from Equation (5).
until convergence
Output: Return the learned codes and dictionary.

Our goal is to show that the sample reconstruction error is close to the true reconstruction error. Specifically, to show 
EP(rλ) ≤ (1 + κ)E Pn (rλ) + ε where ε, κ ≥ 0, we bound the covering number of the class of functions corresponding to the 
reconstruction error. We assume a dictionary of bounded babel function, which holds as a result of the relaxed orthogonality 
constraint used in the Algorithm 1 (see also [23]). We define the set of r functions with respect to the dictionary D
(assuming data lies in the unit d-dimensional ball Sd−1) by

Fλ = {rλ : Sd−1 →R : D ∈R
d×K ,‖di‖2 ≤ 1,μs(D) ≤ γ }.

The following theorem bounds the covering number of the above function class.

Theorem 5.1. For every ε > 0, the metric space (Fλ, | · |∞) has a subset of cardinality at most 
(

4λ|Kh1 (·)|1
ε(1−γ )

)dK
, such that every element 

from the class is at a distance of at most ε from the subset, where |Kh1(·)|1 = ∫ |Kh1(x)| dP.

Proof. Let F ′
λ = {r′

λ : Sd−1 → R : D ∈ d × K , ‖di‖2 ≤ 1}, where r′
λ(x) = minβ∈Sλ

‖Dβ − x‖. With this definition we note that 
Fλ is just F ′

λ convolved with the kernel Kh1 (·). By Young’s inequality [7] we have,

|Kh1 ∗ (s1 − s2)|p ≤ |Kh1 |1|s1 − s2|p, 1 ≤ p ≤ ∞
for any Lp integrable functions s1 and s2. Using this fact, we see that convolution mapping between metric spaces F ′ and 
F converts ε

|Kh1 (·)|1 covers into ε covers. From [29], we have that the class F ′
λ has ε covers of size at most ( 4λ

ε(1−γ )
)

dK
. 

This proves the statement of the theorem. �
The above theorem can be used in conjunction with standard statements in the literature for bounding the generalization 

error of empirical risk minimization algorithms based on covering numbers. We have provided the general statements in 
the appendix for completeness of this paper. Below, we provide generalization bounds for smooth sparse coding problem, 
corresponding to slow rates and fast rates.

Slow rates: When the theorem on covering numbers for the function class Fλ (Theorem 5.1) is used along with Lemma 1
stated in the appendix (corresponding to slow rate generalization bounds) it is straightforward to obtain the following 
generalization bounds with slow rates for the smooth sparse coding problem.

Theorem 5.2. Let γ < 1, λ > e/4 with distribution P on Sd−1 . Then with probability at least 1 − e−t over the n samples drawn 
according to P, for all the D with unit length columns and μs(D) ≤ γ , we have:

EP(rλ) ≤ EPn (rλ) +

√√√√dK ln
(

4
√

nλ|Kh1 (·)|1
(1−γ )

)
2n

+
√

t

2n
+

√
4

n
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Table 1
Time comparison of coefficient learning in Sparse 
Coding (SC) and Smooth Sparse Coding (SSC) with 
either Lasso or Marginal regression updates. The 
dictionary update step was same for all methods. 
The format correspond to average ± standard error.

Method Time (sec)

SC + LASSO 524.5 ± 12
SC + MR 242.2 ± 10
SSC + LASSO 560.2 ± 12
SSC + MR 184.4 ± 19

The above theorem, establishes that the generalization error scales as O (n−1/2) (assuming the other problem parameters 
are fixed). Note that the term κ is exactly zero. In the literature, this is called as slow-rate bound as one could get a much 
improved result, albeit only for the case when κ is strictly greater than zero, though it could taken arbitrarily close to zero.

– Fast rates: Under further assumptions (κ > 0), it is possible to obtain faster rates of O (n−1) for smooth sparse coding, 
similar to the ones obtained for general learning problems in [1]. It should be noted that even though the rates obtained 
are better, the constant in front of the empirical reconstruction error is strictly greater than one and can never be exactly 
one. The following theorem gives the precise statement.

Theorem 5.3. Let γ < 1, λ > e/4, dK > 20 and n ≥ 5000. Then with probability at least 1 − e−t , we have for all D with unit length 
and μs(D) ≤ γ ,

EP(rλ) ≤ 1.1EPn (rλ) + 9
dK ln

(
4nλ|Kh1 (·)|1

(1−γ )

)
+ t

n
.

The above theorem follows from the theorem on covering number bound (Theorem 5.1) above and Lemma 2 from the 
appendix. In both statements the definition of rλ(x) differs from (1) by a square term. Note that it could be incorporated 
easily into the above bounds resulting in an additive factor of 2 inside the logarithm term. We are mainly interested in 
studying the scaling of generalization error with respect to problem parameters and the above step has no effect on that. 
We refer the interested reader to [29] for more details.

6. Experiments

We demonstrate the advantage of the proposed approach both in terms of speedup and accuracy over standard sparse 
coding. A detailed description of all real-world data sets used in the experiments are given in the appendix. As discussed 
before, the overall optimization procedure is non-convex. The stopping criterion was chosen as follows: stop iterating when 
the value of the reconstruction error does not change by more than 0.001%. Though this does not guarantee convergence to 
a global optimum, according to the experimental results, we see that the points of convergence invariably resulted in a good 
local optimum as reflected by the good empirical performance. Furthermore, in all the experiments, we ran 10 iterations 
of the projected gradient descent algorithm for each dictionary update step. We fixed the learning rate for all iterations of 
gradient projection descent algorithm as η = ηt = 0.01 as it was found to perform well in the experiments. The parameters 
γ and λ are set for each experiment based on cross-validation (we first tuned for γ and then for λ) for classification 
results on training set as is done in the literature [32]. Furthermore, for each experiment, the time taken for training is 
also reported for comparison. In all our experiments we use the tricube kernel. We use classification accuracy (when linear 
SVM was used) as a measure of performance in all experiments, except for the following section on speed comparison, 
where we use reconstruction error. Furthermore, we use the LIBSVM [5] in our experiments and use cross-validation to set 
regularization parameter of SVM.

6.1. Speed comparison

We conducted synthetic experiments to examine the speedup provided by sparse coding with marginal regression. The 
data was generated from a 100-dimensional mixture of two Gaussian distribution that satisfies ‖μ1 − μ2‖2 = 3 (with 
identity covariance matrices). The dictionary size was fixed at 1024. The number of data point was 1000.

We compare the proposed smooth sparse coding algorithm, standard sparse coding with lasso [17] and marginal regres-
sion updates respectively, with a relative reconstruction error ‖X − D̂ B̂‖F /‖X‖F convergence criterion. We experimented 
with 200 different values of the relative reconstruction error (all values less than 10%) and report the average time. From 
Table 1, we see that smooth sparse coding with marginal regression takes significantly less time to achieve a fixed recon-
struction error. This is due to the fact that it takes advantage of the spatial structure and use marginal regression updates. 
It is worth mentioning that standard sparse coding with marginal regression, performs faster than the other two methods 
which uses Lasso as expected.
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Table 2
Face recognition: Test set classification accuracy based on coding 
at Pixel Level using sparse coding and proposed smoothed sparse 
coding.

Method SC SSC-tricube

Train error 8.382 9.342
Test error 6.212 6.942

Table 3
Test set accuracy for face recognition on the CMU-Multi-PIE data set (left) 15 scene (middle) and Caltech-101 (right) 
respectively. The performance of the smooth sparse coding approach is better than the standard sparse coding and LLC in 
all cases. The number reported in bracket corresponds to training time in seconds. The format corresponds to average ±
standard error in all cases.

CMU-Multi-PIE 15 scene Caltech-101

SC 92.70 ± 1.21 (489 ± 36) 80.28 ± 2.12 (501 ± 39) 73.20 ± 1.14 (591 ± 32)
LLC 93.70 ± 2.22 (532 ± 39) 82.28 ± 1.98 (585 ± 32) 74.82 ± 1.65 (611 ± 32)
SSC 95.05 ± 2.33 (321 ± 32) 84.53 ± 2.57 (287 ± 21) 77.54 ± 2.59 (410 ± 22)

Table 4
Effect of dictionary size on classification accuracy using smooth 
sparse coding and marginal regression on 15 scene and Caltech-
101 data set. The format corresponds to average ± standard error.

Dictionary size 15 scene Caltech-101

1024 84.42 ± 2.01 77.14 ± 2.23
2048 87.92 ± 2.35 79.75 ± 1.44
4096 90.22 ± 2.91 81.01 ± 1.17

6.2. Experiments with kernel in feature space

We conducted several experiments demonstrating the advantage of the proposed coding scheme in different settings. 
Concentrating on face and object recognition from static images, we evaluated the performance of the proposed approach 
along with standard sparse coding and LLC [34], another method for obtaining sparse features based on locality. Follow-
ing [32], we used the following approach for generating sparse image representation: we densely sampled 16 × 16 patches 
from images at the pixel level on a grid with step size 8 pixels, computed SIFT features [20], and then computed the corre-
sponding sparse codes over a 1024-size dictionary. We used max-pooling to get the final representation of the image based 
on the codes for the patches. Max-pooling involves taking max over each entry of the computed codes. It is motivated by the 
neural activation structure of the human brain and has been successfully applied in several image classification tasks [32]. 
The process was repeated with different randomly selected training and testing images and we report the average per-class 
recognition rates (together with its standard error estimate) based on one-vs-all SVM classification.

6.2.1. Smoothing at pixel level versus feature level
In this section we investigate the performance of smooth sparse coding with pixels as features on the CMU Multi-PIE 

data set. We extract the patches directly on the images represented as pixels as opposed to using the SIFT features. From 
Tables 2 and 3, we note that the performance of smooth sparse coding directly on the pixels is not as good as smooth 
sparse coding with SIFT features, i.e., sparse coding performs better at pixel level than smooth sparse coding. One possible 
reason is that the pixels themselves might exhibit significant variations which are not captured by the smoothing operation. 
This observation is consistent with our intuition that smoothing only helps when there is some structure in points used for 
coding. Raw images might not have much discriminative information as such, but extracting SIFT features helps to get a set 
of points with rich structure. The proposed smooth sparse coding tries to exploit that structure by explicitly encoding the 
similarity.

6.2.2. Image classification
We conducted image classification experiments on the CMU-Multi-PIE, 15 Scene and Caltech-101 data sets. The dictionary 

size was 1024. We also report the timing results for the training stage. As Table 3 indicates, our smooth sparse coding 
algorithm resulted in significantly higher classification accuracy than standard sparse coding and LLC. In fact, the reported 
performance is better than previous reported results using unsupervised sparse coding techniques [32].

Dictionary size: In order to demonstrate the use of scalability of the proposed method with respect to dictionary size, 
we report classification accuracy with increasing dictionary sizes using smooth sparse coding. The main advantage of the 
proposed marginal regression training method is that one could easily run experiments with larger dictionary sizes, which 
typically takes a significantly longer time for other algorithms. For both the Caltech-101 and 15-scene data set, classification 
accuracy increases significantly with increasing dictionary sizes as seen in Table 4.
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Table 5
Action recognition (accuracy) for cited method (left), Hog3d+ SC (middle) and Hog3d+ SSC (right): the KTH 
data set (top) YouTube action dataset (bottom). The numbers in bracket correspond to training time. The format 
corresponds to average ± standard error.

Cited method SC SSC

92.10 [31] 92.423 ± 2.12 (721 ± 23) 94.393 ± 3.21 (433 ± 32)
71.2 [18] 72.640 ± 2.53 (698 ± 23) 75.022 ± 2.01 (361 ± 29)

6.2.3. Action recognition
We further conducted an experiment on activity recognition from videos with the KTH action and YouTube datasets. 

Similar to the static image case, we follow the standard approach for generating sparse representations for videos as in 
[31]. We densely sample 16 × 16 × 10 blocks from the video and extract HoG-3d [15] features from the sampled blocks. 
We then use smooth sparse coding and max-pooling to generate the video representation (dictionary size was fixed at 1024
and cross-validation was used to select the regularization and bandwidth parameters). Previous approaches include sparse 
coding, vector quantization, and k-means on top of the HoG-3d feature set (see [31] for a comprehensive evaluation). As 
indicated by Table 5, smooth sparse coding results in higher classification accuracy than previously reported state-of-the-art 
and standard sparse coding on both datasets (see [31,18] for a description of the alternative techniques).

6.2.4. Discriminatory power
In this section, we describe another experiment that contrasts the codes obtained by sparse coding and smooth sparse 

coding in the context of a subsequent classification task. We set the dictionary size to be 1024. We first compute the codes 
based on patches and combine them with max-pooling to obtain the image level representation. Note that a smiler study 
was undertaken in [33]. We then compute the fisher discriminant score (ratio of within-class variance to between-class 
variance) for each dimension as a measure of discrimination power realized by the representations.

Fig. 1, graphs a histogram of the ratio of smooth sparse coding Fisher score over standard sparse coding Fisher score 
R(d) = F1(d)/F2(d) for the 15-scene dataset (top) and the Youtube dataset (bottom). Note that the patches used are com-
mon for both the procedures and the features obtained are more discriminatory for smooth sparse coding. The histograms 
demonstrate the improved discriminatory power of smooth sparse coding over regular sparse coding.

6.3. Experiments using temporal smoothing

In this section we describe an experiment conducted using the temporal smoothing kernel on the Youtube persons 
dataset. We extracted SIFT descriptors for all 16 ×16 patches sampled on a grid of step size 8 and used smooth sparse coding 
with time kernel to learn the codes and max pooling to get the final video representation. We avoided pre-processing steps 
such as face extraction or face tracking. The dictionary size was set at 1024. Note that in the previous action recognition 
video experiment, video blocks were densely sampled and used for extracting HoG-3d features. In this experiment, on 
the other hand, we extracted SIFT features from individual frames and used the time kernels to incorporate the temporal 
information into the sparse coding process.

For this case, we also compared to the more standard fused-lasso based approach [27]. Note that in fused Lasso based 
approach, in addition to the standard L1 penalty, an additional L1 penalty on the difference between the neighboring frames 
for each dimensions is used. This tries to enforce the assumption that in a video sequence, neighboring frames are more 
related to one another as compared to frames that are farther apart.

Table 6 shows that smooth sparse coding achieved higher accuracy than fused lasso and standard sparse coding. Smooth 
sparse coding has comparable accuracy on person recognition tasks to other methods that use face-tracking, for example 
[14]. Another advantage of smooth sparse coding is that it is significantly faster than sparse coding and the fused lasso.

7. Semi-supervised smooth sparse coding

One of the primary difficulties in several image classification tasks is the lack of availability of labeled data. This mo-
tivated a semi-supervised learning approach for dictionary learning [22]. The motivation for such an approach is that 
unlabeled data from a related domain might have useful visual patterns that might be similar to the problem at hand. 
Hence, learning a high-level dictionary based on data from a different domain aids the classification task at hand.

We propose that the smooth sparse coding approach might be useful in this setting. The motivation is as follows: in 
semi-supervised learning, typically not all samples from a different data set might be useful for the task at hand. Using 
smooth sparse coding, one can provide more weight to the useful points more than the other points (the weights being 
calculated based on feature/time similarity kernel) to obtain better dictionaries and sparse representations. Other approach 
to handle a lower number of labeled samples include collaborative modeling or multi-task approaches which impose a 
shared structure on the codes for several tasks and use data from all the tasks simultaneously, for example group sparse 
coding [2]. The proposed approach provides an alternative when such collaborative modeling assumptions do not hold, by 
using relevant unlabeled data samples that might help the task at hand via appropriate weighting.
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Fig. 1. Comparison between the histograms of Fisher discriminant score realized by sparse coding and smooth sparse coding. The images represent the 
histogram of the ratio of smooth sparse coding Fisher score over standard sparse coding Fisher score (top: image data set; bottom: video). A value greater 
than 1 implies that smooth sparse coding is more discriminatory.

Table 6
Linear SVM accuracy for person recognition task from YouTube face video dataset. The number in bracket corresponds to training time. The format corre-
sponds to average ± standard error.

Method Fused Lasso SC SSC-tricube

Accuracy 68.59 ± 1.91 (703 ± 36) 65.53 ± 2.64 (691 ± 36) 71.21 ± 3.12 (382 ± 26)

We now describe an experiment that examines the proposed smoothed sparse coding approach in the context of semi-
supervised dictionary learning. We use data from both the CMU Multi-PIE dataset (session 1) and faces-on-tv dataset 
(treated as frames) to learn a dictionary using a feature similarity kernel. We follow the same procedure described in 
the previous experiments to construct the dictionary. The dictionary size was set at 1024. In the test stage we use the 
obtained dictionary for coding data from sessions 2, 3, 4 of the CMU-Multi-PIE data set, using smooth sparse coding. Note 
that semi-supervision was used only in the dictionary learning stage and the classification stage used supervised SVM.

Table 7 shows the test set error rate and compares it to standard sparse coding and LLC [34]. Smooth sparse coding 
achieves significantly lower test error rate than the two alternative techniques. Based on the experiments, we conclude that 
the smoothing approach described in this paper may be useful in cases where there is a small set of labeled data, such as 
semi-supervised learning.

8. Discussion and future work

We propose a simple framework for incorporating similarity in feature space and space or time into sparse coding. We 
also propose in this paper modifying sparse coding by replacing the lasso optimization stage by marginal regression and 
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Table 7
Semi-supervised learning test set error: Dictionary learned from both CMU Multi-PIE and faces-on-tv data set 
using feature similarity kernel, used to construct sparse codes for CMU Multi-PIE data set. The format correspond 
to average ± standard error.

Method SC LLC SSC-tricube

Test error 6.345 ± 0.32 6.003 ± 0.43 4.975 ± 0.10

adding a constraint to enforce incoherent dictionaries. The resulting algorithm is significantly faster. This facilitates scaling 
up the sparse coding framework to large dictionaries, an area which is usually restricted due to intractable computation.

This work leads to several interesting follow-up directions. On the theoretical side, local convergence of Lasso-based 
sparse coding has been analyzed recently – preliminary examination suggests that the proposed marginal-regression based 
sparse coding algorithm might be more favorable for the local convergence analysis. It is also interesting to explore tighter 
generalization error bounds by directly analyzing the solutions of the marginal regression based iterative algorithm. Method-
ologically, it is interesting to explore if using an adaptive or non-constant kernel bandwidth leads to higher accuracy. 
Furthermore alternative methods for imposing incoherence constraints that may lead to easier optimization is an inter-
esting direction to investigate.

Appendix A. Data set description

A.1. CMU Multi-PIE face recognition

The CMU Multi-PIE dataset is one of the standard data sets used for face recognition experiments. The data set contains 
337 subjects across simultaneous variations in pose, expression, and illumination. We ignore the 88 subjects that were 
considered as outliers in [32] and used the rest of the images for our face recognition experiments. We follow [32] and use 
the 7 frontal extreme illuminations from session one as train set and use other 20 illuminations from Sessions 2–4 as test 
set.

A.2. 15 scenes categorization

The 15-Scenes data set [16] consists of 4485 images from 15 categories, with the number of images each category 
ranging from 200 to 400. The categories correspond to scenes from various settings like kitchen, living room etc.

A.3. Caltech-101 data set

The Caltech-101 data set [9] consists of images from 101 classes like animals, vehicles, flowers, etc. The number of images 
per category varies from 30 to 800. Most images are of medium resolution (300 × 300). All images are used gray-scale 
images. We use 30 images per category and test on the rest.

A.4. Activity recognition

The KTH action dataset [24] consists of 6 human action classes. Each action is performed several times by 25 subjects 
and is recorded in four different scenarios. In total, the data consists of 2391 video samples. The YouTube actions data set 
has 11 action categories and is more complex and challenging [18]. It has 1168 video sequences of varied illumination, 
background, resolution etc.

A.5. Youtube person data set

The YouTube person data set [14] contains 1910 sequences of 47 subjects, mostly actors/actresses and politicians, from 
YouTube. As most of the videos are low resolution and recorded at high compression rates, they are noisy and contain 
low-quality image frames.

A.6. Faces-on-TV data set

The data was first used in [6]. Here we replicate the data set description from [6] for the sake of completeness. The 
dataset contains approximately 3,000 face images extracted from 8 episodes of the TV-show LOST, annotated with ground-
truth names, along with approximately registered faces and frame information if one wants to re-extract the faces from the 
videos. It also contains automatically extracted names using a screenplay aligned with the video closed captions.
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Appendix B. Generalization bounds for learning problems

In this section, we reproduce the specific generalization bounds we used from the literature, for the sake of completeness. 
We first state the following general lemma regarding generalization error bounds with slow rates for a learning problem 
with given covering number bounds.

Lemma 1 (see [29]). Let Q be a function class of [0, B] functions with covering number ( C
ε )d > e

B2 under | · |∞ norm. Then for every 
t > 0 with probability at least 1 − e−t , for all f ∈Q, we have:

E f ≤ En f + B
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Next, we state a general lemma regarding generalization error bounds with fast rates:

Lemma 2 (see [29]). Let Q be a function class of [0, 1] functions that can be covered for any ε > 0 by at most (C/ε)d balls of radius ε
in the | · |∞ metric, where C ≥ e and β > 0. Then with probability at least 1 − exp (−t) we have for all functions f ∈Q,

E f ≤ (1 + β)En f + K (d,m, β)
d ln(Cm) + t

n
,
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Note that K (d, m, β) is non-increasing in d, m as a consequence of which we immediately have the following corollary, 
which we use in the statement of our main theorem for fast rates.

Corollary 1. Let Q be as above. For d ≥ 20, m ≥ 5000 and β = 0.1, we have with probability at least 1 − exp (−t) for all functions 
f ∈Q,

E f ≤ (1.1)En f + 9
d ln(Cm) + t

n
.

The proofs of Lemma 1 and Lemma 2 could be found in [29].

References

[1] P.L. Bartlett, O. Bousquet, S. Mendelson, Local Rademacher complexities, Ann. Stat. (2005).
[2] S. Bengio, F. Pereira, Y. Singer, D. Strelow, Group sparse coding, in: Annual Conference on Neural Information Processing Systems, 2009.
[3] D. Bertsekas, On the Goldstein–Levitin–Polyak gradient projection method, IEEE Trans. Autom. Control (1976).
[4] A. Bronstein, P. Sprechmann, G. Sapiro, Learning efficient structured sparse models, in: International Conference on Machine Learning, 2012.
[5] C. Chang, C. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol. (2011).
[6] T. Cour, B. Sapp, C. Jordan, B. Taskar, Learning from ambiguously labeled images, in: IEEE Conference on Computer Vision and Pattern Recognition, 

2009.
[7] L. Devroye, G. Lugosi, Combinatorial Methods in Density Estimation, Springer, 2001.
[8] J. Fan, J. Lv, Sure independence screening for ultrahigh dimensional feature space, J. R. Stat. Soc., Ser. B, Stat. Methodol. (2008).
[9] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object 

categories, Comput. Vis. Image Underst. (2007).
[10] C.R. Genovese, J. Jin, L. Wasserman, Z. Yao, A comparison of the lasso and marginal regression, J. Mach. Learn. Res. (2012).
[11] T. Hastie, C. Loader, Local regression: automatic kernel carpentry, Stat. Sci. (1993).
[12] J. Huang, T. Zhang, D. Metaxas, Learning with structured sparsity, J. Mach. Learn. Res. (2011).
[13] R. Jenatton, J. Mairal, G. Obozinski, F. Bach, Proximal methods for sparse hierarchical dictionary learning, in: International Conference on Machine 

Learning, 2010.
[14] M. Kim, S. Kumar, V. Pavlovic, H. Rowley, Face tracking and recognition with visual constraints in real-world videos, in: IEEE Conference on Computer 

Vision and Pattern Recognition, 2008.
[15] A. Kläser, M. Marszałek, C. Schmid, A spatio-temporal descriptor based on 3d-gradients, in: British Machine Vision Conference, 2008.
[16] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE Conference on 

Computer Vision and Pattern Recognition, 2006.
[17] H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Annual Conference on Neural Information Processing Systems, 2007.
[18] J. Liu, J. Luo, M. Shah, Recognizing realistic actions from videos in the wild, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[19] C. Loader, Local Regression and Likelihood, Springer, 1999.
[20] D.G. Lowe, Object recognition from local scale-invariant features, in: IEEE Conference on Computer Vision and Pattern Recognition, 1999.
[21] L. Meier, P. Bühlmann, Smoothing l1-penalized estimators for high-dimensional time-course data, Electron. J. Stat. 1 (2007) 597–615.
[22] R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from unlabeled data, in: International Conference on Machine 

Learning, 2007.
[23] I. Ramırez, F. Lecumberry, G. Sapiro, Sparse modeling with universal priors and learned incoherent dictionaries, Tech report, IMA, University of Min-

nesota, 2009.

http://refhub.elsevier.com/S0004-3702(16)30050-9/bib626172746C65747432303035s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib42656E67696F32303039s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6265727473656B617331393736s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib62726F6E737465696E323031326C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib4343303161s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib636F7572323030396C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib636F7572323030396C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib646576726F796532303031636F6D62696E61746F7269616Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib66616E32303038s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib666569323030376C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib666569323030376C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib67656E6F766573653132s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib686173746965313939336C6F63616Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6875616E67323031316C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6A656E6174746F6E3230313070726F78696D616Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6A656E6174746F6E3230313070726F78696D616Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6B696D3230303866616365s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6B696D3230303866616365s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6B6C7365723230303873706174696Fs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C617A65626E696B323030366265796F6E64s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C617A65626E696B323030366265796F6E64s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C656532303037656666696369656E74s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C6975323030397265636F676E697A696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C6F61646572313939396C6F63616Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6C6F7765313939396F626A656374s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib6D6569657232303037736D6F6F7468696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7261696E613230303773656C66s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7261696E613230303773656C66s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib72616D6972657A32303039s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib72616D6972657A32303039s1


K. Balasubramanian et al. / Artificial Intelligence 238 (2016) 83–95 95
[24] C. Schüldt, I. Laptev, B. Caputo, Recognizing human actions: a local SVM approach, in: International Conference on Pattern Recognition, 2004.
[25] C.D. Sigg, D. Dikk, J.M. Buhmann, Learning dictionaries with bounded self-coherence, IEEE Trans. Signal Process. (2012).
[26] M.V. Solodov, Convergence analysis of perturbed feasible descent methods, J. Optim. Theory Appl. (1997).
[27] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the fused lasso, J. R. Stat. Soc., Ser. B, Stat. Methodol. 67 (2005).
[28] J.A. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Trans. Inf. Theory (2004).
[29] D. Vainsencher, S. Mannor, A.M. Bruckstein, The sample complexity of dictionary learning, J. Mach. Learn. Res. (2011).
[30] M.P. Wand, M.C. Jones, Kernel Smoothing, CRC Press, 1994.
[31] H. Wang, M.M. Ullah, A. Klaser, I. Laptev, C. Schmid, Evaluation of local spatio-temporal features for action recognition, in: British Machine Vision 

Conference, 2009.
[32] J. Yang, K. Yu, T. Huang, Supervised translation-invariant sparse coding, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[33] K. Yu, Y. Lin, J. Lafferty, Learning image representations from the pixel level via hierarchical sparse coding, in: IEEE Conference on Computer Vision 

and Pattern Recognition, 2011.
[34] K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding, in: Annual Conference on Neural Information Processing Systems, 2009.
[35] W.I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-Hall International, 1969.

http://refhub.elsevier.com/S0004-3702(16)30050-9/bib736368756C6474323030347265636F676E697A696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7369676732303132s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib736F6C6F646F7631393937s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib74696273686972616E69323030357370617273697479s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib74726F707032303034s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7661696E73656E636865723131s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib77616E64313939346B65726E656Cs1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib77616E67323030396576616C756174696F6Es1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib77616E67323030396576616C756174696F6Es1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib79616E673230313073757065727669736564s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib79756C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib79756C6561726E696E67s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7975323030396E6F6E6C696E656172s1
http://refhub.elsevier.com/S0004-3702(16)30050-9/bib7A616E6777696C6C313936396E6F6E6C696E656172s1

	Smooth sparse coding via marginal regression for learning sparse representations
	1 Introduction
	2 Related work
	3 Smooth sparse coding
	3.1 Spatio-temporal smoothing

	4 Marginal regression for smooth sparse coding
	5 Sample complexity of smooth sparse coding
	6 Experiments
	6.1 Speed comparison
	6.2 Experiments with kernel in feature space
	6.2.1 Smoothing at pixel level versus feature level
	6.2.2 Image classiﬁcation
	6.2.3 Action recognition
	6.2.4 Discriminatory power

	6.3 Experiments using temporal smoothing

	7 Semi-supervised smooth sparse coding
	8 Discussion and future work
	Appendix A Data set description
	A.1 CMU Multi-PIE face recognition
	A.2 15 scenes categorization
	A.3 Caltech-101 data set
	A.4 Activity recognition
	A.5 Youtube person data set
	A.6 Faces-on-TV data set

	Appendix B Generalization bounds for learning problems
	References


