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a b s t r a c t

An efficient analytical method is presented for the closed form solution of continuous beams

on two-parameter elastic foundations. The general form of the governing equation is

reduced to a system of first-order differential equations with constant coefficients. The

system is then solved using Jordan form decomposition for the coefficient matrix and

construction of the fundamental solution. Common types of boundary conditions (pinned

and roller support, hinge connection, fixed and free end) can be applied to an arbitrary point

on the beam. The method has a completely computer-oriented algorithm, computational

stability, and optimal conditionality of the resultant system and is a powerful alternative to

the analytical solution of beams with multipoint boundary conditions on one- or two-

parameter elastic foundations. Examples with different types of loading, boundary condi-

tions, and foundation are presented to verify the method.
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1. Introduction

Recent developments in computer science and mathematics
and the need for accurate solutions to problems have resulted
in the development of analytical [1] and semi-analytical or
discrete-continual methods [2]. For practical problems, it is
often more suitable and easier to use an analytical solution
than to employ an expensive finite element method (FEM)-
based software. Analytical solutions employ a mathematical
expression that yields the values of the unknown quantities at
any location on a body (the total structure or physical system
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of interest) and are valid for an infinite number of locations.
This property considerably reduces the computational com-
plexity of the problem, an issue that requires special
consideration in numerical methods [3].

Akimov and Sidorov [4] proposed an analytical solution to
multipoint boundary problems for systems of ordinary differen-
tial equations with piecewise constant coefficients. Their
method can be applied to continuous beams, which is a leading
engineering problem. Beams in different types of bridges,
continuous beams of multi-span girders [5], long strip founda-
tions of buildings, and railroad and retaining walls [6] are
included in this type of problem. The most important application
 Province, Iran. Tel.: +98 71 53340519.
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Fig. 1 – Beam on elastic foundation with different types of
loading and boundary conditions.
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of the proposed method is an analytical solution to continuous
beams on elastic foundations. The method can also be applied to
beams with structural or foundation discontinuities (changes in
the elastic property or cross-section of the beam or stiffness of
the soil) for beams without foundations by changing the
coefficient matrix at the relevant interval.

2. Beam on elastic foundation

A computational model of a beam on an elastic foundation is
often used to describe different engineering problems [7]. Much
literature has been devoted to evaluation of the behavior of
soil-structure interaction (beam, in this case) [8–22]. Some [8–13]
present the soil as an idealized Winkler model [23] in which
disconnected soil springs are used to represent the compressive
resistance of soil. These Winkler springs are characterized by
the spring constant ks, which is often related to the soil subgrade
modulus. Lin and Adams [8] and Kaschiev and Mikhajlov [9]
investigated the problem of beams on tensionless Winkler
foundations. DasGupta [10], Banan et al. [11] and Aköz and
Kadioğlu [12] researched finite element approaches for the
solution of beams on elastic Winkler foundations.

In the analytical field, Borák and Marcián [13] proposed a
modified Betti's theorem for an analytical solution to beams on
elastic foundations. The results were acceptable and the
ground behavior could be more realistically simulated than the
Winkler model. Mechanical resistance in soil arises from both
compressive and shear strains; thus, it is more realistic to
consider shear interactions between the soil springs, which
distributes ground displacement and stress beyond the loaded
region. This leads to a simplified-continuum model [14] in
which shear interaction is mathematically taken into account
by introducing a shear parameter ts. This parameter repre-
sents the shear force at any vertical section of the foundation.
Considering the general nature of the governing differential
equation describing beam deflection on a two-parameter (ks
and ts) foundation, ts can also be interpreted as the tensile force
in the membrane connecting the soil springs. In this way, the
tensile resistance generated in the ground from the placement
of geosynthetics can also be taken into account [15].

Zhaohua et al. [16], Karamanlidis et al. [17], Razaqpur and
Shah [18], and Morfidis et al. [19] researched a finite element
solution to beams resting on two-parameter elastic founda-
tions. Beams on three-parameter elastic foundation were
studied by Avramidis and Morfidis [20] and Morfidis [21]. Dinev
[22] proposed an analytical solution to a beam on an elastic
foundation using singularity functions and considering two
parameters for the soil model. This is applicable only for the
solution to problems without special external boundary
conditions; however, many practical problems have different
external boundary conditions that must be considered, such as
continuous strip foundations resting on piles, railroad foun-
dations, and fixed-end foundations. The present paper
proposes an exact analytical solution to beams with multiple
external boundary conditions. In this method, common types
of boundary conditions such as pinned and roller supports,
hinge connections, and fixed and free ends at arbitrary points
along the beam also allows consideration of an elastic
foundation with one or two soil parameters.
Section 3 presents the formulation of the problem. Section 4
describes the analytical solution to the resultant multipoint
boundary problem in detail. Various types of boundary
conditions are introduced in Section 5. Section 6 uses numerical
examples to demonstrate the efficiency, accuracy, and validity
of the method. Section 7 presents the concluding remarks.

3. Formulation of problem

The derivation of a field equation is based on variation in the
total potential energy function and employs the following
assumptions [22]:

� The beam and the soil materials are linearly elastic,
homogeneous and isotropic;

� The displacements are small compared to the beam thick-
ness;

� The axial strains are small compared to unity;
� The transversal normal strains and the shear stresses are
negligibly small;

� The cross-sections are plane and perpendicular to the
longitudinal axis before and after deformation (Bernoulli
hypothesis).

@4w
@x4

�a
@2w
@x2

þ bw ¼ FðxÞ (1)

a ¼ 2ts
EI

; b ¼ ks
EI

; FðxÞ ¼ P
EI

dðx�x0Þ (2)

Here, w is vertical displacement of the beam, a and b are soil
parameters, and F(x) is the load applied to the structure and is
represented by the delta function in distribution theory [24]. A
typical beam on an elastic foundation with different types of
loading and boundary conditions is shown in Fig. 1. Consider
the following relations:

w0ðxÞ ¼ uðxÞ;
u0ðxÞ ¼ MðxÞ

EI
;

M0ðxÞ ¼ QðxÞ;
Q 0ðxÞ ¼ FðxÞ þ aMðxÞ

EI
�bwðxÞ

8>>>>><
>>>>>:

(3)

The assumed sign convention for moments, shear force,
deflection, and cross-section rotation for Eq. (3) are presented
in Fig. 2. The governing differential equation of the problem
(Eq. (1)) can now be transformed into a system of four differ-
ential equations of first order in matrix form as:

y0ðxÞ ¼ f ðxÞ þ AyðxÞ (4)

yðxÞ ¼ y1ðxÞ y2ðxÞ y3ðxÞ y4ðxÞ½ �T (5)



Fig. 2 – Sign convention for moments, shear force, deflection
and cross-section rotation.
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y1ðxÞ ¼ wðxÞ; y2ðxÞ ¼ uðxÞ; y3ðxÞ ¼ MðxÞ; y4ðxÞ ¼ QðxÞ (6)

A ¼
0 1 0 0
0 0 1 0
0 0 0 1
�b 0 a 0

2
664

3
775; f ðxÞ ¼ 0 0 0 FðxÞ½ �T (7)

where yðxÞ is the n-dimensional vector of unknowns, A is the
matrix of constant coefficients of the nth order, f ðxÞ is the n-
dimensional vector function of the right side, x is variable for
the longitudinal direction, wðxÞ is transverse displacement of
the beam, u(x) is the angle of rotation, M(x) is the bending
moment, and Q(x) is the shear force.

4. Analytical solution to multipoint boundary
problem

Assume the system consists of n equations, nb boundary
conditions, and k = 1, . . ., nb � 1 individual fragments in which
the physical and geometrical parameters (boundary condi-
tions, beam properties, soil parameters, etc.) of the structure
are constant. The solution to the problem can be obtained by
convolution of fundamental function (e(x)) [24] of the system of
ordinary differential equations (Eq. (4)) and the applied forces.

4.1. Jordan decomposition of coefficient matrix

The first step for the solution of the problem is the Jordan
decomposition [25,26] of the coefficient matrix of this system
(Ak), for each individual fragment, as follows:

where Tk is a non-singular matrix of the nth order whose
columns are the eigenvectors of the matrix Ak; Jk the Jordan
matrix of the nth order; Jk,p the Jordan block corresponding to
the eigenvalue lk,p with order of mk,p; u the number of different
eigenvalues. A typical example of the above Jordan decompo-
sition, for the coefficient matrix, is presented in Appendix A.

4.2. Construction of the fundamental function

The essential approach to obtain the solution of the
problem is the construction of the fundamental matrix
function of the system, which satisfies the following
condition:

e
ð1Þ
k ðxÞ�AkekðxÞ ¼ dðxÞI or e

ð1Þ
k ðxÞ�AkekðxÞ ¼ 0; x 6¼ 0
ekðþ0Þ�ekð�0Þ ¼ I

�
(9)

The construction of this function involves calculating the
Jordan form of coefficient matrix. However, there is no universal
numerically stable method for constructing and numerical
implementation of Jordan forms [25,26]. Besides, coefficient
matrices in problems of structural mechanics normally have the
Jordan cells with non-identity order. Therefore, the following
method is proposed for decomposition of the coefficient matrix
and construction of fundamental matrix function:

As known, the nonzero vector tk in Aktk ¼ lktk is called the
right eigenvector of the matrix Ak corresponding to the
eigenvalue lk, and the nonzero vector ~tk in AT

k
~tk ¼ lk~tk, is

called the left eigenvector of matrix Ak, corresponding to the
eigenvalue lk. Let Tk be a nonsingular nth order matrix,
containing eigenvectors and root vectors of the matrix Ak:

Tk ¼ ½ tk;1 tk;2 . . . tk;n �T; Aktk;s ¼ lk;ptk;s s ¼ 1 þ
Xp�1

i¼1

mk;i (10)

Then in accordance with equality of the eigenvalues of
matrices Ak and AT

k , we can write:

~Tk ¼ T�1
k (11)

where ~Tk is the nonsingular nth order matrix, containing
eigenvectors and root vectors of the matrix AT

k , and

~Tk ¼ ½~tk;1 ~tk;2 . . . ~tk;n �
T
; AT

k
~tk;s ¼ lk;p~tk;s ,~t

T

k;sAk

¼ lk;p~t
T

k;s; s ¼ 1 þ
Xp�1

i¼1

mk;i (12)

Thus, Jordan decomposition of matrix Ak has the following
form:

Ak ¼ TkJk~Tk (13)

The eigenvalues of the matrices Ak and AT
k should be

reordered according to the following condition:

8 lk;p; p ¼ 1; . . .; lk;1 : lk;p 6¼ 0; mk;p ¼ 1; ~mk;p ¼ 1
8 lk;p; p ¼ lk;1 þ 1; . . .; lk;2 : lk;p 6¼ 0; mk;p ¼ 1; ~mk;p > 1
8 lk;p; p ¼ lk;2 þ 1; :::; uk : lk;p ¼ 0

8<
:

(14)

where ~mk;p; mk;p are the multiplicity of the eigenvalue lk,p and
dimension of the Jordan block, respectively. This sorting is
guarantees the proper correspondence between the eigenvec-
tors of matrices Ak and AT

k , and allow to use ~Tk instead of T�1
k .

For the construction of the fundamental matrix function, the
coefficients matrix Ak of the system is represented by the
following formulas:

Ak ¼ Ak;þ þ Ak;� þ Ak;0; Ak;þ ¼ Pk;þAk; Ak;�

¼ Pk;�Ak; Ak;0 ¼ Pk;0Ak ¼ Ak�Ak;þ�Ak;� (15)

where Pk,+ is projection onto the subspace, corresponding to
eigenvectors of nonzero eigenvalues with nonnegative real
part; Pk,� is projection onto the subspace corresponding to the
eigenvectors of nonzero eigenvalues with negative real parts
and Pk,0 is the projection onto the subspace corresponding to
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eigenvectors of zero eigenvalues. These projection matrices can
be obtained as:

Pk;þ ¼ Tk;þð~Tk;þTk;þÞ�1~Tk;þ; Pk;�

¼ Tk;�ð~Tk;�Tk;�Þ�1~Tk;�; Pk;0 ¼ I�Pk;þ�Pk;� (16)

where Tk,+ and ~Tk;þ are the n � n+ and n+ � n matrices, contain-
ing right and left eigenvectors corresponding to nonzero eigen-
values of the matrix Akwith nonnegative real part, respectively;
Tk,�and ~Tk;� are the n � n�and n� � n matrices, containing right
and left eigenvectors corresponding to nonzero eigenvalues of
the matrix Ak with negative real parts, respectively. I is the
identity matrix of the appropriate order; n+ and n� are the
number of nonzero eigenvalues with non-negative and negative
real parts, respectively. Finally, the fundamental solution of the
problem (3) can be constructed by formulas:

ekðxÞ ¼ Tk;1~ek;0ðxÞ~Tk;1 þ xðx; 0Þ Pk;0 þ
Xmk;max�1

j¼1

xj

j!
Aj

k;0

2
4

3
5 (17)

Tk;1 ¼ Tk;þjTk;�
� �

; ~Tk;1 ¼ ~Tk;þj~Tk;�
� �

(18)
B�
i Ei�1ðxbi �0ÞCi�1 þ Bþ

i Eiðxbi þ 0ÞCi ¼ g�i þ gþi �B�
i Si�1ðxbi �0Þ�Bþ

i Siðxbi þ 0Þ; i ¼ 2; . . .; ni�1
Bþ
1 E1ðxb1 þ 0ÞC1 þ B�

nb
Enb�1ðxbnb�0ÞCnb�1 ¼ gþ1 þ g�nb�Bþ

1 S1ðxb1 þ 0Þ�B�
nb
Snb�1ðxbnb�0Þ

(
(27)
xðx; lk;pÞ ¼ xðxÞ; Reðlk;pÞ�0
�xð�xÞ; Reðlk;pÞ > 0

�
; xðxÞ ¼ 1; x > 0

0; x < 0
;

�
(19)

~ek;0ðxÞ ¼ diagfxðx; lk;1Þ expðlk;1xÞ; . . .; xðx; lk;lÞ expðlk;lxÞg (20)

where ek(x) is the fundamental solution of the problem;
mk;max ¼ maxl�i�u mk;i (mk,max has a finite and small value);
mk,i is the order of the Jordan block corresponding to the
eigenvalue lk,i; l = nk,+ + nk,� (nk,+ + nk,� is the number of non-
zero eigenvalues of the matrix Ak).

4.3. Final solution of the problem

The solution, which is obtained by the construction of the
fundamental matrix function, can be used for the beams on an
infinite elastic foundation (the foundation extends beyond the
edges of the beam) and without additional internal boundary
points. The solution of the problems with the finite foundation
(the foundation does not extend beyond the edges of the beam)
and other boundary conditions, the following procedure
should be considered. Let consider a multipoint boundary
problem (i.e. a problem with additional internal boundary
points) for the first order ordinary differential equations (4).

y0k�Akyk ¼ f k; x 2
[nb�1

k¼1

ðxbk; xbkþ1Þ (21)

B�
i yðxbi �0Þ þ Bþ

i yðxbi þ 0Þ ¼ g�i þ gþi ; i ¼ 2; . . .; nb�1 (22)

Bþ
1 yðxb1 þ 0Þ þ B�

nb
yðxbnb�0Þ ¼ gþ1 þ g�nb (23)

where B�
i ; Bþ

i ði ¼ 2; . . .; nb�1Þ, Bþ
1 and B�

nb
are given n � n matrices

of boundary conditions; g�i ; gþi ði ¼ 2; . . .; nb�1Þ, gþ1 and g�nb are
given n-dimensional vectors of the right parts of the boundary
conditions. The solution of the problem (21)–(23) on an arbitrary
interval ðxbk; xbkþ1Þ is represented by ykðxÞ and is defined by:

ykðxÞ ¼ ðeðx�xbkÞ�eðx�xbkþ1ÞÞCk þ eðxÞ�f kðxÞ; x 2 ðxbk; xbkþ1Þ (24)

where Ck is the vector of constant coefficients of n order, *
denotes the convolution operation and

f kðxÞ � f ðxÞuðx; xbk; xbkþ1Þ; uðx; xbk; xbkþ1Þ

¼ 1; x 2 ðxbk; xbkþ1Þ
0; x =2 ðxbk; xbkþ1Þ

(
(25)

Eq. (24) can be rewritten in the following form

ykðxÞ ¼ EkðxÞCk þ SkðxÞ; x 2 ðxbk; xbkþ1Þ (26)

where EkðxÞ ¼ eðx�xbkÞ�eðx�xbkþ1Þ; SkðxÞ ¼ eðxÞ�f kðxÞ.

Substituting (26) in (22) and (23), the resultant system of
linear algebraic equations for the coefficients Ck, can be
obtained.

This system can be rewritten in a matrix form:
KC ¼ G (28)

where

K ¼

K1;1 0 0 . . . 0 K1;nb�1

K2;1 K2;2 0 . . . 0 0
0 K3;2 K3;3 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . Knb�1;nb�2 Knb�1;nb�1

2
66664

3
77775 (29)

G ¼ G
T
1 G

T
2 . . . G

T
nb�1

h iT
C ¼ C

T
1 C

T
2 . . . C

T
nb�1

h iT
(30)

Ki;i�1 ¼ B�
i Ei�1ðxbi �0Þ; Ki;i ¼ Bþ

i Eiðxbi þ 0Þ; K1;1

¼ Bþ
1 E1ðxb1 þ 0Þ; K1;nb�1 ¼ B�

nb
Enb�1ðxbnb�0Þ (31)

G1 ¼ gþ1 þ g�nb�Bþ
1 S1ðxb1 þ 0Þ�B�

nb
Snb�1ðxbnb�0Þ

Gi ¼ g�i þ gþi �B�
i Si�1ðxbi �0Þ�Bþ

i Siðxbi þ 0Þ; i ¼ 2; . . .; ni�1

(

(32)

It is vital to note that diagonal blocks of the matrix K are
practically singular, thereby resulting in several problems to
which iterative solution methods cannot be applied in
particular [27]. Hence, the Gaussian elimination method with
pivoting is required [27]. It is useful to specify ways of
eliminating this disadvantage. Therefore, the obtained system
of equation (29) is transformed as follows:

1- Each equation of the system, since the first one, is replaced
by the sum of this equation and the subsequent one
(instead of the initial first equation, we took the sum of the
first and second initials, instead of the second initial – the
sum of the second and third initials, and so on).
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2- Finally, take the sum of the initial last equation with the
initial first equation, instead of the initial last equation.
Finally, we had:

K ¼

~K1;1 ~K1;2 0 ::: 0 ~K1;nb�1
~K2;1

~K2;2
~K2;3 ::: 0 0

0 ~K3;2 ~K3;3 ::: 0 0
::: ::: ::: ::: ::: :::

~Knb�1;1 0 0 ::: ~Knb�1;nb�2 ~Knb�1;nb�1

2
66664

3
77775 (33)

5. Boundary conditions

The solution will be complete after the addition of boundary
conditions. In this problem, the boundary condition is the
relation of transverse displacement of the beam and its
derivatives at the left- and right-hand sides of the boundary
points. The type of support connection determines the degrees
of freedom (displacement or force) that the support can resist.
A boundary condition is distinctly defined by four-in-four
matrices for the left and right hand sides of the boundary
point. This matrix specifies the relation for each yi(x) to the left
and right sides of the support (for the first and last boundary
point, only a right-hand condition is needed). Note that, in
practice, these types of boundary conditions are ideal
representations of special conditions regarding the beam
(e.g., connected pile or retaining wall or arrangement of
reinforced bars to construct hinge connection). Common types
of boundary conditions are explained below.

5.1. Fixed end

In this type of boundary condition, transverse deflection w and
angle of rotation u equal zero; therefore, the boundary matrices
for this support are:

Bþ
1 ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; B�

nb
¼

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

2
6664

3
7775; gþ1 ¼ g�nb ¼

0

0

0

0

2
6664

3
7775
(34)

5.2. Pinned support

In this type of boundary condition, transverse deflection w and
bending moment M equal zero; thus, the boundary matrices
for this support are:

Bþ
1 ¼

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

2
6664

3
7775; B�

nb
¼

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

2
6664

3
7775; gþ1 ¼ g�nb ¼

0

0

0

0

2
6664

3
7775
(35)

5.3. Roller support

In this type of boundary condition, the relation between the left
and right sides of the support and corresponding matrices are:
Dw ¼ wþ�w� ¼ 0; w� þ wþ ¼ 0; DM ¼ Mþ�M� ¼ 0;

uþ þ u� ¼ 0 (36)

B�
1 ¼

�1 0 0 0

1 0 1 0

0 0 �1 0

0 �1 0 0

2
6664

3
7775; Bþ

i ¼

1 0 0 0

1 0 0 0

0 0 1 0

0 1 0 0

2
6664

3
7775; gþi ¼ g�i ¼

0

0

0

0

2
6664

3
7775
(37)

5.4. Hinge connection

Here, the relation between the left and right sides of the
support and the corresponding matrices of this type of
boundary condition are:

Dw ¼ wþ�w� ¼ 0; M� þ Mþ ¼ 0; DM ¼ Mþ�M�

¼ 0; DQ ¼ Qþ�Q� ¼ 0 (38)

B�
i ¼

�1 0 0 0

0 0 1 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775; Bþ

i ¼

1 0 0 0

0 0 1 0

0 0 1 0

0 0 0 1

2
6664

3
7775; gþi ¼ g�i ¼

0

0

0

0

2
6664

3
7775

(39)

5.5. Free end

In this type of boundary condition, bending moment M and
shear force Q equal zero; therefore, the matrices for this
support are:

Bþ
1 ¼

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

2
6664

3
7775; B�

nb
¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; gþ1 ¼ g�nb ¼

0

0

0

0

2
6664

3
7775
(40)

6. Examples and comparison with results of
previous studies

Numerous examples have been considered to illustrate the
efficiency of the method and three are presented below. The
software was developed using Intel Parallel Studio XE [28]
(FORTRAN programming language [29]) and the results were
compared with a FEM solution (ANSYS [30]) and results of
previous studies.

6.1. Beam on Winkler foundation

In this example, a straight free-ended beam 5.0 m in length
with rectangular cross-sections where b = 0.4 m, h = 0.2 m,
ks = 1 � 108N/m3, and E = 2 � 1011 Pa is supported by a
Winkler elastic foundation. It was subjected to three types
of loads and the results were compared with the results of
Borák and Marcián [13] (Fig. 3). The results of the solution for
vertical deflection, angle of rotation, and internal forces for a
finite elastic foundation (does not extend beyond the edges



Fig. 3 – Free-ended beam on Winkler foundation.
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of the beam) and an infinite elastic foundation (extends
beyond the edges of the beam) are shown in Fig. 4 and
Table 1.

For a beam on a finite elastic foundation, the results
were coincident with the reference; however, when assum-
ing an infinite elastic foundation, the maximum deflection
and angle of rotation decreased and the maximum bending
moment increased about 50%. Deformation in the part of
the foundation that extended beyond the edges of the
beam may mean that the shear at the free ends will not
equal zero. The advantage of the proposed method is its
consideration of an infinite foundation and multiple
Fig. 4 – Results of the solution: (a) vertical deflection, (b) ang
boundary conditions for the beam, which allow its use for
general applications.

6.2. Beam on elastic foundation with two-parameter for
soil behavior

A continuous beam on a two-parameter elastic foundation [18]
was solved using the proposed method and is shown in Fig. 5.
The parameters were ks = 64.0 kN/m2, 2ts = 800.0 kN, and
EI = 2000.0 kN m2. The solution was presented for a Winkler
foundation and a two-parameter foundation and the results
compared with those from Razaqpur and Shah [18] (Fig. 6). In
le of rotation, (c) bending moment and (d) shear force.



Table 1 – Comparison of vertical deflection, angle of rotation and internal forces for the finite and infinite elastic foundation.

L (m) w (m) u (rad) Q (kN) M (kN m)

Ref
[13]

Present
Aa

Present
Bb

Ref
[13]

Present
A

Present
B

Ref [13] Present
A

Present
B

Ref [13] Present
A

Present
B

0.00 0.00339 0.00338 0.00152 �0.00051 �0.00051 0.00085 2.8 2.8 52.9 0.1 0.1 10.3
0.50 0.00313 0.00313 0.00188 �0.00056 �0.00056 0.00063 66.7 66.7 87.4 17.3 17.3 43.1
1.00 0.00279 0.00279 0.00206 �0.00092 �0.00092 �0.00001 124.2

�125.2
124.2

�125.2
124.7

�122.9
64.4 64.4 94.2

1.50 0.00222 0.00222 0.00187 �0.00127 �0.00127 �0.00065 �73.5 �73.5 �83.9 14.5 14.5 42.7
2.00 0.00157 0.00157 0.00148 �0.00126 �0.00126 �0.00088 �39.1 �39.1 �53.1 �12.9 �12.9 9.0
2.50 0.00099 0.00099 0.00103 �0.00107 �0.00107 �0.00086 �16.8 �16.8 �29.8 �26.7 �26.7 �11.2
3.00 0.00052 0.00052 0.00064 �0.00079 �0.00079 �0.00070 �3.7 �3.7 �16.8 �31.5 �31.5 �23.0
3.50 0.00020 0.00020 0.00035 �0.00049 �0.00049 �0.00045 �0.1 �0.1 �9.4 �32.5 �32.5 �28.9
4.00 0.00004 0.00004 0.00020 �0.00019 �0.00019 �0.00017 1.8 1.8 �3.7 �31.5

�1.6
�31.5
�1.6

�32.3
�2.8

4.50 �0.00006 �0.00006 0.00012 �0.00017 �0.00017 �0.00013 1.8 1.8 �1.0 �0.6 �0.6 �3.7
5.00 �0.00014 �0.00014 0.00006 �0.00017 �0.00017 �0.00010 �0.1 �0.1 0.8 0.1 0.1 �3.7

a A: finite foundation.
b B: infinite foundation.

Fig. 5 – Continuous beam on two-parameter elastic foundation.
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this example, a beam with multipoint boundary conditions
and different types of loading was accurately solved and
compared with the finite element solution proposed by
Razaqpur and Shah [18]. The proposed analytical approach
was very efficient and considerably reduced the computation-
al complexity of the problem, especially for long beams. The
finite element model accurately evaluated the behavior of the
beam on a two-parameter elastic foundation; however, in
accordance with the proposed analytical solution, the high
value of the second soil parameter (2ts) affected the shear force
diagram with respect to Winkler foundation (maximum 38%),
which did not agree with the Razaqpur and Shah model. The
extreme values of the results, especially under concentrated
force, considerably increased for the Winkler foundation with
Table 2 – Comparison of extreme values for Winkler and two-

Parameter Minimum 

Winkler
foundation

Two-paramet
elastic foundat

w (m) �0.035128 �0.02542 

u (rad) �0.01927 �0.014017 

Q (kN) �40.0 �41.5 

M (kN m) �50.0 �51.5 
respect to a beam on a two-parameter elastic foundation. The
extreme values are listed in Table 2.

6.3. Continuous beam on elastic Vlasov foundation

The continuous beam with concentrated forces shown in Fig. 7
was considered. The soil parameters were obtained using the
Vlasov model [14] as ks = 6730.77kN/m2 and ts = 7692.31 kN.
The beam was 20 m in length and had a bending stiffness of
EI = 276041.66 kN m2. The diagrams for vertical deflection and
the internal forces in comparison with the FEM solution
(Winkler foundation) are shown in Fig. 8.

The analytical solution obtained by the proposed method
was coincident with the FEM solution; however, the accuracy
parameter elastic foundation.

Maximum

er
ion

Winkler
foundation

Two-parameter
elastic foundation

0.00286 0.001424
0.01923 0.013896
40.0 40.0
54.8 51.5



Fig. 6 – Results of the solution: (a) vertical deflection, (b) angle of rotation, (c) shear force and (d) bending moment.

Fig. 7 – Continuous beam on Vlasov elastic foundation.
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Fig. 8 – Results of the solution; vertical deflection, shear force and bending moment.
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and continuity of the shear diagram increased considerably.
The small difference between the results of the two soil
models can be attributed to the relatively small value for the
shear parameter of the foundation (ts). Consideration of this
parameter lowers the vertical deflection of the beam,
especially under concentrated forces.

7. Conclusion

The examples given demonstrate the advantages of the
proposed approach for an analytical solution to a continuous
beam on one or two-parameter elastic foundations. The
method has a completely computer-oriented algorithm,
computational stability, optimal conditionality of the resul-
tant system, and is applicable for different loads at an
arbitrary point or region on the beam. In addition, common
boundary conditions such as pinned and roller supports,
hinge connections, and fixed and free ends at arbitrary points
along the beam, can be considered. Structural or foundation
discontinuities (changes in the physical properties of the
beam or foundation) can be applied by changing the
coefficient matrix at the relevant interval. The method has
been shown to be a powerful alternative to the analytical
solution of beams with multipoint boundary conditions on
one or two-parameter elastic foundations, especially for
programming of specialized software packages oriented to
analytical solutions. In future research, the analytical solu-
tion for curved beams on elastic foundations and beams on
infinite elastic foundations with additional internal boundary
points can be investigated.

Appendix A

A typical example of Jordan decomposition for the 4 T 4
coefficient matrix of a system first order differential equations
of a beam on Winkler elastic foundation:

A ¼
0 1 0 0
0 0 1 0
0 0 0 1
�4 0 0 0

2
664

3
775; J ¼

1 þ i 0 0 0
0 1�i 0 0
0 0 �1 þ i 0
0 0 0 �1�i

2
664

3
775;

T ¼ 0:1826

�1�i �1 þ i 1�i 1 þ i

�2i 2i 2i 2i

2�2i 2 þ 2i �2�2i �2 þ 2i

4 4 4 4

2
6664

3
7775;

T�1 ¼ 0:3423

�2 þ 2i 2i 1 þ i 1

�2�2i �2i 1�i 1

2 þ 2i �2i �1 þ i 1

2�2i 2i �1�i 1

2
6664

3
7775
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