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a b s t r a c t

The modern construction industry makes use of innovative production and assembly

technologies, whose purpose is to implement reliable and simple structures. One product

of such technologies is an arch-shaped steel sheet section that might be used as a self-

supporting covering for general construction and industrial building construction. Consid-

ering complex geometry and boundary conditions, the FEM model of this structure is

sophisticated and may contain errors. This paper presents numerical approaches for the

calculation of sheet metal section elements of such coverings, namely two numerical

approaches that differ in detailing of the properties of considered physical object. The first

approach is based on a model that is characterized by simplified geometry and boundary

conditions. The second scenario concerns a detailed FEM model with actual geometry

captured by a laser triangulation method, experimentally determined material stress–strain

relationship, and load conditions measured on an experimental stand. The results obtained

with the use of computer simulations based on both approaches described above and

experimental results are compared. The errors caused by simplification of the first numeri-

cal model are discussed. Finally, an acceptable reduction of FEM model complexity is

proposed for the analyzed structure.
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1. Introduction

Self-supporting arch-shaped covering structures originally
served as temporary facilities for military and agricultural
purposes. This covering type gained popularity mainly due
to its simple design, quick installation and relatively low
implementation costs compared to traditional types of
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covering structures (reinforced concrete, wood, and steel
elements). Currently, this type of covering (the ABM 240
system) is used more and more often in the construction
of public buildings. This technology is used to build
coverings with spans ranging from 6 to 30 m with varying
rise-to-span ratios [1]. The covering elements referred to as
sections are fabricated on-site by the use of mobile rolling
mills (Fig. 1), which form individual curved sections by
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Fig. 1 – Section surfaces.
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cold rolling from a single steel sheet (with a thickness of
0.7–1.5 mm).

Once formed, the section features the characteristic
corrugated and wavy surfaces (Fig. 1). Individual sections
are joined together by rolling down the free edges. The result is
a curved surface constituting a self-supporting roof of the
structure.

The existing calculation methods are based on the
assumptions for steel bar structures analyzed in flat static
systems [2–4]. For calculation of the structural components
and stability, the following standards have been used: EN 1993-
1-1 [5], EN 1993-1-3 [6], EN 1993-1-5 [7] and EN 1993-1-6 [8]. The
normative documents present general principles for deter-
mining the load bearing capacity and stability, but they are not
relevant to arch elements with a corrugated and wavy centre
surface. Therefore, it is not possible to estimate the local loss of
stability of a shell member with complex geometry. The height
of the corrugation and waves of the centre surface of the
section can be different depending on the bending radius of
the arch and thus have a direct impact on the load bearing
capacity and stability of the structure. The first pilot tests of
full-sized arch-shaped elements of sheet metal sections were
performed in the Building Research Institute [9]. The tests
showed a strong impact of the local loss of load capacity on the
stability and load capacity of the entire structural system. The
mode of local stability loss of corrugated profiles subjected to
axial and eccentric compression loads has been investigated in
paper [10]. The results of numerical calculations and experi-
mental tests were compared, and they showed a divergence
between the results of the tests and those of the calculations
due to the local loss of stability; in the presented study, the
axial and compression stiffnesses of the tested profiles had not
been taken into account. Similar studies were performed in
papers [11,12]. These concerned the ABM 120 system. The
study used point system measurement and numerical models
with geometry created by scanning. The main difference was
that the work of Walentynski et al. [11,12] did not take into
account local strain measurements. Test results and calcula-
tions relate only to critical loads.

The main problem in implementing numerical analysis is
the selection of a suitable shell model, which is a representa-
tion of the actual real-life working conditions of the system.
This article describes the process of searching for the optimal
model, taking into account the different levels of modelling
precision and the adoption of boundary conditions. As a result
of the process, information is obtained about possible errors of
the systematic models. This information is useful for further
work on full-sized modelling of covering elements and
analysis of structures in real-life load conditions. In paper
[13], a comparison between three different FEM models with
simple boundary conditions and different levels of geometry
simplification were performed, the model that gave results
closest to the experimental ones was chosen for further
analysis. The article presents the impact of selected modelling
parameters on computational results using two numerical
model: the first from the previous study [13]; and the second
with actual geometry captured by a laser triangulation
method, experimentally determined material models
assigned to different regions of the structure, and load
conditions measured on an experimental stand. The compu-
tational results will be compared with the available experi-
mental results.

2. Assumptions

The computations and tests concern a section, which is a
fragment of an arch-shaped covering fabricated using the ABM
240 technology. The assessment of simplified numerical
models is presented in the article [13]. This article analyses
three numerical section models that differed by the accuracy
of geometry mapping. The models were assessed by compar-
ing the calculation results with the test results. On the basis of
the analysis, a single model that showed good similarity with
the test results was selected. It can be assumed that the
analysis described in the article [13] is an approximation of
the modelling problem for a single reference value, i.e., the
breaking force; however, it does not answer the question of
how changes of individual parameters affect the computation
result of the full range of reference value variation (a force of 0
to a destructive force). To fully compare the results of
calculations, the simplified model selected in the article [13]
was compared with the results of the model with perfectly
mapped geometry, obtained as a result of 3D scanning. The
difference between those two FEM models occurs also in
boundary conditions, described in detail below.

In the article, two modelling scenarios are considered:
Scenario 1: The bilinear material model (referred to as the

plastic web) is assumed on the basis of measuring the yield
strength of the steel sheet prior to forming it into a section.
After forming a section with the use of a rolling mill, the
essential parameters of the geometry are measured (the
parameters are marked in Fig. 9, and values are listed in
Table 2), allowing for the creation of its own model. On this
basis, a numerical model is created in commercial software
from ANSYS. The element load method is assumed, i.e.,
eccentric compression carried out by axial forced displace-
ment as a single-parameter extortion and theoretical support
conditions. On the basis of these data, numerical analysis is
performed. The result of the computation is the value of the
support reaction as a function of forced displacement.

Scenario 2: The numerical model is created by importing a
3D scan of the test item. This model contains all of the
geometric details. The conditions for support and load, in
the form of displacements and rotation angles of supports, are
adopted (multi-parameter geometric extortions) from earlier
tests performed and entered as forced in the computational



Fig. 2 – Test bench diagram [13].
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model. The material model is adopted based on the measured
strength properties of samples cut out from the element after
the tests. The result of the computation is the value of the
support reaction as a function of forced displacement.

It should be emphasized that Scenario 1 contains only
vertical displacement as a load condition, in contrast to
Scenario 2, which includes displacement and rotation, the
same as in the test. Detailed data are summarized in Section
4.4. By comparing results of numerical analysis performed
with the use of modelling approaches 1 and 2 against the test
results, the model error is determined.

3. Tests

3.1. Tested specimens

The test piece is a section of the arch with a length of 1.0 m and a
bending radiusof 18 m, made of steel with a nominal thickness of
1.00 mm and the declared class S320GD+Z. The test bench design
recreates the interaction of the other parts of the arch-shaped
covering so that it maintains the section in a stable position and
ensures transmission of internal forces according to the diagram
of impacts of the remaining part of the arch. The X-axis is
assigned to the specimens in such a way that it passes through
the centre of gravity of cross sections, along the longitudinal axis.
For test purposes, it was assumed that the load is applied to the
Fig. 3 – Test bench d
eccentricity (e), which in turn gives rise to the axial force (F),
displacement (dx), and bending moment (MZu; MZd) (Fig. 2). This
arrangement of forces corresponds to the actual distribution of
forces in the cross-section of internal forces.

The tests of a section length were carried out on a test
bench prototype (Fig. 3), which allows for axial and eccentric
compression of the test piece. The load was carried out with
the use of hydraulic cylinders, and the force was measured
with the use of dynamometers coupled with a displacement
measuring system. Measurement of displacement as a
function of force was carried out continuously until the
destruction of the sample.

The test piece (1) is mounted by means of screw connections
in the top and bottom stabilization plates (2). The bottom plate is
pin-supported. A pressure bar (3) is attached to the top plate,
fitted with two dynamometers (4). Force is applied to the
dynamometers through the use of a set of tendons and pulleys
(5) fixed to hydraulic cylinders (5). The entire weight of the
handles and the test piece is compensated by gravity through a
set of weights (7) attached to the pressure bar. The measure-
ment system (Fig. 4) consists of 8 inductive sensors, which are
marked in the drawing with the symbols A1, A2, B1, B2, B3, B4,
C1, and C2.

Sensors are used to measure the displacement X1 of the
upper stabilization plate and the rotation angles of the upper
and lower plates: Rx1, Rx2, Ry1, Ry2, Rz1, Rz2. The test results are
shown graphically in Fig. 5.
escription [13].



Fig. 4 – The measuring system and determination of the measured values, (a) the measuring system, (b) determination of
displacements and rotations.

Fig. 5 – Measurement results, (a) the angles of rotation, (b) displacement along X1 axis.

Fig. 6 – Areas and directions of sampling.
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3.2. Material testing and material stress–strain
relationship

The purpose of the test is to determine the actual yield
strength and ultimate strength of the test pieces in accordance
with EN ISO 6892-1:2009 [14]. Other properties, such as the
longitudinal elastic modulus and Poisson's ratio, are adopted
in accordance with the standards [5]. On the basis of the test
results, a material model will be developed for adoption in the
numerical computation. The method for testing the properties
of the materials is described in scenarios 1 and 2 (item 2). They
include the following:

Scenario 1: Base material tests. Samples were cut out from a
flat metal sheet prior to the formation of the section. At this
stage, 30 static tensile tests were carried out.
Scenario 2: Testing the material cut out from the test piece.
Samples were taken from the three areas marked in Fig. 6.

Samples for the tests were collected from the test piece
after tests from areas A, B, and C, outside of the zone of local
loss of stability. Area (A) includes the central part of the
corrugated surface, area B includes the wavy and corrugated
webs, and area (C) refers to the web parts with longitudinal



Table 1 – The results of the static tensile test.

Scenario 1 Scenario 2

Area A (corrugation) Area B (waves) Area C (flat)

Re = 366.3 MPa
Rm = 383.6 MPa

Re = 353.9 MPa
Rm = 399.4 MPa

Re = 374.0 MPa
Rm = 391.4 MPa

Re = 351.8 MPa
Rm = 393.5 MPa
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ribbing but without corrugation. The direction of sampling in
various areas is shown by arrows in Fig. 6. The results of the
static tensile tests (average values) in terms of yield strength
(Re) and ultimate strength (Rm) are summarized in Table 1.

The test results were assessed statistically. The purpose of
the assessment was to determine whether the test results
obtained for sheet samples in areas A, B, and C (scenario 2) did
not differ statistically from the results of the flat sheet
(scenario 1). To verify the normality of the distribution of
the test results, the Shapiro–Wilk test was used for the flat
sheet tests (30 trials). The hypothesis of the normal distribu-
tion of the results has been confirmed. Further analysis
included test results of samples from areas A, B, and C. Test
statistics were applied for the average values of Student's
t-distribution with and without the assumption that the
variances are equal in populations. On the basis of the
analyses, it was demonstrated that the test results of samples
from areas A, B, and C are significantly different from the
results obtained from the flat sheet tests. It was found that,
statistically, the results of the samples from areas A, B, and C
also differ from each other. This means that the results of
the series of 30 flat sheet tests cannot be used as the basis of
the development of a material model that will be used in the
calculation of geometric models in accordance with scenarios
2. A single model of the material behaviour to be used in the
modelling approach 2 also cannot be used. Therefore, different
material models were subsequently developed. The results of
this work are presented in Section 4.1.

4. Numerical analysis

4.1. Material stress–strain relationship

In scenario 1, a steel stress–strain relationship is assumed to
be of elastic–plastic nature with a nominal plateau slope in
accordance with [7]. Fig. 7 shows a bilinear model with a solid
Fig. 7 – Material mod
line and the averaged measurement result of 30 static tensile
tests (scenario 1) with a dotted line. The graphical representa-
tion of the material model is shown on a scale of strain limited
to 0.02%.

Next, the stress–strain relationship has been entered into
the Engineering Data Sources module of the ANSYS system
[15], into bilinear isotropic hardening.

In scenario 2, the stress–strain relationship adopted for
numerical analysis with the use of the ANSYS programme [15]
was developed in co-ordinates strue–eln. The steel material
properties are adopted as true stress–strain curve modified on
the basis of the test results as follows:

eln ¼
Z l

l0

dl
l
¼ ln

l
l0

� �
¼ ln

l0 þ Dl
l0

� �
¼ ln 1 þ Dl

l0

� �

¼ lnð1 þ eengÞ (1)

strue ¼ sengð1 þ eengÞ (2)

where eln – logarithmic strain, strue – true stress, seng – engi-
neering stress (test result), eeng – engineering strain (test re-
sult), Dl – increase in the sample length [mm], l0 – initial sample
length [mm].

Stress–strain relationship is determined separately for each
location on the surface of the section, i.e., areas A (corruga-
tion), B (waves), and C (flat) according to the marks in Fig. 6. A
graphical representation of the stress–strain relationship with
a scale of strain limited to 0.02% with respect to the test results
is shown in Fig. 8. Next, the numerical material stress–strain
relationship will be implemented in the module Engineering
Data Sources of the ANSYS system, into multilinear isotropic
hardening.

The material models were assigned to areas corresponding
to the sampling point for strength tests. A graphical
representation of the areas with the assigned material model
is presented in Fig. 11(b).
el – Scenario 1.



Fig. 8 – Material model area A (corrugation), B (waves), and C (flat) – Scenario 2.

Fig. 9 – Sample view and explanation of symbols used in Table 2 [13].
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4.2. Preparation of the geometric data for models

Two models were prepared for computation. The first model
(scenario 1) was developed on the basis of the measurement of
the test piece and entered into the Workbench module of the
ANSYS programme. Geometric data were obtained from the test
piece measurements. The identification of dimensions is shown
in Fig. 9, and the measurement results are provided in Table 2.

The model includes the corrugation of the central part of
the section (sector A), the corrugation and waving of the webs
(sector B) and the non-ribbed portions of the webs with the
bends (sector C). The longitudinal axis is curved on the arch
with a radius of 18 m. The model assumes simplifications,
which consist of the omission of bend radii on the border
between sectors A, B and C. The longitudinal ribbing on the
surface of sector C was also disregarded.

The geometry of the section of profiled steel sheets (second
model – scenario 2) was obtained with the use of a handheld
scanner, the Nikon ModelMaker MMCx, mounted on 7-axis
articulated arm, the Nicon MCAx [16] (Fig. 10). The measure-
ment is based on a laser triangulation method, with the
measurement accuracy equal to �0.1 mm. The obtained
geometry is represented as a point cloud, which was loaded
into the FEM model.

4.3. Selection of finite elements

In models implemented in scenarios 1 and 2, Shell 281-type
elements, shell elements with 8 nodes and six degrees of
freedom at each node (three degrees of freedom of displace-
ment and three degrees of freedom of rotation), were used
with a quadratic interpolation function [17]. The parameters of
the model meshing implemented in scenarios 1 and 2 are
summarized in Table 3.

The parameter element quality (EQ) concerns the quality of
the finite element mesh. This parameter is in the range



Table 2 – Actual dimensions of the sample (all values are given in mm).

Width and height of web and flanges Depth and
length of the

wave

Depth and
length of

corrugation

Sheet thickness

a1 a2 b1 b2 c1 c2 c3 c4 c5 e1 e2 f1 f2 t1 t2 t3 t4

679 659 1018 1015 203.1 169.1 109.9 102.4 26.6 242.1 8.83 34.5 2.73 0.95 0.95 0.95 0.95

Fig. 10 – Geometry measurements of the section of profiled
steel sheets.
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between 0 and 1, where the value of 0 for the surface area (2D)
is defined as an element of poor quality, and the value of 1
denotes a very good mesh. The parameter aspect ratio in the
surface arrangement (2D) is defined as the ratio of the longest
side to the shortest side of the finite element. The best
parameters of the mesh are when the AR coefficient achieves
the value of 1.0. Detailed rules for the determination of these
Fig. 11 – Numerical model of the section, (a) model 1 (cr
parameters are given in [17]. To evaluate the relationship of
qualitative models, a reference level was adopted for the finite
element mesh created for Model 2 (the 3D scan). For Model 1,
the numbers of elements and nodes were selected in such a
way that the discrepancy in relation to the reference model
was not greater than 0.5%. EQ and AR parameters are close to 1,
which means that the mesh elements are of good quality.

4.4. Conditions for support and load

The upper and lower supports are provided by a type of remote
displacement [17] that maintains the Rigid-type relationship.
This means that the degrees of freedom of displacement and
rotation are associated with the central fulcrum in the local
coordinate system. This method of support corresponds to
fixing the rigid plate to the upper and lower edges of the
section. The values of displacement and the angles of rotation
may be released or forced.

Scenario 1 is computed with the assumption that the load is
only a kinematic extortion by the displacement, which is
applied to the upper support in the X-axis (axial displacement).

Scenario 2 is computed with the assumption that the load is
a kinematic extortion by the displacement and the angles of
rotation of the upper and bottom support. Extortion values are
adopted from the tests. Table 4 presents a detailed description
of the support and load conditions.

For the purpose of entering data load as boundary
conditions (remote displacements) of the FEM model, the
loads have been discretized into 10 intervals. Since scenario 1
eated in ANSYS workbench), (b) model 2 (3D scan).



Table 3 – Finite element mesh parameters.

Scenario 1 (model 1) Scenario 2 (model 2)

N E EQ AR N E EQ AR

172.903 57.329 0.988 1.075 172.686 57.567 0.951 1.174

N, number of nodes; E, number of finite elements; EQ, element quality; AR, aspect ratio.

Table 4 – Conditions for support and load.

Scenario 1 Scenario 2

Top support Bottom support Top support Bottom support

X1 = displacement X1 = 0 X1 = test X1 = 0
Z1 = 0; Z2 = 0; Z1 = 0; Z2 = 0;
Y1 = 0; Y2 = 0 Y1 = 0; Y2 = 0
Rx1 = 0; Ry1 = 0 Rx1 = test Ry1 = 0
Ry1 = 0; Ry2 = 0 Ry1 = test Ry2 = test
Rz1 6¼ 0 Rz2 6¼ 0 Rz1 = test Rz2 = test

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 6 ( 2 0 1 6 ) 6 4 5 – 6 5 8652
assumes remote displacements in X1 direction only, the
extortion is composed of 10 equal sequences of displacement,
with the value increasing from 0 to 3.0 mm in 0.3-mm
intervals. In the scenario 2, the extortions are experimentally
measured, therefore displacements and rotations obtained
from the tests were discretized into 10 intervals. The
discretization of displacements and angles of rotation of
supports is presented in Fig. 12. The solid lines show the test
results, and the points on the lines are data discretely assigned
to 10 sequences.

The computation was performed using the arch-length
approach with the full Newton–Raphson method [17].

4.5. Comparison between computational results

The results of the computations for the simplified model
(scenario 1) and the scanned 3D model (scenario 2) are
summarized in the following configurations:

� a graph showing the displacement–force (reaction) in the full
load range with respect to the test and computational
results,

� a graph showing the percentage discrepancy of the
computational results with respect to the test results and
the mutual evaluation of the divergence of the numerical
models,

� maps of reduced stresses, displacements and strains for the
reaction peak value caused by the kinematic extortion of
appropriate models,

� strain area maps with a size of 200 mm � 200 mm located in
the central zone of the computational models.

The results of the analysis of the force as a function
of vertical displacement are presented in Fig. 13. The force
is obtained as a reaction to the actions of extortion
kinematic.

In the graph, the peak forces and the corresponding
displacements are identified. The peak force is reached when
the strength limit of the element is achieved. When this value
is exceeded, the test piece and the computational models lose
their stability (falling curve). Table 5 summarizes the tests and
computational results, which contain the peak values of forces
and their corresponding axial displacements.

Because it is difficult to quantitatively evaluate the
deviation of the computational results from the test results
for each load level in Fig. 13, the test and computational
results are presented in a unified data system for further
analysis.



Fig. 12 – Test results and discretization of data in the scale of 10 sequences of extortions (test): (a) rotation angles of the top
and bottom support with respect to the z-axis, (b) rotation angles of the top support with respect to the X-axis, (c)
displacement of the top support along the X-axis, and (d) rotation of the top support with respect to the X-axis.
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Table 6 presents the percentage deviation of the computa-
tional models from the test results over the entire range of
load, determined with the use of the formula:

D%;i ¼
Ftest;i�Fcal;i

Ftest;i
�100 ½%� (3)

where Ftest, i – test result presented as a reaction initiated by
kinematic extortion on the ith step (i = 1, 2, . . ., 10), Fcal, i –

computational result presented as a reaction initiated by ki-
nematic extortion on the ith step (i = 1, 2, . . ., 10).

A load step shall be understood as a conventional analysis
interval used by the ANSYS software, in which a change in the
kinematic conditions occurs (see Section 4.4). Table 6 shows
the percentage divergences in the entire range of the analysis.
Table 5 – Test and computation results in relation to the
force peak value.

Test model Numerical model

Scenario 1 Scenario 2

Force [kN] 32.79 34.60 33.14
Displacement [mm] 3.16 3.43 3.11
Divergences in computational results with respect to tests in
the initial stages of extortion increase, reaching approximately
about 13%. In the subsequent steps, as extortion increases, the
divergences decrease; in step 5 of the analysis, the computa-
tional and test results converge, which corresponds to the
force of approximately 22.5 kN. Then, the discrepancy
increases and, upon achieving the peak force values, reaches
1.07% for the scenario 2 and 5.52% for the scenario 1.

The computational results are shown as a map of
displacements and stresses in Fig. 14. The figure shows the
map of reduced stress and the map of axial displacement for
reaction peak values caused by kinematic extortion. Addition-
ally, a graph is presented that shows an increase in the
reaction and an increase in the stress reduced as a function of
the increase (10 steps) of the kinematic extortion. The
computational results of the simplified model (scenario 1)
indicate the symmetry of the stress and displacement maps.
The effect of the simplifications is visible, especially in the
transition area between the corrugation web and corrugation
flanges (see Fig. 1). The force peak value in Fig. 14(b) is present
in the plastic zone. As far as the computations of the 3D model
(scenario 2) are concerned, maps at the peak force range of
reduced stresses do not show large areas of stress increase as
in the simplified model (scenario 1). This is due to the



Fig. 13 – The test and computational results in the coordinate system of force–displacement.
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redistribution of stresses in the area of curvature, i.e., the
transition of the corrugated and wavy surfaces (areas A and B,
Fig. 11b). The map of axial displacement is asymmetric, which
means that the computational result is affected by additional
kinematic extortion conditions (rotation of the top support;
see Table 4). The peak reaction value obtained in the 3D model
computation (scenario 2) is in the plastic zone (Fig. 14e), as in
the simplified model. In this case, the stress curve as a function
of the increase in kinematic extortions has a different nature
than in the simplified model. This is due to the use of three
material models assigned to the corresponding cross-sectional
areas (description item 4.1). In both computational scenarios,
the elastic working range of the system is exhausted at a
relatively early stage of the load, i.e., at a force of approxi-
mately 8 kN, which is approximately 25% of the maximum
reaction.

Validation of the numerical models was performed with
the utilization of data obtained from the 3D DIC method
Table 6 – Percentage differences between the test and the com

Load step Test Scenario 2 Scenari

Ftest [kN] Fcal,2 [kN] Fcal,1 [k

0 0 0 0 

1.0 3.28 2.85 2.86
2.0 9.29 8.38 8.43
3.0 14.49 13.54 13.64
4.0 18.93 18.27 18.43
5.0 22.66 22.47 22.73
6.0 25.72 26.08 26.45
7.0 28.16 29.02 29.54
8.0 30.03 31.21 31.91
9.0 31.36 32.58 33.49
10.0 32.79 33.14 34.60
[9,13,18]. The DIC 3D method works in full-field and, in
experimental data, provides much more information than
point-wise techniques. The measurements of displacements
are simultaneously performed in all three directions for
thousands or millions of points. In-plane strains (exx, ezz –

strains along x and z coordinates) are calculated from
displacements using the following equations [18]:

exx ¼ @u
@x

þ1
2

@u
@x

� �2

þ @w
@x

� �2
" #

ezz ¼ @w
@z

þ 1
2

@u
@z

� �2

þ @w
@z

� �2
" # (4)

In paper [13] the measurements of section of arch-shaped
steel sheets with utilization of 3D DIC method are presented.
The resulting displacement maps, obtained over the entire
sample surface, have been used for the purpose of qualitative
validation of FEM model, estimated accuracy of displacement
putational results.

o 1 Scenario 2 Scenario 1

N] D%2 [%] formula (3) D%1 [%] formula (3)

0 0
 13.11 12.80
 9.80 9.26
 6.56 5.87
 3.49 2.64
 0.84 �0.31
 �1.40 �2.84
 �3.05 �4.90
 �3.93 �6.26
 �3.89 �6.79
 �1.07 �5.52



Fig. 14 – Computational results for peak load values, (a) reduced stress map – scenario 1 model, (b) reaction graph, stress as a
function of the increase in extortion – scenario 1 model, (c) displacement map – scenario 1 model, (d) reduced stress map –

scenario 2 model, (e) reaction graph, stress as a function of the increase in extortion – scenario 2 model, and (f) displacement
map – scenario 2 model.
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measurements was 20 mm. This accuracy was not suitable for
determining accurate strain field distribution that would be
used in further analysis. Therefore, in analysis presented in this
paper, the area of interest was limited to the centre part of the
measured sample. The area of interest (AOI) covers the area of
200 � 200 [mm2] and is located in relation to the test piece as
shown in Fig. 15. The obtained accuracy of displacement
Fig. 15 – (a) Photo of the measurement system based on 3D DIC,
Location of the area of interest, is marked on both images, in the p
measurements was 5 mm. The measurement set comprises two
Point Grey Grasshopper (2448 � 2048 pixels) monochromatic
cameras equipped with 70-mm lenses, set at an angle of 308 and
pointing to the same AOI of the specimen (Fig. 15). Measured
displacements contain two components, the displacement of
the sample and the random displacement of the stabilization
plates (the bottom stabilization plate was placed on a bearing).
 (b) technical drawing of the measured sample–front view.
icture (a) by green highlight, in the picture (b) by red border.



Fig. 16 – Detailed location of the strain observation area, (a) test piece, (b) computational model.

Fig. 17 – In the pictures areas covering the AOI of 3D DIC analysis are presented: (a) map of elastic strains (X direction) at the
peak load value for the scenario 1; (b) map of elastic strains (X direction) at the peak load value for scenario 2; (c) experimental
map of the strains (X direction); (d) section of the sample with the black lines marked L1, indicating the position of the cross-
section analyzed in Fig. 18.
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The displacements of stabilization plates can be treated as rigid
body movements, which do not influence the strain calculation
of the 3D DIC algorithm. Therefore, for the purposes of
validating the numerical models, the obtained strain maps
were used.

For the purpose of determining the quantitative and
qualitative divergences in the computational results with
respect to the strain area, the central area was selected for
computational models. The detailed location of the field of
observation of Huber–Mises strains is shown in Fig. 16. The
horizontal lines indicate the top (Hu), the bottom (Hd) border
area and the axial location of the field (Hc) of the area. The
vertical lines indicate the left and right vertical boundaries and
the axial location of the field of the observation area for the test
piece (VL,test, Vr,test, Vc,test), and a similar definition is true for
the area in the computational model (Vl,cal, Vr,cal, Vc,cal).

The measured sample is corrugated in the X direction, and
therefore the strains in the X direction are considered in the
following analysis. In Fig. 17a–c, the maps of elastic strains of
scenarios 1 and 2 at the peak load value are compared to
measure the strain map at maximum load in the AOI. In order
to quantitatively compare the results, the profile L (Fig. 17d) of
strains exx is presented in Fig. 18.

The values of minimum and maximum elastic strains for
the 90% of the maximum load (0.9Fmax) fall in the following
ranges:



Fig. 18 – Strains in the X direction at points along line L1.
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� eyy, max = 0.0015 m/m; eyy, min = �0.0016 m/m; scenario 1
� eyy, max = 0.0012 m/m; eyy, min = �0.0017 m/m; scenario 2
� eyy, max = 0.0008 m/m; eyy, min = �0.0029 m/m; test DIC

The values of maximum and minimum elastic strains for
the max load (Fmax) fall in the following ranges:

� eyy, max = 0.0017 m/m; eyy, min = �0.0018 m/m; scenario 1
� eyy, max = 0.0019 m/m; eyy, min = �0.0019 m/m; scenario 2
� eyy, max = 0.0011 m/m; eyy, min = �0.0039 m/m; test DIC

The maps of elastic strains are of a similar nature and
demonstrate the variability of direction in the corrugated area.
Divergences of FEM models in strain limits for the two different
scenarios are approximately 10%. Strain values along the line L
have similar character for both numerical models. Strain
values obtained from tests and numerical simulations
converge (Fig. 18) for the force of 0.9Fmax, along the line L, in
its part starting at 25 mm and ending at 100 mm (see Fig. 17). At
the same part of line L, strain values convergence of the
numerical simulations and experimental results for the peak
force (Fmax) decreases. For the part of line L starting at 100 mm,
the strains obtained from the simulation and experiment
differ considerably. Difference between the FEM analysis and
experimental results increases further with the increase of the
applied force, which may be associated with a local loss of
stability in this area.

5. Conclusion and further works

The analysis of arch-shaped covering sections is difficult as
both an experimental test and a computational task because
of the complex geometry and load conditions. The section
geometry results from the conditions of forming by cold
rolling, and loads are a representation of the work of a discrete
piece of the self-supporting system of a roof covering.
The tests concerned the impact of the geometrical parameters
of complex numerical models of section and boundary
conditions (the method of the model load on the material)
on the searched value, which is the reaction of the kinematic
extortion throughout the load range, i.e. from the zero starting
point to the destruction of the test piece.

Two scenarios were analyzed. The first concerned a
simplified geometry model (our own model), a single parame-
ter extortion (axial displacement) and a bilinear material
model. The second model was characterized by precisely
mapped geometry obtained by 3D scanning, multi-parameter
geometric extortions (axial displacements, angles of rotation
of supports), which mapped the test conditions, and different
material stress–strain relationship assigned to respective
areas on the surface of the model. Computational models
were compared with the test results in relation to the same
parameter, i.e., the reaction resulting from kinematic extor-
tions.

In the process of the analyses, it was demonstrated that the
divergences of the test and computational results of the two
models over the entire area of sought values vary within the
range of 0.3% to 13%. At the peak load value, the model
analyzed in scenario 1 shows a 5.5% divergence of computa-
tional results compared to the tests, and 1.1% in scenario 2.

When analyzing the selected displacement field, the
computational results of both models are presented only with
respect to the elastic strain. Plastic strains diverge consider-
ably.

The strain results in the central 200 mm � 200 mm area
being presented in the elastic range. The calculation results
most similar to the measurements are those obtained from
scenario 2. The results of the calculations in scenario 1
protrude from the others. The reason for this phenomenon
may be dependent on the level of detail of material models and
section geometries. The ability to assess the deformation in a
defined area allows for determining the mechanism and
causes of local instability.

In practical applications, the data adopted for the model
analysis in accordance with scenario 2 are difficult to
implement because some of them (kinematic parameters
extortion, material data) are available only after laboratory
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tests and after the application of a complex 3D geometry
scanning process. The analysis in this case is of a cognitive
nature and provides an answer to the question: ‘‘how closely
can modelling approach the actual test conditions?’’ Preparing
the model implemented in accordance with scenario 1
requires relatively few operations compared to the model of
scenario 2. It is sufficient to correctly enter the geometry of the
measurable section characteristics (overall dimensions, cor-
rugation, and waves) on the basis of measurements with
common instruments and perform verification of the proper-
ties of the output material (steel sheet before section mill
rolling), adopting a simplified bilinear model of the material on
this basis. In this case, some simplifications can be adopted,
e.g., certain features of the section geometry can be ignored,
and intervals and values of load values (kinematic extortions)
can be assumed a priori. Such simplifications do not contribute
to substantial errors (only the evaluation of a single parameter,
the peak value of reaction and displacement, is affected).

By comparing the computation and test verification results,
the ranges for model errors were determined in the full load
area. It was demonstrated that some simplifications of the
geometry, load conditions and material model implemented
in scenario 1 do not significantly affect the result of
computations. At the same time, the adopted simplifications
significantly reduce the effort necessary to prepare the model.

In future, experimental and numerical studies will be
performed on several segments' structure in the laboratory to
investigate the global stability of the metal arch. Next, full-
scale objects in real-life environments will be investigated and
compared to the mathematical model to determine the effects
of the actual conditions of the support and full load-bearing
capacity and stability of the structure. For numerical studies,
an FEM model prepared in accordance to scenario 1 will be
used. The experimental studies will be performed with the DIC
3D method, customized for long-term measurements [19,20].
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