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a b s t r a c t

Fault location in power system distribution networks is especially difficult because of the existence of sev-
eral laterals/tap-offs in distribution networks. This implies that the calculated fault point can be wrongly
estimated to be in any of the laterals. This paper proposes a new hybrid method combining Discrete
Wavelet Transform (DWT) and artificial neural network (ANN) for fault section identification (FSI) and
fault location (FL) in power system distribution networks. DWT was used in the analysis and extraction
of the characteristic features from fault transient signals of the three phase line current measurements
obtained at a single substation relaying point, rather than the double-ended approach used in the exist-
ing literature. Entropy Per Unit (EPU) indices are afterwards computed from the DWT decomposition,
and are used as input to multi-layer ANN models serving as FSI classifiers and FL predictors respectively.
The proposed hybrid method is tested using a benchmark IEEE 34-node test feeder. Comparisons, veri-
avelet energy spectrum entropy fication, and analysis made using the experimental results obtained from the application of the method
showed very good performance for different fault types, fault locations, fault inception angles, and fault
resistances. The proposed hybrid method is unique because of the pre-processing stage done with the
DWT-EPU indices, the use of only line current measurements from a single relaying point, and the division
of the FSI and FL tasks into sub-problems with respective ANN models.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Electric power interruptions are characterized by standard reli-
bility indices. These indices measure the system performance and
eflect the status of the overall performance/Quality of Service
QoS) of a particular network at the load points. The most com-

only used indices in utility companies are the System Average
nterruption Frequency Index (SAIFI) and the System Average Inter-
uption Duration Index (SAIDI). SAIFI is the mean of the number of
nterruptions a customer experiences, and it is measured in units
f interruptions/customer over a year. SAIDI is the system average

nterruption duration per customer per year. This index is com-
only referred to as customer minutes of interruption. In order

o maintain a good QoS and facilitate the timely restoration of
ower, there is the need for effective fault diagnosis methods to
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

mprove the reliability of distribution networks when faults occur.
he identification and location of faults is difficult in distribution
etworks because of the non-homogeneity of lines along a typ-
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56
ical distribution feeder. Also, the presence of laterals (branches),
distributed loads, and frequent modifications in the feeder config-
uration, makes distribution networks distinct. The early detection
and diagnosis of faults would expedite service restoration and help
reduce downtime.

Fault section identification (FSI) is the identification of the
faulted section in the distribution system, while fault loca-
tion (FL) is the estimation of the distance to the fault point
from the substation relaying point. When faults occur in dis-
tribution lines, the transient features are distinct and the high
frequency components in the transients can be employed to reveal
fault characteristics. Diagnostic methods are broadly classified
into impedance/other fundamental frequency methodologies, high
frequency components/travelling wave methodologies, and knowl-
edge based methodologies [1,2]. Fault location in transmission
networks is widely reported in the literature. Impedance-based
methods for transmission networks have been proposed in Refs.
[3–6], while Refs. [7,8] made use of artificial neural networks
(ANNs). Similarly, Bhowmik et al. [9] used a method based on
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

wavelet analysis and ANN. Hongchun and Xiangfei [10] proposed a
method based on rough sets and ANN, while Sadeh and Afradi [11]
used an adaptive network-based fuzzy inference system. However,
methods designed for transmission networks are prone to errors
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ecause of the dissimilarity between transmission and distribution
etworks. This is because distribution lines are non-homogeneous
ith different conductor sizes. Also, the presence of laterals/tap-

ffs, radial operation, inaccuracies in the configuration of the
eeder, unbalanced phases, varying fault resistance, and load taps
long distribution lines make distribution networks distinct. There-
ore, fault diagnosis in distribution networks is beginning to attract
he attention of researchers.

Methods based on impedance calculations [12–19], wavelet
nd travelling wave theory [20–28], computational intelligence
29–34], and hybrid methods [35,36], have been proposed for
istribution networks fault location. Most of the existing meth-
ds make use of current and voltage quantities which add to the
omputational effort and processing time. This also implies that
oltage Transformers (VTs) and Current Transformers (CTs) would
e required for real world implementation in substations. However,
he substations in distribution networks only have CTs (current

easurement), usually for overcurrent protection relays (ANSI
0/51). Furthermore, the impedance and fundamental frequency
ased method suffer from limitations due to the loading of the line,
ault path resistance, admittance matrix manipulation, harmonic
omponents in the current source parameters, measurement error,
nd load imbalance. There is also the possibility of multiple esti-
ation due to the existence of multiple possible fault locations

n the distribution network. The shortcomings of the travelling
ave methodology include the high implementation costs, com-

lexity, the need for high sampling rate, sophisticated measuring
quipment, and the need for synchronization/communication for
ouble-ended methods. This is further exacerbated by the disconti-
uities caused by the numerous sub-feeders that are characteristic
f radial distribution systems. The discontinuities may  be between
he end of the line and the fault point, and these add up the reflec-
ions to the transient waves from the fault. The techniques in the
nowledge-based method are regarded as complex and the compu-
ational costs may  be high in applications involving a high number
f faults.

From the foregoing, it can be seen that many diagnostic meth-
ds have been developed and proposed, but a perfect, dependable,
nd secure method is still needed. In this paper, a new 2-stage
ethod based on the hybrid integration of wavelet transform and

rtificial neural network is proposed for fault section identification
nd fault location in power system distribution networks. The pro-
osed fault section identification stage is initiated before the fault

ocation stage in order to solve the distribution network multiple
stimation problem whereby multiple laterals corresponds to the
alculated fault point. The contribution of this paper can be sum-
arized as follows: (i) the development of a non-iterative 2-stage

redictive hybrid method comprising of the identification of the
aulted section and the fault location in distribution systems, (ii) the
pplication of a frequency-time wavelet energy entropy technique
esigned to capture the transient information that are present in
he signal during faults, (iii) the use of single-ended measurements
nly, and (iv) the development of an accurate hybrid method for
SI and FL using line current measurements only.

This paper is divided into the following sections: Section 2
escribes the proposed method based on wavelet transform and
eural network. The implementation of the fault section identifica-
ion and fault location algorithms are outlined in Section 3. Section

 discusses the results of this approach, while Section 5 summarizes
he conclusion.

. The proposed wavelet transform-neural network
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

ethod

The aim of the proposed method is the identification of the
aulted section and the location of the point where the fault is,
 PRESS
mputing xxx (2016) xxx–xxx

in a given power system distribution network. This is carried out
after the fault has been detected in the distribution network and
the type of fault has been classified as proposed by the authors
in Refs. [37,38]. The proposed hybrid method is developed to sat-
isfy the following criteria: (i) take into account the specific nature
of power system distribution networks and the scenarios that are
likely to occur, (ii) to use line current measurements obtained from
the three phases and zero sequence currents measured in the dis-
tribution network as the input data to the proposed method, (iii)
the extraction of significant information that can represent the fun-
damental characteristics of the measured signal from a disturbance
waveform, and (iv) the ability of the proposed method to take fast
decision on the basis of the extracted disturbance waveform.

The steps involved in the implementation of the proposed
hybrid method are detailed below: (i) the specific feature extraction
of the fault signal obtained through the application of the Discrete
Wavelet Transform (DWT) and the computation of the Wavelet
Energy Entropy (WEE), and (ii) fast decision making for the iden-
tification of the faulted section and the location of the fault point
through the training of artificial neural network models using the
extracted DWT  WEE  and the computed Entropy Per Unit (EPU) as
inputs.

Fig. 1 illustrates the above-mentioned steps, and the theoretical
background of the methods involved are given in the proceeding
sections.

2.1. Wavelet transform

Although, the Fourier transform (FT) has been used in several
fields for signal processing, its application for transient signals is
limited by the fact that fault transients are non-stationary and there
is the need to analyze them at various transitions as the signal
changes. Short-Time Fourier Transform (STFT) was introduced to
correct the shortcoming of the FT. However, a fixed time window
is used.

A technique such as wavelet transform (WT) capable of multi-
ple resolutions in time and frequency, with a flexible window size
suitable for non-stationary signals is thereby required.

The windowing in WT  automatically uses short time intervals
for high frequency components, and long time intervals for low fre-
quency components determined by using the scaling and shifting
techniques. Discrete Wavelet Transform (DWT) is a variant of WT,
and it is a versatile signal processing technique widely applied in
many engineering and scientific fields. One area in which the DWT
has been particularly successful is for transient analysis in power
systems [39–42]. This is because it acquires the transient features
and accurately analyzes them in both the time and frequency con-
texts at different frequency bands, and with different resolutions
by decomposing the signal into a coarse approximation and detail
components. It employs two  sets of functions, called the scaling
function � and the wavelet function  ,  which are related to low
pass and high pass filters, respectively.

The mathematical expression for DWT  is given by Refs.
[40,41,43,44]:

DWT(m, n) = 1√
2m

∑
k

f (k) 

(
n − k2m

2m

)
(1)

where f(k) is the discrete signal represented as a function of its
coefficients,  (.) is the mother wavelet (window function), m and
n are the time scale parameters, k is both the discrete time and the
number of coefficients in the DWT, 2m is the variable for scaling, k2m√
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

is the variable for shifting, and 1/ 2m is the energy normalization
component to ensure the same scale as the mother wavelet.

The original signal sequence f(k) can also be represented by a
sum of all components. That is, the sum of all the details and the
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Fig. 1. A summary of the proposed fault section identifi

pproximation components at the last level of decomposition. For
xample, for two levels of decomposition, the representation is:

 (k) = c1D1(k) + c1A1(k) = c1D1(k) + c2D2(k) + c2A2(k) (2)

here D1 and D2 are the detail components of the first and second
ecomposition levels respectively, A1 and A2 are the approximation
omponents of the first and second decomposition levels, cj is the
oefficient of the detail or approximation components at the jth
ecomposition level, and c1A1(k) = c2D2(k) + c2A2(k).

In the implementation of Multi Resolution Analysis (MRA) for
WT, the scaling and wavelet functions are given by [20]:

m,n(t) = 2−(m/2)�
(

2−mt − n
)

(3)

m,n(t) = 2−(m/2) 
(

2−mt − n
)

(4)

here �m ,n(t) is the scale function, and  m ,n(t) is the wavelet func-
ion of time t.

Wavelets are localized in both time (through translation oper-
tion) and frequency (through dilation operation). The first scale
overs a broad frequency range at the high frequency end of the
pectrum and the higher scales cover the lower end of the fre-
uency spectrum. The decomposition of the signal starts by passing

t through a set of filters. The approximations are the high-scale,
ow-frequency components of the signal produced by filtering with

 low-pass filter (h). The details are the low-scale, high-frequency
omponents of the signal produced by a high-pass filter (g). The
andwidth of these two filters is equal but (h) is the reversed
ersion of (g). After the first decomposition of the signal, the sam-
ling frequency is decreased by half. To obtain the components of
he next DWT  level, the low-pass filter output (approximation) is
ecomposed. Daubechies-4 (db4) is one of the most used wavelet

n power system disturbance analysis and it was chosen to analyze
he fault signals in this paper because of its orthogonality, compact
upport in the time domain, and for its good performance in power
ystem studies as reported by Refs. [39,40].

.2. Wavelet energy spectrum entropy

Fault signals are known to contain transients and harmonics.
he direct use of these signals would result to classifiers and pre-
ictors with poor performance. Thus, feature extraction should be
arried out in order to identify attributes (features) which best
epresent the characteristics of the fault signal. Wavelet Energy
ntropy (WEE), which evolved from Shannon entropy [39–41] is
apable of giving the energy information in signals or systems.
ince fault signals have high frequency components, it is more dis-
inctive to use the energy of the detail coefficients to extract the
haracteristics of the fault signals.
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

The wavelet energy of a signal at a scale j and an instant k is
iven as [39–41]:

jk = |Dj (k) |2 (5)
 and fault location algorithms in the proposed method.

At the jth scale, the instants are k = 1, 2, 3, . . .,  N, where N is the
number of instants (coefficients) in the jth scale, L is the number of
decomposition levels. The summation of the signal wavelet energy
spectrum at the jth scale is:

Ej =
N∑
k=1

Ejk, j = 1, L (6)

The relative wavelet energy is given as [40]:

Pjk = Ejk
Ej
, j = 1, L (7)

The wavelet energy ratio (Eq. (7)) represents the energy distri-
bution. Therefore, the wavelet energy entropy (WEE) is given by
[40,41]:

WEEjp = −
∑
k

Pjkp log Pjkp, j = 1, L (8)

where p ∈
{
A, B, C

}
are phases of the distribution network.

The wavelet Entropy Per Unit index is proposed as:

EPUjp

=

−
∑
k

Pjkp log Pjkp

(
−
∑
k

PjkA log PjkA

)
+

(
−
∑
k

PjkB log PjkB

)
+

(
−
∑
k

PjkC log PjkC

)
(9)

Eq. (9) forms the basis for the feature extraction and selection
process. The extracted features are used as inputs to the ANN mod-
els trained to identify the faulted section and the location of the
fault point respectively.

2.3. Fault section identification ANN design

Four categories of faults are possible in a distribution network.
These are (i) single line-to-ground (1 Ph.g) faults, (ii) two  phase (2
Ph.) faults, (iii) two phase-to-ground (2 Ph.g) faults, and (iv) three
phase (3 Ph.) faults. In view of the above, individual ANN model are
trained for the identification of the faulted section depending on
the type of fault detected in the system. Using an ANN model for
each fault type increases the learnability of the ANN model, reduces
the size of the hidden layer neuron, and improves the accuracy of
the ANN model. Thus, the proposed FSI algorithm consists of four
back-propagation ANN models. During the training of the ANNs,
each ANN acquires knowledge about the problem from the training
dataset, and stores the knowledge acquired using synaptic weights
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

between the neurons.
Exploratory experimentation involving various numbers of hid-

den layers, hidden layer neurons, learning rate, and activation
functions was carried out. Sigmoid activation functions (tansig) are
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Fig. 2. Architecture of the ANN model for the fault section identification task.
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system parameters. Three phase line currents and zero sequence
current of the various simulation waveforms were exported to
MATLAB for signal processing. Tables 1 and 2 give the parameters

Table 1
ANN training simulation parameters.

Parameter Main feeder (%) Lateral section (%)

Fault location (%) 10, 20, 30, 40, 50, 60,
70, 80, 90, 95

5, 25, 50, 75, 95

Fault resistance (�) 0, 20, 100 0, 20, 100
Fault inception angle

(◦)
0, 30, 60, 90 0, 30, 60, 90

Fault type Single phase-to-ground
(1 Ph.-g), Two phase (2
Ph.), Two
phase-to-ground (2
Ph.-g), and Three phase

Single phase-to-ground
(1 Ph.-g), Two  phase (2
Ph.), Two
phase-to-ground (2
Ph.-g), and Three phase
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sed for the hidden and output layers of the FSI ANN models. The
ogsimoid and purelin activation functions were also experimented
pon, but were found to give poor performances. Fig. 2 shows the
tructure of the ANN model designed for the FSI task.

.4. Fault location ANN design

Similar approach to the FSI task was followed in the design of
he fault location (FL) algorithm. The FL is decomposed into four
egression tasks corresponding to the four classes of faults that can
ccur in distribution networks. Thus, ANN models for fault location
re developed for 1 Ph.g, 2 Ph., 2 Ph.g, and 3 Ph. faults respectively.
he designed ANN models take in sets of four inputs of EPU/WEE
f the three phase and zero sequence line currents, and one output
ode that gives the estimated distance of the fault in kilometres
km). The sigmoid activation function (tansig)  was used in the hid-
en layer, while the linear activation function (purelin) was  used in
he output layer.

The performance criteria used in the selection of the optimal
NN model are the neural network size (number of hidden layer
eurons), correlation coefficient, error histogram, and testing with
ntrained datasets. The accuracy of the untrained datasets is deter-
ined by the percentage error of the ANN accuracy. Fig. 3 shows

he structure of the ANN model designed for the FL task.

.5. Proposed algorithm

The algorithms for the implementation of the proposed 2-stage
ybrid method are shown in Fig. 4. The fault signal waveforms are
ecomposed using DWT. EPU is afterwards computed and used as
he input to the ANN model. The particular ANN model to use is
etermined through the use of the fault-type classification algo-
ithm proposed by the authors in Refs. [37,38]. The algorithms for
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

he proposed hybrid method are implemented as described in Sec-
ion 3 of this paper.
Fig. 3. Architecture of the ANN model for the fault location task.

3. Implementation of the proposed method

3.1. Modelling: IEEE 34- Node Benchmark Test Feeder

The testing and validation of the proposed hybrid method was
carried out using the IEEE 34 Node Test feeder [45]. The IEEE 34
Node Test Feeder is a long feeder with unbalanced loading and nom-
inal voltage of 24.9 kV. The total feeder load equals 2060 kW and the
2500 kVAr. Fig. 5 shows the IEEE 34 Node Test Feeder. Modelling
of this distribution network was done in DIgSILENT PowerFactory.
Binary notations have been inserted on the test feeder to denote
the various fault sections as shown in Fig. 5.

3.2. Simulations using the test feeder

ElectroMagnetic Transient (EMT) simulations consisting of
different fault types at different locations with various fault resis-
tances (Rf ) and fault inception angles (�fA) were performed. A
waveform window of 10 cycles obtained from the EMT  simulations
was used. Voltage sags and current swells are usually experienced
at the faulted phase(s) during fault conditions. The magnitude of
these sags or overcurrents depends on the type of the fault and the
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

(3 Ph.) (3 Ph.)
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Fig. 5. IEEE 34 node test fe

sed in the generation of the dataset for the training and testing of
he FSI and FL ANN models respectively.

.3. Feature extraction and selection

The three phase and zero sequence line currents from a current
ransformer located at the substation relaying point of the distribu-
ion network given in Fig. 5 is exported to the MATLAB computation
latform. The waveforms are sampled at 128 samples per cycle,
nd decomposed using Daubechies db4 level-6 into their detail and
pproximation coefficients respectively.
Please cite this article in press as: A.C. Adewole, et al., Distribution net
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The high pass (g) and low pass (h) filters of the db4 have four
oefficients. These are [44,46]:

1 = 0.1294, g2 = 0.2241, g3 = 0.8365, g4 = 0.4830 (10)

able 2
NN testing simulation parameters.

Parameter Main feeder (%) Lateral section (%)

Fault location (%) 15, 25, 45, 50, 60, 85 15, 30, 60, 80, 90
Fault resistance (�)  0.5, 2.5, 5 0.5, 2.5, 5
Fault inception angle

(◦)
0, 30, 45, 60, 90 0, 30, 45, 60, 90

Fault type Single phase-to-ground
(1 Ph.-g), Two phase (2
Ph.), Two
phase-to-ground (2
Ph.-g), and Three phase
(3 Ph.)

Single phase-to-ground
(1 Ph.-g), Two  phase (2
Ph.), Two
phase-to-ground (2
Ph.-g), and Three phase
(3 Ph.)

345

346

347

348
830 854 856

 DIgSILENT PowerFactory.

h1 = −0.4830, h2 = 0.8365, h3 = −0.2241, h4 = −0.1294 (11)

Level-5 DWT  detail was selected and the Entropy Per Unit
obtained was computed for the 3 phase and zero sequence line
currents using Eq. (9). These features were selected because the
coefficients obtained from the level-5 DWT  decomposition gave
the best performance in all the simulations carried out. This is
supported by the fact that at level-5, the dominant non-frequency
transient that is generated by the faults is observable within the fre-
quency range of 120–240 Hz based on the Nyquist criterion. Also,
the wavelet energies and entropy obtained at level-5 were dis-
tinctive and consistent. Hence, it was unnecessary to utilize the
coefficients from the other scales. Table 3 gives the frequency range
for the various decomposition levels based on the sampling fre-
quency used in the decomposition of the fault signal.
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

The identification of the faulted section and the location of the
fault are then predicted based on the type of the fault. Table 4
gives the size of the dataset generated for the training and test-

Table 3
Frequency range for the DWT  decomposition level.

Decomposition level Frequency band (Hz)

D1 1920–3840
D2 960–1920
D3 480–960
D4 240–480
D5 120–240
D6 60–120

349
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351
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Table  4
Summary of the training and test dataset for FSI and FL.Q9

No. Fault type Size of training dataset Size of test dataset

1 Single phase-to-ground 500 100
2  Two phase 400 100
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Table 5
ANN parameters for the FSI and FL tasks.

Parameters FSI FL

Input neurons 4 4
Output neurons 4 1
Hidden layer neuron 5:5:25 (1 layer/2

layers)
5:5:25 (1 layer)

Training algorithm Scaled conjugate
gradient (SCG)

Levenberg–Marquardt
(LM)

Activation function
(hidden layer)

tansig tansig

Activation function
(output layer)

tansig purelin

Weight update method Batch-mode Batch-mode

Table 6
Binary notation representing the various line sections.

No. Section Classification class

1 Main feeder 0 0 0 1
2  Lateral 808–810 0 0 1 0
3  Lateral 816–822 0 0 1 1
4  Lateral 824–826 0 1 0 0
5  Lateral 854–856 0 1 0 1
6  Lateral 832–890 0 1 1 0
7  Lateral 858–864 0 1 1 1
8  Lateral 834–848 1 0 0 0
9  Lateral 836–838 1 0 0 1

Length of Line

Table 7
Feeder/lateral lengths.

No. Line section Feeder/lateral length (km)

1 Main feeder 57.415
2  Lateral 808–810 12.907
3  Lateral 816–822 51.112
4  Lateral 824–826 35.762
5  Lateral 854–856 48.594
6  Lateral 832–890 55.930
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3  Two phase-to-ground 400 100
4  Three phase 150 30

ng of the FSI and FL ANN models using time-domain simulations
n DIgSILENT PowerFactory software.

.4. ANN implementation

In MATLAB, the implementation of the neural networks is per-
ormed by means of matrix manipulation of the inputs, outputs,
ynaptic weights, and bias vectors. The training dataset is presented
o the ANN sequentially using batch-mode supervised learning. The
eights and the bias of the network are updated based on the error

etween the network output and the target. The batch-mode iter-
tions continue until the training error obtained is minimized. A
earch for the number of hidden layer neurons was done to deter-
ine the number of hidden layer neurons for the 1 Ph.-g, 2 Ph., 2

h.-g, and 3 ph. ANN models. Also, the number of epochs was  deter-
ined by experimentation. The number of epoch for the training
as set between the range of 500 and 3500. An epoch of 500 means

he weights are updated with the learning rule continuously until
he input dataset has been presented 500 times. The training is
epeated for 10 trials, and a Mean Squared Error (MSE) rate of e-03
as used. In the early stopping method, the dataset is randomly

ivided into three parts: training set (70% of the dataset), valida-
ion set (15% of the dataset), and test set (15% of the dataset). The
atasets selected for the neural network training are normalized to
he range (−1, 1) using Eq. (12) below:

n = 2 × [l − min  (l)]
[max (l) − min  ( l)]

− 1 (12)

here min  (l) and max  (l) refer to the minimum and maximum
alues of the input attribute l.

Levenberg–Marquardt (L–M) algorithm was used in updating
he weight and bias of the ANN models. The derivation of L–M algo-
ithm starts with the Gauss–Newton (G–N) algorithm. This is given
y [46,47]:

q+1 = wq − (JqT Jq)
−1
Jqeq (13)

here eq is the error cost function, q = 1, 2, ... , E is the iteration
ndex, E is the maximum number of epochs (iterations), w is the

eight vector. The Hessian matrix H and the Jacobian matrix J are
elated by:

 = JT J (14)

In order to make the Hessian matrix invertible, an approxima-
ion factor known as the identity matrix I is added to it. Such that:

 = JT J + �I (15)

By combining Eqs. (13) and (15), the update rule is given as:

q+1 = wq − (JqT�I)
−1
Jqeq (16)

here � is the combination coefficient.
The performance of the trained FSI ANN model is tested using

he test dataset. Performance analysis is carried out based on the
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

ize of the trained neural network, confusion matrix, classification
ccuracy, and ability to generalize to untrained datasets. Table 5
resents some of the parameters used in the design of the ANN
odels for the FSI task.
10  Lateral 836–840 1 0 1 0

For the FSI task, the ANN models use four inputs obtained from
the Entropy Per Unit (EPU) of the three phase and zero sequence
line current DWT  coefficients. The output of the FSI ANN models is
the fault section in the distribution network denoted by the binary
notations in Fig. 5. The binary notation used is given in Table 6.
Similarly, for the FL task, the ANNs use four inputs obtained from
the Entropy Per Unit (EPU) of the three phase and zero sequence
line current DWT  coefficients. The output of the FL ANN models is
the location of the fault in kilometres.

The absolute relative error (REabs) is calculated using Eq. (17),
and it is a function of the actual fault location and the total length
of the line. Unlike a transmission network, it would be erroneous to
use the total length of the distribution network or the total length
of the main feeder in Eq. (17). In this regard, the length of the lat-
eral where the fault occurred is taken as the length of the line in
computing the absolute relative error. The length for the various
line segments is calculated from the beginning of the feeder (node
800) to the end of the lateral. Table 7 gives the total length of the
various segments in the test feeder.

REabs = |Actual Location − Estimated Location| × 100% (17)
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

7  Lateral 858–864 54.699
8  Lateral 834–848 57.750
9  Lateral 836–838 58.982
10 Lateral 836–840 57.677

dx.doi.org/10.1016/j.asoc.2016.05.013
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ig. 6. Wavelet decomposition of A–g fault at line 806–808 using (a) db4 mother wa

. Results and discussion

Extensive simulation studies have been carried out to test and
alidate the proposed hybrid method. However, only some of the
esults of the simulation studies carried out are reported due to
ack of space. Fig. 6 shows the DWT  decomposition using various

other wavelets for a 1 Ph.g (phase A-to-ground) fault at the line
egment 806–808, where SLG-A is the single line-to-ground fault
or phase A of the distribution network. Line 806–808 is at 10% of
he length of the main feeder. Spikes are noticeable at the instant
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

f the fault inception.
Table 8 shows the wavelet energy spectrum entropy computed

or the above-mentioned fault using Eq. (9). From Fig. 6, it can be
een that the detail signal at level-5 gave the best reflection of

able 8
ntropy indices for A–g fault at line 806-808.

Scales WEEA WEEB WEEC WEEI0

Level-1 2.5374 3.7492 3.8123 3.5551
Level-2 2.0987 3.1031 3.1321 2.7209
Level-3 2.6984 2.5938 3.0079 2.7935
Level-4 2.7467 4.412 4.4197 2.8112
Level-5 3.7374 5.1914 4.5281 3.5526
Level-6 3.1647 4.5726 3.9347 2.7917

443
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(d) 

 (b) db2 mother wavelet; (c) db8 mother wavelet; and (d) Coiflet-3 mother wavelet.

the original transient signal before and after the inception of the
fault. Also, exploratory investigations carried out for various levels
of decomposition like in Table 8 showed that the results obtained
at level-5 of the DWT  decomposition demonstrated consistency for
the various scenarios investigated. This is indicated by the low rel-
ative wavelet energy spectrum entropy computed for the faulted
phase.

For the FSI task, the ANN training using the Scaled Conjugate
Gradient (SCG) training algorithm was  faster and gave better per-
formance than the Levenberg–Marquardt (L–M) training algorithm.
The confusion matrices obtained during the training of the 1 Ph. and
3 Ph. ANN models are given in Fig. 7. The green squares give the cor-
rect response per prediction class for the ANN models, while the red
squares indicate the incorrect responses. The accuracy per output
class is given by the grey squares, and the blue squares present the
overall accuracy of the ANN model. The processor and CPU usages
obtained during the training of the FSI ANN model for 1 Ph.g is
shown in Fig. 8.

Tables 9 and 10 present a comparative analysis of the perfor-
mance of the ANN models obtained using the EPU and WEE  inputs
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

for the training of 1 Ph.g and 3 Ph. FSI ANN models respectively.
From the tables, it can be seen that the ANN model trained using
EPU inputs generally gave better prediction accuracy, had faster
computation time, and used less processor and memory compared

453

454

455

456

dx.doi.org/10.1016/j.asoc.2016.05.013
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Fig. 7. Confusion matrices for (a) 1 Ph.g FSI ANN model (4-10-10-4); and (b) 3 Ph. FSI ANN (4-20-20-4) model.
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Fig. 8. Processor (CPU) usage and memory usage plots for 1 Ph.g FSI ANN model (4-20-20-4).

Table 9
Comparative analysis of ANN models based on EPU and WEE  inputs for FSI (1 Ph.).

ANN structure EPU prediction
accuracy (%)

WEE  prediction
accuracy (%)

EPU mean
computation
time (s)

WEE  mean
computation
time (s)

EPU mean
memory usage
(MB)

WEE  mean
memory usage
(MB)

EPU mean CPU
usage (%)

WEE  mean CPU
usage (%)

4-5-4 70.8 70.6 10.53 10.92 192.65 31929 43.33 44.78
4-10-4 73.4 73.4 11.07 32.32 320.07 261.49 49.44 40.13
4-20-4 78.8 83.8 12.07 15.17 324.88 308.93 51.61 41.53
4-5-5-4 81.8 78.8 11.02 13.27 236.45 319.80 59.28 44.01
4-10-10-4 86.4 83.4 11.51 13.19 222.83 320.91 50.93 48.54
4-20-20-4 87.2 85.2 14.12 15.98 360.28 306.92 47.20 49.81

Table 10
Comparative analysis of ANN models based on EPU and WEE  inputs for FSI (3 Ph.).

ANN structure EPU prediction
accuracy (%)

WEE  prediction
accuracy (%)

EPU mean
computation
time (s)

WEE  mean
computation
time (s)

EPU mean
memory usage
(MB)

WEE  mean
memory usage
(MB)

EPU mean CPU
usage (%)

WEE  mean CPU
usage (%)

4-5-4 85.3 80.7 9.99 9.93 332.09 327.19 46.78 45.82
4-10-4 94.0 87.3 10.19 9.61 333.72 328.42 39.80 53.14
4-20-4 90.0 86.7 12.30 11.68 337.26 329.52 72.37 60.96
4-5-5-4 88.0 86.7 10.89 11.72 318.34 317.48 40.55 46.65
4-10-10-4 91.3 86.7 11.44 11.14 318.47 314.71 40.35 47.46
4-20-20-4 96.0 92.0 13.20 12.13 308.50 325.71 53.57 48.28

Table 11
Summary of results for FSI ANN models.

Fault type Final ANN structure MSE Confusion matrix (%) Test accuracy (%)

Single phase-to-ground 4-10-10-4 0.01967 86.4 89.0
Two  phase 4-20-4 0.01188 92.4 91.0
Two  phase-to-ground 4-10-4 0.01770 96.4 89.0
Three phase 4-10-4 0.02443 94.0 93.3

dx.doi.org/10.1016/j.asoc.2016.05.013
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Table  12
Comparative analysis of ANN models based on EPU and WEE  inputs for FL (1 Ph.g).

ANN structure EPU regression
coefficient

WEE  regression
coefficient

EPU mean
computation
time (s)

WEE  mean
computation
time (s)

EPU mean
memory usage
(MB)

WEE  mean
memory usage
(MB)

EPU mean CPU
usage (%)

WEE  mean CPU
usage (%)

4-5-1 0.92214 0.93679 3.55 4.13 316.04 316.12 39.26 34.28
4-10-1 0.93506 0.9792 4.95 9.80 310.88 338.32 49.21 31.80
4-20-1 0.96860 0.97321 6.64 4.05 320.41 342.30 47.70 33.84

Table 13
Comparative analysis of ANN models based on EPU and WEE  inputs for FL (3 Ph.).

ANN structure EPU regression
coefficient

WEE  regression
coefficient

EPU mean
computation
time (s)

WEE  mean
computation
time (s)

EPU mean
memory usage
(MB)

WEE  mean
memory usage
(MB)

EPU mean CPU
usage (%)

WEE  mean CPU
usage (%)

4-5-1 0.92918 0.96379 3.57 3.66 307.68 312.53 38.82 30.07
4-10-1 0.99995 0.98022 4.21 2.94 310.28 321.87 35.47 32.58
4-20-1 0.99993 0.99066 3.23 3.13 315.25 331.65 41.13 32.09

Table 14
Summary of results for FL ANN models.

Fault type Final ANN structure Regression coefficient Max/min fault location
relative error (%)

Single phase-to-ground 4-20-1 0.9686 1.07/0.13
Two  phase 4-15-15-1 0.9976 1.20/0.70
Two  phase-to-ground 4-10-10-1 0.9998 0.55/0.10
Three phase 4-10-1 0.9999 0.28/0.01

Table 15
Performance analysis of the FSI and FL algorithms.

Test parameters Test results

Fault type Fault resistance
(�)

Fault inception
angle (◦)

Fault section Fault location
(km)

Fault section Fault location
(km)

Relative error
(%)

B–g 2.5 30 0100 34.9667 0100 34.4154 1.54
B–g  2.5 30 0101 45.0388 0101 45.7185 1.40
B–g  2.5 60 0101 42.0388 0101 41.2929 1.53
A–g  2.5 30 0111 54.4525 0111 53.7322 1.32
A–g  2.5 60 0111 53.4525 0111 52.5596 1.63
BCg  0.5 45 1000 56.2737 1000 56.6047 0.57
C–g  2.5 30 1001 55.9251 1001 54.8790 1.77
C–g  5.0 30 1001 57.9251 1001 58.7004 1.31
C–g  2.5 60 1001 57.4920 1001 57.6935 0.34
C–g  5.0 60 1001 57.4920 1001 56.8563 1.08
AB  0.5 0.0 1000 56.2737 1000 57.2357 1.67
AB  0.5 30 0001 25.8673 0001 25.8466 0.04
ABg  0.5 30 1001 57.4920 1001 57.1873 0.52
ABg  0.5 30 1010 57.4807 1010 57.1878 0.51
BCg  0.5 30 1010 57.4807 1010 58.3439 1.50
CAg  0.5 30 1010 57.4807 1010 57.7271 0.43
ABC  0.5 60 1010 57.4807 1010 57.7681 0.50
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A–g  100 30 0110 

o the ANN models trained using WEE  inputs. The final ANN models
hosen for the FSI task are given in Table 11. The format used for the
nal structures of the ANN models in Table 11 is Input-Hidden layer-
utput. For example, for single phase-to-ground faults, the FSI ANN
odel consists of 4 neurons in the input layer, 2 hidden layers with

0 neurons each, and 4 neurons in the output layer respectively.
he final ANN models were selected based on the prediction accu-
acy obtained, computation time, and processor/memory usages.
t is important that the chosen ANN models have lower footprints
n terms of computation time and processor/memory usages. This
s necessary for real-time implementation, field deployment, and
Please cite this article in press as: A.C. Adewole, et al., Distribution net
entropy and neural networks, Appl. Soft Comput. J. (2016), http://dx.d

NN retraining.
For the FL task, the ANN models trained using WEE  inputs gave

ore accurate results compared to ANN models trained using EPU
nputs as shown in Tables 12 and 13 for the 1 Ph.g and 3 Ph. ANN
52.3215 1001 51.4287 1.60

models respectively. However, the computation time and mean
processor usage were greater for the WEE-based ANN models com-
pared to the EPU-based ANN models. The final ANN models chosen
for the FL task are given in Table 14.

Table 15 presents the performance test of the method using
untrained dataset for fault locations, fault inception angles, and
fault resistances different from those used in training the ANN
models. Very promising results were obtained. The FSI ANN model
for 1 Ph.-g faults misclassified adjacent faulted sections (lateral
836–838 and lateral 836–840) at high fault resistance as shown
by the text in bold in Table 15. However, the predicted fault loca-
work fault section identification and fault location using wavelet
oi.org/10.1016/j.asoc.2016.05.013

tion with 1.60 relative percentage error was still within acceptable
margin based on the specifications of commercially available fault
locators implemented in substation Intelligent Electronic Devices
(IEDs)/protection relays, which are usually specified with a max-
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Table  16
Performance comparison with some existing methods.

Method Maximum error recorded (%)

A–g ABC-g

Proposed method 1.60 0.50
Impedance-based [13] 1.53 0.96
Impedance-based [14] 6.01 0.50
Impedance-based [18] 1.77 2.66
Impedance-based [19] 1.85 2.76
ANN & impedance-based [23] 4.57 1.48
ANN-based [32] Not considered 6.30
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mum relative percentage error of 5.0 as given in Refs. [48,49].
able 16 gives a comparative analysis of the proposed method with
ome existing methods in the literature.

. Conclusion

This paper has developed a hybrid 2-stage method for distribu-
ion network fault section identification (FSI) and fault location (FL)
ased on the coefficients from level-5 detail coefficients obtained
rom DWT  decomposition using db4 mother wavelet. Wavelet
nergy Spectrum Entropy (WEE) and Entropy Per Unit (EPU) indices
re computed from the DWT  detail coefficients. These indices are
sed in training artificial neural network models for the FSI and
L tasks respectively. Comparison of ANN models trained using
he EPU and WEE  indices is carried out in terms of the prediction
ccuracy, computation time, processor usage, and memory usage.
n order to validate the proposed hybrid method, it is applied to
he IEEE 34-node benchmark test feeder. The proposed method
an easily be implemented practically using actual data obtained
rom Digital Fault Recorders (DFR) or Intelligent Electronic Devices
IEDs). Although, data obtained from DFRs/IEDs are usually noisy,
he noise would be filtered out as a result of the DWT  decom-
osition. The ANN models trained using EPU indices were shown
o require less computer memory, less processor usage, and gave
aster computation speed.

The robustness of the proposed hybrid method to various fault
esistance, fault types, fault inception angle, and fault location was
emonstrated. Accurate results irrespective of fault locations, fault
esistances, fault inception angles, and fault types were obtained
or the FSI and FL tasks respectively. The proposed 2-stage hybrid

ethod is suitable for practical deployment in distribution network
ontrol centres because of its simplicity and accuracy, and can be
sed to aid engineers and control centre dispatchers in fault diag-
osis. It should be noted that since the proposed hybrid method
ses only line current signals available from current transformers
lready existing in substations, there is no added cost involved in
he roll-out (implementation) of the proposed hybrid method.

Possible future extension of the proposed hybrid method could
e in the use of synchrophasor measurements from Phasor Mea-
urement Units (PMUs). Also, machine learning classifiers and
redictors based on decision trees/ensembles of decision trees can
e applied to identify the faulted section and the location of the
ault in the power system distribution network.
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