
A

D
a

LQ1

T

a

A
R
R
A
A

K
F
F
E

1
Q3

s
t
c
e
p
m
i

r
i
h
k
F

Q2
t
B

(
v

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
ARTICLE IN PRESSG Model
SOC 3777 1–15

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

esign and analysis of evolutionary bit-length optimization
lgorithms for floating to fixed-point conversion

.S. Rosa ∗, A.C.B. Delbem, C.F.M. Toledo, V. Bonato
he Institute of Mathematics Sciences and Computation, The University of São Paulo, Brazil

r t i c l e i n f o

rticle history:
eceived 14 October 2015
eceived in revised form 11 August 2016
ccepted 19 August 2016
vailable online xxx

eywords:
ixed-point
loating-point
volutionary genetic algorithms

a b s t r a c t

Hardware designs need to obey constraints of resource utilization, minimum clock frequency, power con-
sumption, computation precision and data range, which are all affected by the data type representation.
Floating and fixed-point representations are the most common data types to work with real numbers
where arithmetic hardware units for fixed-point format can improve performance and reduce energy
consumption when compared to floating point solution. However, the right bit-lengths estimation for
fixed-point is a time-consuming task since it is a combinatorial optimization problem of minimizing the
accumulative arithmetic computation error. This work proposes two evolutionary approaches to acceler-
ate the process of converting algorithms from floating to fixed-point format. The first is based on a classic
evolutionary algorithm and the second one introduces a compact genetic algorithm, with theoretical

evidence that a near-optimal performance, to find a solution, has been reached. To validate the proposed
approaches, they are applied to three computing intensive algorithms from the mobile robotic scenario,
where data error accumulated during execution is influenced by sensor noise and navigation environ-
ment characteristics. The proposed compact genetic algorithm accelerates the conversion process up to
10.2× against the state of art methods reaching similar bit precision and robustness.

© 2016 Elsevier B.V. All rights reserved.

34

35

36

37

38

39

40

41

42

43

44

45

46
. Introduction

Hardware and software optimizations are crucial for embedded
ystems customized for specific applications. The optimization of
hese components can improve system performance and energy
onsumption. Based on the application behavior, a designer can
xploit several optimizations to avoid an unnecessary or inappro-
riate use of hardware resources. For instance, scratchpad memory
ay be preferable instead of traditional cache memory in order to

mprove the energy efficiency of a system [1].
Optimizations related to arithmetic operations play a central

ole in a customization process, especially for embedded comput-
ng systems, which are highly sensitive to energy consumption and
Please cite this article in press as: L.S. Rosa, et al., Design and analysis
fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

ardware cost. Important project decisions can be made only by
nowing how many bits are necessary for their representations.
or instance, this can enable a designer to choose whether it is

∗ Corresponding author at: The Institute of Mathematics Sciences and Compu-
ation, Avenida Trabalhador são-carlense, 400, 13566-590 São Carlos, São Paulo,
razil.

E-mail addresses: leandrors@usp.br
L.S. Rosa), acbd@icmc.usp.br (A.C.B. Delbem), claudio@icmc.usp.br (C.F.M. Toledo),
bonato@icmc.usp.br (V. Bonato).

ttp://dx.doi.org/10.1016/j.asoc.2016.08.035
568-4946/© 2016 Elsevier B.V. All rights reserved.

47

48

49

50

51

52
necessary to have a dedicated arithmetic hardware unit as well as to
determine the operations to be implemented on it. All these aspects
are important to decide the hardware technology to be used. The
authors in [2] present a survey evaluating hardware implementa-
tions for several applications.

The present paper introduces a multi-objective compact genetic
algorithm (mo-cGA) based on a previous evolutionary algorithm
proposed in [3] and on the compact genetic algorithm (cGA) [4].
This approach is applied to estimate bit-lengths for variables with
real domain in algorithms according to a maximum error defined
by the user.

The method is validated using classical algorithms for mobile
robotics, where optimizations regarding performance, power con-
sumption and size are important. The case study is reported over
EKF-SLAM [5], Particle Filter (PF) [6] and the Gauss–Jordan Matrix
Inversion (MI) [7] algorithms. In this context, the main contrib-
utions of this paper are:

• A mo-cGA applied to the bit-lengths estimation problem;
• A practical solution to accelerate the computationally heavy pro-
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

cess of defining fixed-point arithmetic parameters, mitigating the
whole procedure of design space exploration in hardware design;

• Theoretical evidence that the proposed mo-cGA has reached a
near optimal performance, reducing the algorithm size impact

53

54

55

56

dx.doi.org/10.1016/j.asoc.2016.08.035
dx.doi.org/10.1016/j.asoc.2016.08.035
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:leandrors@usp.br
mailto:acbd@icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:vbonato@icmc.usp.br
dx.doi.org/10.1016/j.asoc.2016.08.035

 ING Model
A

2 t Com

w
t
fl
p
p
p
i
p
t

2

d
a
e

m
S
a
c
p
b
t
T
t
c
d

i
m
m
t
a
t
m
w
t
m
c
t

a
p
a
w
a

v
a
T
s
b
m
e
f
c
e

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179
ARTICLESOC 3777 1–15

 L.S. Rosa et al. / Applied Sof

during the conversion process and accelerating up to 10.2×, when
compared with the state of art methods of floating to fixed-point
conversion, without compromising the bit precision and robust-
ness.

The paper is organized as follows. Section 2 reviews related
orks with the floating to fixed-point conversion algorithm. Sec-

ion 3 presents the bit-lengths estimation problem during the
oating to fixed-point conversion of an algorithm. Section 4
resents the heuristic approach to the bit-lengths estimation
roblem. Section 5 presents a classical evolutionary approach,
reviously applied to the bit-lengths estimation problem, and

ntroduces mo-cGA for the same problem. Section 6 presents a
erformance study comparing the proposed methods. Finally, Sec-
ion 7 concludes the paper.

. Related work

The conversion of an algorithm from floating to fixed-point
emands the estimation of bit-lengths for each single variable. The
im is to find the smallest lengths that do not violate the maximum
rror defined by the user.

Recent works already use fixed-point representation to imple-
ent the Extended Kalman Filter (EKF) algorithm to solve the

imultaneous Localization and Mapping (SLAM) problem. The
uthors in [8] present a fixed-point implementation, which uses a
onstant bit-length for all variables. Another approach using fixed-
oint for SLAM is described in [9], where some variables have the
it-lengths defined according to physical constraints of a robot, and
he remaining EKF-SLAM variables are left without optimization.
hese solutions apply fixed-point approach to reduce the compu-
ational cost of the whole system. However, further improvements
ould be achieved if the bit-lengths of each variable are properly
efined following a given error.

Methods of floating to fixed-point conversion can be divided
nto two main classes: formal and non-formal methods. Formal

ethods are methods that, given the algorithm input range and a
aximum acceptable error, give a solution (ranges or bit-lengths)

hat are mathematically proven to respect the maximum accept-
ble error as long as the input range is within the input range given
o the method. Note that, in order to prove the ranges, a formal

ethod might restrain the algorithm of having some structures,
hich are generally non-affine loops or unpredictable branches. On

he other hand, non-formal methods cannot guarantee the maxi-
um acceptable error obedience, but they generally do not imply

onstraints on the algorithm to be converted. It is worthy to note
hat these definitions do not imply optimality.

Approaches, orientated to Digital Signal Processors (DSP)
pplications, were proposed to convert from floating-point to fixed-
oint format [10–15] focusing DSP applications. These approaches
re not applicable to algorithms with unpredictable feedbacks (e.g.
hile loops with stop condition statically indeterminable), leaving
n open gap related to the types of algorithms that can be converted.

Formal method approaches for fixed to floating-point con-
ersion, such as Interval Arithmetic (IA), Affine Arithmetic (AA),
nd Symbolic Methods, are also oriented to DPS applications.
hese methods present performance decay when applied on
trongly non-affine computations, which is a problem mitigated
y Satisfiability-modulo Theory (SMT) based methods [16,17]. Kins-
an and Nicolici [16] present an SMT-based solution which allows
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

stimating fixed or floating-point custom bit lengths given an error
or DSP applications. [17] extends [16] to apply SMT on iterative
omputations (a.k.a. for loops) based on representing the error as
rror = (knee, slope) instead of the general error magnitude, what
 PRESS
puting xxx (2016) xxx–xxx

mitigates “Catastrophic Cancellation” problems and is more robust
than the previously cited methods.

As reported in [17], the capabilities of applying the method to
iterative computations is restricted to the solver capabilities of solv-
ing the equation systems for the errors and precisions, which are
limited. It is worth to note that in [17] all cases of study have its
iteration spaces bounded by the user, based on mathematical for-
mulations, what can not be generically applied, especially if we
consider algorithm with unpredictable feedbacks, which are com-
mon in the autonomous robotics fields.

Boland and Constantinides [18] present a Polynomial Algebraic
Approach (PAA), which represents the computations as polyno-
mials of the ı, suchas |ı| ≤ � = 2 − m, and m is the mantissa size of
a floating point representation. Then, the equations pass through
a heuristic to define the bit-sizes. Furthermore, the Polynomial
Algebraic Approach presents a promising scalability that is not pre-
sented in the SMT solvers [18,19].

Boland and Constantinides [19] present a detailed analysis of the
IA, AA, Polynomial Algebraic Approach using Handelman representa-
tions (Handelman) [20] and Taylor methods with Interval Remainder
bounds (TwIR) [21] showing that these approaches scalability fades
quickly when applied to large algorithm. Further then, Boland and
Constantinides [19] present a scalable approach to the bit esti-
mation problem, which represents the source code operations by
a pair of different polynomials, gathering the IA and Handelman
approaches in order to balance the Handelman complexity (NP-
Hard) with the IA complexity (linear), and also balancing the IA
loose solutions (too many bits) with the Handelman solutions tight-
ness.

The approaches presented in [18,19] calculate bit lengths
for floating point representations given an algorithm, which is
different from our floating to fixed-point conversion problem. Fur-
thermore, [18] is not applicable to feedback computations, while
[19] handles statically bounded iterative computations (for loops
with bounds defined at compilation time) by unrolling the loops.
Thus, these approaches cannot be applied in our scenario.

Sarbishei et al. [22] present an algorithm to estimate fixed-point
bit lengths for an input algorithm with unpredictable feedbacks.
This approach targets infinite impulse response filters, supposing
that the application is Bounded-Input–Bounded-Output and that
there is a user given parameter W which is greater than the filter
order. Note that these two suppositions are not true in our scope,
making this approach not applicable as well.

A fundamental limitation of these formal approaches is that
they can only handle data flows which can be converted to static
single assignment (SSA) form. In other words, they cannot han-
dle algorithms which the branch conditions can depend on data
values and loops with iteration space dynamically defined [23].
Boland and Constantinides [23] present an approach to contour
these limitations based on substituting the stop conditions by a
ranking function, aiming to estimate floating-point mantissa and
exponent lengths. Even though, there are no scalable techniques to
find such functions if the loop body contains non-linear functions,
which is present in most of the autonomous robotic algorithms. If
[23] tool fails in its attempt to find a ranking function, the user will
be inquired for one.

Extensions of bit-lengths estimation for algorithms with unpre-
dictable feedbacks are presented in [24]. The authors in [24] extend
[15] to handle unpredictable feedbacks based on training sets.
However, the proposed methods are computer-intensive and time-
consuming for complex algorithms. The authors in [3] introduce
improvements over [24] with an evolutionary algorithm (EA),
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

reducing both conversion time and bit lengths.
In the present paper, a complete analysis is carried out on this

previous EA. We also introduce a mo-cGA to solve this problem,
which is based on an estimation of distribution algorithm proposed

180

181

182

183

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE ING Model
ASOC 3777 1–15

L.S. Rosa et al. / Applied Soft Com

b
r
i
p
u

r
w
[
fl
m
r
c
t
i
F
w
e
r
a
u
c
a
p
i

3

i
f
A
e
p
p
m
p

I
a
a
s

e

4

p
B
a

S

S

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291
Fig. 1. An example of a candidate solution for the bit-lengths estimation problem.

y Harik et al. [4]. This method uses a probability distribution to
epresent a population (solutions) avoiding the necessity of stor-
ng a large population. The compact genetic algorithm (cGA) has
erformance equivalent to the simple genetic algorithm (GA) with
niform crossover [4].

The motivation for this work comes from mobile robotic field
esearch which indicates hardware customization as a feasible
ay to achieve system requirements. For instance, the authors in

25] propose an optimized processing system, where an EKF-SLAM
oating point based system was implemented on FPGA. Further-
ore, the Particle Filter (PF) is a spread option to handle mobile

obot localization [6,26] and hardware implementations of the PF
an explore parallelism and pipeline. This processing system can
ake advantage of the fixed-point arithmetic representation [27]
nstead of processors with floating-point implementations [28,29].
urthermore, as motivation to the use of evolutionary algorithms,
e can cite [30], where the authors define variants from cGA to

volvable hardware applications, where a superior performance is
eached for static and dynamic optimizations applied to standard
nd developed benchmarks. A microcontroller is optimized in [31]
sing cGA with real-coded implementation and its method was
ompetitive against a standard cGA and other population-based
lgorithms. A hybrid approach combining cGA and mathematical
rogramming techniques is proposed in [32], where the hybrid cGA

s applied to solve a multi-level lot sizing problem.

. Conversion from floating to fixed-point problem

The floating to fixed-point conversion problem consists in find-
ng n pairs (mi, pi) with i = 1, . . ., n, where mi is the integer and pi the
ractional length of the ith variable of the algorithm to be converted.

 set of n pairs (mi, pi) is “a candidate solution” for the bit-lengths
stimation problem, which is shown in Fig. 1. For the rest of this
aper, the “candidate solution” will be considered as two separate
arts, the mi and the pi values, which are calculated in different
oments, as described in Section 4. Being so, the genetic algorithms

resented in this paper consider as solution the pi values only.
Each solution has an associated error measure, defined by Eq. (1).

t measures the difference between the result of the floating-point
nd fixed-point executions over a training set ˇ, where outdatafloat
nd outdatafixed are the output of the floating and fixed-point ver-
ions, respectively.

rror = avgˇ

{
norm(outdatafloat − outdatafixed)

norm(outdatafloat)

}
(1)

. Conversion algorithm

The conversion algorithm described in this Section was first pro-
osed by Roy and Banerjee [15] and extended by de Souza Rosa and
onato [24]. The algorithm is divided into eight steps summarized
s follows (details about these steps are explained in [24]):

tep 1: Levelization divides multi-operations assignments into sin-
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

gle operation assignments, by e.g. a = b × c × d; is divided
into t = b × c and a = t × d.

tep 2: Scalarization changes all vectorized operations into scalar
operations by rewriting them using for loops.
 PRESS
puting xxx (2016) xxx–xxx 3

Step 3: Computation of Ranges for Variables estimates the maximum
values of each algorithm variable, using a training set ˇ
composed by nˇ different random EKF-SLAM executions.

Step 4: Evaluate Integer Variables identifies the source code vari-
ables that are integers, saving a considerable amount of
computation time during Step 8.

Step 5: Generation of a Fixed-point (Matlab) Code converts the
source code to fixed-point representation.

Step 6: Fixed Integral Range evaluates the integer range for the fixed
point representation of each variable. In other words, this
Step calculates the mi values for all n variables of the algo-
rithm to be converted.

Step 7: Coarse Optimize uses a binary search, over the solution error,
to estimate one single value of bit-length for the fractional
part for all variables of the algorithm. Based on the fact that
the larger the bit-length is, the smaller will be error, we
define this unique value as pc, representing the maximum
value for all the pi values respective to the n variables.

Step 8: Fine Optimize (FO) makes a variable-level optimization over
the Coarse Optimize results using a two-phase heuristic. The
first phase reduces a bit from each variable independently
and calculates error due to each reduction (n times), then
it chooses the smaller error and sets the respective variable
to have a 1 bit reduction in its pi; this phase is repeated
while error < Emax. The second phase increases a bit in each
variable and calculates new values of error due to each
increment (n times), then it selects the variable respective
to the bigger error reduction and increment it one bit, more-
over, the second phase selects the variable with smaller
error reduction and decrements two bits from it; this phase
is repeated until error > Emax. Note that, to reduce a single
bit, this heuristic calculates error n times.

For an adequate estimation, the training set ̌ should contain
all expected range of values and combinations. Even though this is
not always possible, a large enough set should be adequate. Thus,
the error calculation is the bottleneck of the conversion algorithm,
since it is evaluated several times in the Fine Optimize (FO), Step 8.

The FO step is the most time-consuming, so a heuristic proce-
dure was proposed in [3] called Evolutionary Optimize (EO).
In this work, we propose a multi-objective Compact Genetic
Algorithms (mo-cGA), that will be named mo-cGA Optimize (mo-
cGAO). It is worthy to notice that, since the FO is a heuristic, there
is no guarantee that the results will be a global optimum.

The integer bits lengths are calculated based on the maximum
values of the Computation of Ranges for Variables, Step 3, which exe-
cutes the algorithm to be converted over the training set only once.
The Coarse Optimize reduces the search space for the FO, EO and,
mo-cGAO applying a binary search, when the algorithm to be con-
verted is executed over the training set log2(pmax) times, where
pmax is the maximum desirable value for the precision bit-lengths.
That means that pmax is an initial upper bound defined by the user,
which is refined by the Coarse Optimize. To set pmax = 32 or pmax = 64
is usually more than enough.

5. Methods

This section will describe the EO (Section 5.2) and mo-cGAO
(Section 5.3) algorithms, but firstly, common aspects as encoding,
fitness function, and parameters are explained (Section 5.1).
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

5.1. Fitness function and fixed parameters

Since the mi values are calculated in Step 6 (Fixed Integral Range)
of the conversion algorithm (Section 4), the FO, EO and mo-cGAO

292

293

294

dx.doi.org/10.1016/j.asoc.2016.08.035

 IN PRESSG Model
A

4 t Computing xxx (2016) xxx–xxx

j
p
E
t
7

e
p

v
s

a
t
p
t
p

F

a
t
a
r
n

r
i
o

o
o
m

i
e
c

5

d

S
S
S
S

a
a

F
b
t

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 x

 P
(i

=
 x

)

Allele_Exp = 1
Allele_Exp = 1.1
Allele_Exp = 1.2
Allele_Exp = 1.3
Allele_Exp = 1.4

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360
ARTICLESOC 3777 1–15

 L.S. Rosa et al. / Applied Sof

ust have to calculate the pi values. We define p as a vector of size
c + 1, with pi ∈ [0, pc]. Vector p is called chromosome in both the
O and mo-cGAO, and pi values are called alleles. A maximum frac-
ional length pc, for all non-integer variables, is calculated in Step

 (Coarse Optimize).
The solutions must satisfy the condition error − Emax ≤ 0, where

rror is the error associated with the solution represented by vector
, calculated by Eq. (1), and Emax is the maximum acceptable error.

Moreover, EO and mo-cGAO have to minimize all the values in
ector p. Thus, we define pt =

∑pc+1
i=1 pi to measure the quality of a

olution related to its number of bits.
Finding a solution to reduce error and pt simultaneously, is

 multi-objective problem. There are optimization approaches
hat reduce the problem to a single objective by applying a
enalty/reward to the error. Eq. (2) shows a single objective func-
ion that penalizes relatively large errors, where Severity is a
ositive constant.

itness = pt + Severity × pc × 100 × (erro − Emax) (2)

It is worth to notice that the error propagation between the vari-
bles make us expect that the solutions will have its pi values close
o the maximum pc, except by the ones representing integer vari-
bles. In other words, several variables will have their bit-lengths
educed of few bits, instead of few variables having a relatively large
umber of bits reduced.

Fig. 2 illustrates the effects of error propagation. If 2 bits are
educed from the same variable A, all the fractional information
s lost, while if 2 bits are reduced, one from A and another from B,
nly part of the fractional is lost, implying in a smaller error.

We decided to choose this transformation from a multi-
bjective to a single-objective function (here called fitness) to focus
n the bit-reduction objective since the error restriction can be
athematically contoured by several methods as presented in [33].
For example, in [34] an error contour method is presented focus-

ng the EKF-SLAM. In this paper, it is presented two symptoms of
rrors, and methods to handle them, that lead to filter inconsisten-
ies.

.2. Evolutionary Optimize (EO)

The EO steps, as proposed in [3], are summarized below and
etailed in the sequel.

tep 1: Initialize population.
tep 2: Generate offspring.
tep 3: Evaluate and Select offspring.
tep 4: Repeat Step 2 until the stop criteria is reached.
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

Step 1 initializes 100 individuals, which is an adequate value
ccording to empirical tests [3], with alleles randomly gener-
ted from the exponential distribution defined in Eq. (3), where

ig. 2. An example of error propagation when reducing two bits in different ways
etween code variables. The integer part is represented in white background and
he fractional part in darker background.

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375
Fig. 3. Probability (Eq. (3)) of choosing x bits for the alleles values, parameterized
by Allele Exp.

base = Allele Exp and xmax = pc. Letting Allele Exp being a parameter
in the EO

Prob(x) = basex∑xmax
k=1 base

k
(3)

Fig. 3 shows the probability of a value x be chosen as the allele,
given a value for Allele Exp (based on Eq. (3)). Note that values near
pc are more probable of being chosen.

After each generation, the fitness is calculated for each indi-
vidual and the population set is sorted by its value in decreasing
order.

Step 2 exploits the EO fast convergence, where an elitist gap (�,
�) is used [35], where � = Population Size is the population size,
� = Gap × �, and Gap is a parameter that defines a fraction of � for
the generation offspring. Eq. (4) defines the offspring size.

Offspring Size = Gap × Population Size (4)

The population is sorted, by decreasing fitness, before the off-
spring generation. Next, two individuals are chosen according to
an exponential rank with replacement. The rank is given by the
individual position in the population set, and the probability of
being chosen is defined by Eq. (3), where base = Population Exp
and xmax = Population Size. The replacement means that individuals
selected to reproduce are not removed from the population.

Eq. (3) defines that the individuals in the higher positions, that
are the ones with smaller fitness according to the decreasing sor-
ting, have more probability to be chosen to reproduction.

Two children are created applying one point crossover with a
random allele position as crossover point (Fig. 4) to the chosen
individual. A parameter Mutation Rate defines the chance of muta-
tion for each allele. The mutation replaces an allele by a new one
accordingly to the probability distribution of Eq. (3) (Fig. 4).

Step 3 aims at a high convergence rate to reduce the number
of generations and fitness calculations. We proposed an extreme
elitist selection (a steady-state approach), where the new popula-
tion is the Population Size individuals with the best fitness values
between the current population and its offspring.

Once a high convergence rate is imposed, it is expected the
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

algorithm converges to a local minimum value before the maxi-
mum number of iterations defined by the user (which we define as
Max Interactions). In order to overcome this drawback, we define

376

377

378

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx 5

F
(

a
d

S

w
t
a
s

c
w
t
i

b
i
E
b
S
a
t
a
S
s
a

1
I
a
t
u
t

o
a
a

t
a
r
t

Fig. 5. Average selection intensity, in function of the generations, of a hundred trials
of the EO algorithm without interrupting the execution by the stop criteria.

Fig. 6. Average takeover rate in half of the population, in function of the generations,

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433
ig. 4. Example of offspring generation given two parents. The crossover point
indicated by an arrow) is randomly chosen and each allele has a change of mutating.

nother stop criteria by including the selection intensity metric
efined by Eq. (5) [36].

election Intensity = |fsel − f |
�sel

, (5)

here f is the average fitness value for individuals in the popula-
ion before selection, fsel is the same average fitness after selection,
nd �sel is the covariance of the fitness of the population before
election.

The selection intensity is small for the first generations since the
ovariance is large for the population in the first generations. Thus,
e decided to add a takeover rate to the stop criteria. We limited

he takeover rate to half of the population since the chance of worse
ndividuals to reproduce is very small.

The takeover rate is calculated only for the last few generations
y evaluating the average covariance of alleles for all individuals

n the “best half” of the population after selection as shown in
q. (6). The number of generations which the takeover rate will
e calculated is defined by the user in a parameter that we call
top Variation. We can increase the likelihood to Takeove Rate be

 small number by reducing Stop Variation, that means, if half of
he population changes slightly in the last Stop Variation gener-
tions, Stop Variation will be a small value. In the other hand, if
top Variation is large, the population will certainly have changed,
ince the first generations are composed by a “random” population
nd the newer ones are composed by selected individuals.

Takeove Rateg=j−k = avgg (avgv(covPop/2(pi)))

where

⎧⎪⎪⎨
⎪⎪⎩

i = 1. . .n

covPop/2(x)covariance of x in half of the population

avgv(x)average of x in the n variables of the algorithm

avgg (x)average of x in the last Stop Variationgenerations

(6)

The average of the selection intensity and the takeover rate, for
00 executions of the EO, is presented in Figs. 5 and 6 respectively.

t is shown that the selection intensity is small for the first inter-
ctions and it is maintained constant due the mutation rate. Note
hat without mutation, after convergence, the variation in the pop-
lation would be zero, making the selection intensity (Eq. (5)) goes
o infinity.

Thus, according to Fig. 5, we conclude that the convergence
ccurs with approximately 20 generations. These values can be set
s a minimal value for this the number of generations, so we can
ssume that EO has not converged for values smaller than that.

Fig. 6 shows the takeover convergence through the genera-
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

ions, where it suffers a sudden reduction with few generations,
s expected. This happens because of the high convergence of the
eproduction and selection methods, and they keep a small varia-
ion as consequence of mutation over alleles.

434
of a hundred trials of the EO algorithm without interrupting the execution by the
stop criteria.

Based on the previous results, the stop criterion was estab-
lished as follows: if the best solution satisfies error ≤ Emax, and
Selection Intensity ≤ Threshold, and Takeove Rate ≤ Threshold, then
stop.

Finally, we summarize next the seven input parameters.

Allele Exp – Basis of the exponential distribution for the allele
initialization and mutation value.
Severity – Reward/penalty rate for the error impact in the fitness.
Mutation Rate – Probability of each allele be modified after off-
spring generation.
Population Exp – Basis of the exponential distribution for the
choice of individual to reproduction.
Stop Variation – Percentage of the maximum number of genera-
tions to evaluate the takeover rate over half of the population.
Threshold – Upper bound value for Takeover Rate and Selec-
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

tion Intensity used in the stop criterion.
Gap – Fraction of the original population corresponding to the
offspring size.

435

436

437

dx.doi.org/10.1016/j.asoc.2016.08.035

 ING Model
A

6 t Com

s

5

s
s
a
(
b
o
t
(
I
s
W
i

o
t
e
r
u
c
j

t
i
V
(
v

(
t
t
i
m
m

D

w
n

•
•

t

•
•

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529
ARTICLESOC 3777 1–15

 L.S. Rosa et al. / Applied Sof

In Section 6 an experimental analysis of EO parameters is pre-
ented.

.3. Multi-objective compact genetic algorithm

The authors in [4] introduce cGA, whose basic steps are synthe-
ized next. First, the algorithm initiates a probability vector with
ize n and value 0.5 on each position (allele), meaning that each
llele has equal probability to be either 0 or 1. Two individuals
binary strings) are randomly generated (sampled) at each iteration
ased on the current probability vector. They are evaluated and the
ne with the best score will be used to update the probability vec-
or. At this step, each position i of the probability vector can increase
or decrease), if the ith positions are different on both individuals.
n this case, if the ith position of the best individual is 1 (0), the
ame position in the probability vector increases (decreases) by 1

n .
hen all probabilities of the vector have converged, cGA stops and

ts values become the final solution.
cGA can reduce memory requirements and computation time

nce it simulates an entire population using only a probability vec-
or and two individuals created from this vector. The present paper
xtrapolates the probability vector by a matrix �, where each row
epresents a variable of the algorithm to be converted and each col-
mn represents a possible amount of bits. � has n rows and pc + 1
olumns, where i,j represents the probability of variable i to have

 bits on its representation, 1 ≤ i ≤ n, and 0 ≤ j ≤ pc.
Fig. 7b presents three example individuals and Fig. 7a presents

he � matrix generated from them. In this case, we have pc = 4 that
mplies in 5 columns in �. All individuals have 0 bits in variable
ar1, implying that the related probability in � is (1,0) = 100%
3/3). Variable Var2 has 66.7% of chance to have 2 bits, given the
alues from individuals P1(3) = 3, P2(3) = 3, and P3(3) = 2.

For the selection process, instead of using Eq. (2) similar to EO
Section 5.2), we propose an extension of the cGA, called mo-cGA,
hat deals with two objectives without weighting them. The selec-
ion process is oriented by the Dominance Strength (DS) defined
n Eq. (7). This approach is based on the Timmel’s population based

ethod, which is shown to be adequate for two objectives opti-
ization with convex well-defined Pareto-optimal front [37].

S(p) = DD(p)
1 + DT(p)

(7)

here p is the population without the individual p. DD(p) is the
umber of individuals that satisfies the two condition below:

error(p) ≤ error(p)
pt ≤ pt

Moreover, DT(p) is the number of individual that satisfies the
wo conditions below:
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

error(p) > error(p)
pt > pt

Fig. 7. Example of � matrix, for a population of three individuals and pc = 3.

530

531

532

533

534

535

536

537
 PRESS
puting xxx (2016) xxx–xxx

In other words, that all individuals in a Pareto-optimal front,
defined by error and pt, have the same DS and the same quality,
since we are not defining which objective is more important.

The proposed mo-cGA Optimize (mo-cGAO) can be summarized
in the following steps:

1. Initialization
(a) Initiate all i,j = 0.
(b) Generate an individual p according to a Poisson distribution

and add 1 to i,j corresponding to j bits in variable Var i.
(c) Save pt and error of p, forming an information pool about the

population.
(d) Go to Step 1b until complete the initial population.
(e) Normalize � by dividing all values by the population size.
(f) Select the individual with the best DS using Eq. (7).

2. Offspring generation
(a) Create 2 individuals sampled from probability matrix �.
(b) Add theirs pt and the corresponding error to the pool created

in Step 1c.
3. Selection

(a) Choose the individual with best DS between the two offspring
and the current best individual.

4. Update the probability matrix
(a) For the best offspring, add its respective bits to � maintaining

it normalized.
(b) Return to Step 2 until the stop criterion is reached.

Step 1 initializes Population Size individuals using a Poisson dis-
tribution, where the probability of allele pi have the value pk, with
i = 1, . . ., n and k = 0, . . ., pc, is given in Eq. (8).

P(pi = pk) = �pc−ke−�

(pc − k)!
(8)

Thus, values closer to pc have a larger probability of been chosen
for pi. Note that the smaller the value of �, the closer to pc the values
will be. This implies in creating an additional parameter �, that must
be set in mo-cGAO.

After creating the initial population, error and pt are calculated
for each individual.

Step 2 creates two individuals, where theirs values of pi are
sampled from the probability matrix �.

Since Pareto-optimal fronts need a relatively large set of individ-
uals to be properly estimated (otherwise DS would often be zero or
small values [38]), error and pt of the two individuals in the offspring
are also added to the information pool created in Step 1.

Step 3 since our problem is a bi-objective optimization, without
weighting of objectives (as the fitness in Eq. (2)), we aim at finding
a set of efficient solutions with a trade-off between the objectives.
Thus, we decide by the selection to be oriented by the DS of an
individual [37], being the individual with best DS among offspring
the chosen one.

Step 4 adds 1
1+pc in � corresponding to the best offspring, and

reduces 1
1+pc in � related to the worse individual.

We define Stable Variation as the number of generation such
as the DS of the best individual has not been out-bested. Then, we
define the stop criterion as Stable Variation ≤ Threshrold.

Finally, the individual with the best DS is always returned.

6. Computational results
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

This section evaluates the EO and mo-cGAO tuning their param-
eters in order to reach an adequate convergence rate and error
precision. The fine tuning is made by varying the parameters
defined in Section 5 and executing both algorithms 100 times on

538

539

540

541

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx 7

Table 1
Variable parameters of the EO, range they were varied to analyze the influence of
each value in the performance of the EO, as well their base values.

Parameter Range Base

Allele Exp 1–2 1.2
Severity 0–20 10
Mutation Rate 0–0.02 0.001
Population Exp 1–2 1.2
Stop Variation 0–1 0.1

t
a

t
r
t
i

6

i

M

P

e
t
p
d
t
u
t

6

r
u
n

a
t

A
A

6

t
i
i

S
s
e
T

Fig. 8. Average error after a hundred executions, over the training set ˇ, of the best
solution found by the EO according to Allele Exp.

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602
Threshold 0.05–0.25 0.2
Gap 0.1–1 0.1

he training set ˇ. Set ̌ is composed by a 100 execution of each
lgorithm to be converted.

For EKF-SLAM and PF, in each execution, the number of fea-
ures ranging randomly between 100 and 200 and the map size
anging randomly between 200 and 400. For MI, in each execution,
he matrix size is varied randomly between 100 and 150 and the
nput range is varied randomly between −28 and 28.

.1. Analysis of the Evolutionary Optimize

The fixed parameters for EO aim to evolve few individuals lead-
ng to a reduced number of generation along with fitness calculation.

E max = 1%: this value was fixed since it is a fair value for
the EKF-SLAM, as presented in [24].

ax interactions = 100: this parameter limits the number of gener-
ations, which is a reasonable value based on
empirical tests.

opulation size = 100: the population size is limited to 100 individ-
uals, which is also a reasonable value based
on previous tests.

The variable parameters of the EO presented in Table 1 will be
valuated one at a time. Firstly, their values are set accordingly
o their respective base values, as presented in Table 1. Then, one
arameter varies for 11 values equally spaced within the ranges
efined in Table 1 and, for each variation, the EO is executed 100
imes. After a parameter analysis, the base value in Table 1 is
pdated with a more suitable value found between the 11 values
ested. Finally, the next parameter is analyzed in the same way.

.1.1. Allele Exp
Figs. 8 and 9 show that the maximum value of generations was

eached and the other stop criteria were not satisfied for small val-
es of Allele Exp. The solutions error is expected once the EO could
ot find solutions satisfying all stop criteria.

Fig. 10 shows that the best solutions given by the evolutionary
lgorithm have a small value of pt, what explains the error greater
han Emax.

In order to guarantee the convergence of the EO, we chose
llele ExpEKF−SLAM = 1.3. For the PF and MI we choose, respectively,
llele ExpPF = 1.4 and Allele ExpMI = 1.4.

.1.2. Severity
As described in Equations (2), the Severity parameter scales

he error influence into the fitness evaluations. When Severity
ncreases, solutions with a smaller error are expected as shown
n Fig. 11.

Fig. 12 shows that, without the error influence guaranteed by
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

everity, the EO makes more efforts to find a better solution that
atisfies error < Emax and exhausts the maximum number of gen-
rations (100), what results in no data for Severity = 0 in Fig. 11.
hus, we can say that the introduction of Severity forces a faster
Fig. 9. Average number of generations after a hundred executions, over the training
set ˇ, of the best solution found by the EO according to Allele Exp.

convergence and increasing its value the algorithm tends to reach
solutions with a smaller error.

Fig. 13 shows that pt behaviors as expected, where solutions
with smaller error requires larger bit-lengths.

The priority of our approach is to reduce the number of gener-
ations, therefore, a larger pt means only that the solution is more
robust to truncation errors and demands more hardware resources.
Taking this into account, it was chosen Severity = 4 as the final value
of this parameter for the EKF-SLAM, PF, and MI algorithms.

6.1.3. Mutation Rate
Figs. 14 and 15 indicate that larger values for Mutation Rate

leads to a reduced number of generations as well to small values
for pt. Thus, the choice based on the results found are Muta-
tion Rate = 0.02 for all algorithms.
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

6.1.4. Poppulation Exp
If the parameter Population Exp increase, more often the best

individual is selected to reproduce. In the other hand, a small value
for Poppulation Exp makes individuals with worse fitness to be

603

604

605

606

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

8 L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 10. Average pt after the best solution found by the EO of a hundred executions
according to Allele Exp.

F
s

c
s

g
i
w
i

a

6

t
t
e
o

p
c

Fig. 12. Average number of generations after a hundred executions, over the train-
ing set ˇ, of the best solution found by the EO according to Severity.

Fig. 13. Average pt of the best solution found by the EO after a hundred executions
according to Severity.

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624
ig. 11. Average error after a hundred executions, over the training set ˇ, of the best
olution found by the EO according to Severity.

hosen to reproduce, what means more time spent searching for
olutions, what explains Fig. 16 behavior.

Fig. 17 shows that, even with more time spent searching for
ood solutions when Population Exp increases, the solutions qual-
ty does not increase as well. This is explained because individuals

ith worse quality are chosen for reproduction, more often, keep-
ng their alleles longer for the further generations.

We chose Poppulation Exp = 2 for the three algorithms, to take
dvantage of fast convergence and better quality.

.1.5. Stop Variation
Fig. 18 illustrates that a small value for Stop Variation can make

he takeover rate over half of the population to satisfy its stop cri-
erion within few generations. On the other hand, since the search
nds quickly, the solutions given are expected to have a high value
f p as shown in Fig. 19.
Please cite this article in press as: L.S. Rosa, et al., Design and analysis of evolutionary bit-length optimization algorithms for floating to
fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.035

t

Since the number of generations is already limited by the other
arameters, as indicated by the axis range in Fig. 18, we decided to
hoose values which will explore a better pt. The chosen values are

Fig. 14. Average pt , after a hundred executions, taken by the EO to satisfy the stop
criteria according to Mutation Rate.

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx 9

Fig. 15. Average number of generations, after a hundred executions, taken by the
EO to satisfy the stop criteria according to Mutation Rate.

F
E

S
i

6

T
a
p

w
W
b

i
m
g
a

T

Fig. 17. Average
∑n

i=1
, after a hundred executions, taken by the EO to satisfy the

stop criteria according to Poppulation Exp.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654
ig. 16. Average number of generations, after a hundred executions, taken by the
O to satisfy the stop criteria according to Poppulation Exp.

top Variation = 0.2 for all algorithms, given the decreasing behav-
or of pt in function of the Stop Variation as shown in Fig. 19.

.1.6. Threshold
Analogue to the Stop Variation case, a larger value for the

hreshold parameter allows the AE to satisfy its stop criteria easily,
nd requiring few generations, but reaching solutions with larger
t values. These behaviors are shown in Figs. 21 and 20.

Fig. 21 shows that pt varies in a limited range when compared
ith the number of variables in the algorithm, shown in Table 5.
hat means that only a few variables will have their number of

its reduced.
The reflection of that in hardware accelerators implementation

s usually minimal since the maximum frequency of a hardware is
ostly bounded by the arithmetic unit with more bits, reducing the
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

ains of this bit reduction to a slightly smaller power consumption
nd hardware resources.

Thus, we focus a fast convergence of the algorithm by taking
hreshold = 0.25 for the three algorithms.
Fig. 18. Average number of generations, after a hundred executions, taken by the
EO to satisfy the stop criteria according to Stop Variation.

6.1.7. Gap
Fig. 22 shows that EO converges slowly for small Gap values. The

consequence of a large Gap value is a raise in the number of fitness
evaluations that the method has to calculate per generation, which
is the number offspring, as described in Eq. (4). The total amount of
individuals created is given by Eq. (9).

Number of individuals = Population Size + · · · + Offspring Size

× Number of Generations (9)

Fig. 23 shows the number of individuals calculated through the
algorithm execution, what lead us to chose Gap = 0.05 as the final
value of this parameter, for the three algorithms.
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

6.1.8. Final EO parameters values
Table 2 summarizes the final value for each parameter described

from Table 1.

655

656

657

dx.doi.org/10.1016/j.asoc.2016.08.035

Please cite this article in press as: L.S. Rosa, et al., Design and analysis of evolutionary bit-length optimization algorithms for floating to
fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

10 L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 19. Average pt , after a hundred executions, taken by the EO to satisfy the stop
criteria according to Stop Variation.

Fig. 20. Average number of generations, after a hundred executions, taken by the
EO to satisfy the stop criteria according to Threshold.

Fig. 21. Average pt , after a hundred executions, taken by the EO to satisfy the stop
criteria according to Threshold.

Gap
0.05 0. 1 0.1 5 0. 2 0.2 5 0. 3 0.3 5 0. 4 0.4 5 0.5

N
um

be
r

of
 G

en
er

at
io

ns

5

10

15

20

25

30

35

40

EKF-SLAM PF MI

Fig. 22. Average number of generations, after a hundred executions, taken by the
EO to satisfy the stop criteria according to Gap.

Gap
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
um

be
r

of
 In

di
vi

du
al

s

101

102

103

104

105

106

107

108

109

110

EKF-SLAM PF MI

Fig. 23. Average number of individuals created over the algorithm execution, after
a hundred executions, taken by the EO to satisfy the stop criteria according to Gap.

Table 2
Variable parameters of EO, and its final values after analyzing the influence of each
parameter in the number of generations, error and pt for the EKF-SLAM, PF and MI.

Parameter Final values

EKF-SLAM PF MI

Allele Exp 1.3 1.4 1.4
Severity 4 4 4
Mutation Rate 0.02 0.02 0.02
Population Exp 2 2 2
Stop Variation 0.2 0.2 0.2
Threshold 0.25 0.25 0.25
Gap 0.05 0.05 0.05

dx.doi.org/10.1016/j.asoc.2016.08.035

 ING Model
A

t Com

6

h
g
s

e
I
o

t
b
t
a

a
a
t
f

t
s
c

t
o
s
p
E
t

n

w
s
d
s
t
o
m

i

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731
ARTICLESOC 3777 1–15

L.S. Rosa et al. / Applied Sof

.2. Analysis of mo-cGAO

Recent works have shown that the Holland’s building blocks (BB)
ypothesis [39] and Simon’s near-decomposability principle [40] can
ive insights to help the GA through the search for near-optimal
olutions [41].

The BBs occur naturally in the bit estimation problem since the
rror in a variable can affect a set of other variables, forming a block.
n this study, we will consider that each variable is a single BB, in
rder to simplify our modeling.

In this sense, first, we will estimate the number of individuals
hat the initial population must have in order to guarantee that a
uilding block of each allele will be present in the initial popula-
ion. First, we need to evaluate the initial population distribution
ccordingly to the Poisson Distribution defined by Eq. (8).

Fig. 24 shows that for � = 0.5, 1.0, 1.5 and 2.0, the probability of
 value x to happen is largely reduced to almost zero for x ≥ 4, 5, 6
nd 7 respectively. For simplicity, we can exchange the Poisson dis-
ribution for a uniform probability for x ≤ xlim, and zero probability
or x > xlim.

Thus, for further analysis, we will consider a uniform distribu-
ion between 1 ≤ x ≤ xlim interval, which we will refer by � (problem
ize). This distribution does not depend on the algorithm to be
onverted.

Since our problem is difficult to model, we will estimate only
he first size of the initial population and convergence time based
n a population sampled. We can expect that the complexity is
omewhere between the complexity of the BinInt and OneMax
roblems [42], which define Eq. (10), for the initial population, and
q. (11), for the convergence time. A complete characterization of
hese estimations can be found in [43].

Pop = ln (˛)2k−1 �bb
√

2m
d

(10)

here ̨ is defined as the failure probability in finding the optimal
olution, k is the BB size, �bb can be estimated by the standard
eviation of the fitness due to the instances of a BB from the set of
elected individuals (assuming all BBs have a similar contribution to
he fitness values), d is defined as the difference of the contribution
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

f a BB in the fitness of the best solution and the local optima and
 is defined as m = �/k.

Eq. (10) considers that all BB have the same variance �bb, what
s not true in our case since some variables have more influence in

Fig. 24. Poisson distribution parameterized by �.

732
 PRESS
puting xxx (2016) xxx–xxx 11

the error than other variables. Thus, we should estimate an upper
bound value for this parameter.

The values of the variables in Eq. (10) used in this work are:
 ̨ = 0.001 and k = 1. The values for �bb and d will be estimated further

on.

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
l

I

�

2
, for OneMax

√
3 ln(2)
I

�, for BinInt
(11)

where I is the Selection Intensity, defined by Eq. (5). This value can
be assumed as nearly constant during population evolution and it
goes to infinity after the population converges to a single individual.

In order to estimate selection effects on the population, we gen-
erated a total of 10,000 individuals with Poisson distribution and
re-sampled the entire population. The results obtained are shown
in Fig. 25. Note that the re-sampling (using 8-size tournament)
makes salient two peaks from the original distribution. We assume
that those peaks are in the neighborhood of a local and the global
optima.

Thus, we can estimate d as the difference from the DS of the
best solution found (assumed neighborhood of the global optimum,
near the peak in Fig. 25 with the highest DS after resampling by
tournament) and the DS of the local optima (in the neighborhood
of the other peak in Fig. 25), which results in d = |959 − 6| = 953.

It is not possible to calculate an exact value for �bb and a proper
estimation for �bb would be calculate error and pt for all solutions
p varying each pi, with i = 0 . . . pc, independently, what would give
(pc + 1)n combinations, what is exactly the same thing as making
an exhaustive search. On the other hand, we can major this estima-
tion by using �2 = �

∑n
i=1�

2
bbi

= ��2
bb

(that implies in � > �bb), and

replacing �bb by � in Eq. (10), where � = 859.094 is the covariance
in the population without tournament in Fig. 25.

Note that we still do not have a defined value for l which is usu-
ally known while developing compact genetic algorithms. In our
specific case, it depends on �, which will be estimated as described
in sequel.

As stated in Section 5.3, the parameter � used in the population
generation affects d, which also affects the initial population and
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

the number of generations to converge. For this reason, we decided
to evaluate the influence of the parameter � over the number of
bits and generations of mo-cGAO, in order to define a suitable value
for �.

Fig. 25. Occurrences of DS in a thousand initialized with Poisson distribution, � = 0.5,
individuals before (line and circles) and after re-sampling (line and triangles) the
set with 8-size tournaments.

733

734

735

736

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

12 L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx

F
(

d
b

t
w
b
t
c
s
t
u

t
t
(
u
a

F
d

Fig. 28. Average g of mo-cGAO to convergence in 100 executions according to �
(from the Poisson distribution used to generate the initial population).

Table 3
Bounds values for number of generations, g, to convergence according to the prob-
lems BinInt and OneMax.

EKF-SLAM PF MI

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763
ig. 26. Average error of mo-cGAO final solution in 100 executions according to �
from the Poisson distribution used to generate the initial population).

For the tests, we used treshold = 5 as a limit to the stop criteria
efined in Section 5.3. Using �=64 (the maximum value for �) as
ase for this study, we set nPop = 71 and � = 1.

Fig. 26 shows the average of 100 executions of mo-cGAO as func-
ion of � in the Poisson distribution (see Eq. (8) and Fig. 24), where
e can correlate that the error increases with � since the num-

er of bits decreases with a large � (Fig. 24). Fig. 27 shows that
he general number of bits is reduced with �, since the pi values
an be smaller, forcing the mo-cGAO to find solutions with slightly
maller pt which respect error < Emax in Fig. 26. Thus, it is expected
hat the mo-cGAO finds solutions with less number of bits when
sing larger �.

Fig. 28 shows the average number of generations, g, according
o �. The small range in y-axis indicates that large � values lead
o individuals with a small number of bits in the initial population
Step 1, mo-cGA algorithm). Note that, in this case, the initial pop-
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

lation is still large and the probability of having individuals with
 small number of bits will decrease in a small initial population.

ig. 27. Average pt of mo-cGAO final solution according to � (from the Poisson
istribution used to generate the initial population).

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784
gBinInt 21 20 19
gOneMax 13 13 12

As shown in [3], reducing the number of bits impacts the algo-
rithm robustness, and reducing the number of generations is the
key for a “not so slow” algorithm. Those results indicate that
� = 0.5 generates an adequate trade-off among all aspects evalu-
ated. Thus, we decided to use �EKF−SLAM = �PF = �MI = 0.5, giving us
�=4 (xlim = 4 =� for � = 0.5 as discussed with Fig. 24), and �bb = �

2
consequently (Fig. 25). Thus, Eq. (10) results in nPopEKF−SLAM = 18,
nPopPF = 17 and nPopMI = 16 for the EKF-SLAM, PF and MI problems.

We measured the selection intensity over a hundred executions
of mo-cGAO, during its quasi-constant interval, which resulted on
average in I = 0.231 ± 0.0021. Eq. (11) resulted in the values pre-
sented in Table 3.

The values to determine the initial population size were overes-
timated by Eq. (10), so this size might be a little different in practice.
We can study the population size effect in the error, g and pt to set
a more adequate value.

6.2.1. Empirical evaluation of mo-cGAO parameters
Fig. 29 shows the average error in function of nPop where a large

initial population helps to find better individuals, resulting in solu-
tions with small error. Fig. 30 shows the average g to convergence
in function of the initial population. The number of generations
decreases with the initial population, since a larger initial popu-
lation increases the probability of relevant individuals to happen,
reducing the efforts to find them.

Fig. 30 shows that the number of generations taken by the
mo-cGAO to find a solution decreases with the initial popula-
tion size as expected, since the probability of good individuals
to be presented in the initial populations grows with the initial
population size. Note that, it is desirable to reduce the num-
ber of generations in order to reduce the number of individuals
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

evaluated, but the initial population also needs to be evaluated.
Thus, increasing the initial population reduces the number of
individuals to be evaluated through the generations, but also
increases it in the initial population evaluation. Since our goal

785

786

787

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx 13

Fig. 29. Average error of the mo-cGAO in 100 executions according to the initial
population.

F

i
g
g
n
n
w

i

6

f

6

M
b
a
j

Initial Population
10 20 30 40 50 60 70 80 90 10 0 110

S
um

(p
)

0

200

400

600

800

1000

1200

1400

1600

EKF-SLAM PF MI

Fig. 31. Average mo-cGAO final solution number of bits according to the initial
population.

Table 4
Variable parameters of mo-cGAO, and its final values after analyzing the influence
of each parameter in the number of generations, error and pt for the EKF-SLAM, PF
and MI.

Parameter Final values

EKF-SLAM PF MI

Threshrold 5 5 5

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832
ig. 30. Average g of mo-cGAO in 100 executions according to the initial population.

s to minimize the number of individuals evaluations, which is
iven by Number Individuals = 2 × g + nPop we choose nPop which
ives the minimal number of individuals in Fig. 30 resulting in
PopEKF−SLAM = 19, nPopPF = 18 and nPopMI = 17. These values are
ear half of the estimated with Eq. (10), since some parameters
ere overestimated.

Fig. 31 shows the average pt in function of the initial population,
ndicating the mo-cGAO efficiency in exploring the search space.

.2.2. Final mo-cGAO parameters values
Table 4 summarizes the final value for each parameter described

rom mo-cGAO evaluation, estimated in Section 6.2.

.3. Methods comparison

The methods solutions are compared running EKF-SLAM, PF and
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

I algorithms over a total of 1, 000 different executions. The num-
er of times that the condition error < Emax is satisfied is defined
s the Hit Rate. This evaluation was carried on all training sets ˇj,

 = 1 . . .100, for the FO, EO, and mo-cGAO algorithms.

833
� 0.5 0.5 0.5
nPop 19 18 17

Table 5 summarizes the average Hit Rate, the number of error
calculations, the

∑n
i=1pi for each solution given by FO, EO and mo-

cGAO over the training sets ˇj, and the number of the variables of
each algorithm.

Table 5 shows that mo-cGAO is 6.9× faster on average for the
EKF-SLAM, 10.2× for the Particle Filter and 9.2× for the matrix
inversion. This last value shows that mo-cGAO efficiently exploits
the solutions space even for algorithms with few variables, reduc-
ing the gap in relation to EO presented in a previous work [3].

mo-cGAO calculates the error, which is the bottleneck of the
conversion process fewer times than other methods for all algo-
rithms. Since the measures are made based on the error calculation,
this speed up does not depend significantly on the training set ˇ,
making possible to obtain a more robust solution by increasing the
number of elements in ̌ without a relevant impact on the speed
up of the mo-cGAO over the EO. We emphasize that a single error
calculation take up to 15 min for the EKF-SLAM on an 2.5 GHz Intel
core i5 processor with 6 Gb of RAM.

mo-cGAO algorithm smooths the gap for algorithms with few
variables, which is shown by the previous MI speedup of 1.16× from
FO to EO and the speed up of 9.2× from EO to mo-cGAO. The increas-
ing speed up in function of the decreasing size of the algorithm
happens once EO had a decreasing speed up due the decreasing
size of the algorithm.

Table 5 indicates that EO and mo-cGAO bit reduction grows
with the number of variables, what implies in a less robust result,
as shown by the Hit Rate. It can be justified once Fine Optimize
solutions have more bits for most of the variables. However, the
robustness of EO solutions is not a critical issue once there are
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

hardware independent solutions that can be applied [34].
Furthermore, the small number of extra bits found by mo-cGAO

in relation to EO is relevant bits. In other words, they impact on

834

835

836

dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

14 L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx

Table 5
Number of variables and average Hit Rate, the number of error calculations, and pt , ± standard variation, for each solution given by the EO and by the FO for each respective
training set ˇj .

Algorithms Optimize # variables Hit Rate (%) Avg # of error calculations pt (×103)

EKF-
SLAM

FO 107 98.2 ± 0.3 963 ± 10 1.641 ± 0.009
EO 107 97.1 ± 0.4 373 ± 13 1.576 ± 0.011
mo-cGAO 107 97.8 ± 0.3 54 ± 15 1.581 ± 0.010

PF
FO 43 98.2 ± 0.2 808 ± 9 0.986 ± 0.008
EO 43 97.1 ± 0.3 550 ± 11 0.944 ± 0.010
mo-cGAO 43 97.2 ± 0.2 54 ± 14 0.950 ± 0.009

MI
FO 10 99.3
EO 10 98.8
mo-cGAO 10 99.1

Table 6
Bounds comparison between our proposed method and the precise method pre-
sented in [20].

[20] Proposed

Lower Upper Lower Upper

Polly approx 0 0.6932 0 0.6933
B-spline 3 −0.1667 0 −0.1667 0
rand −192 128 −64 128

t
v

d
o
w
v
b
i
a
a
a
p
c

7

m
c
f

t
d
fi
s

q
t
t
s

t
a
s

m
p
g

fixed-point FastSLAM 2.0 algorithm on a configurable and extensible VLIW

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923
mitch −719 641 −32 641
rat −6.1E+08 3.34E+11 −4 3.34E+11

he Hit Rate, which means that these extra bits are not placed on
ariables that do not need them.

Finally, in order to guarantee the precision of our method we
irect compare the range of the values of its estimations with the
nes found in [20] presented in Table 6. To make this comparison,
e have implemented the test-benches and estimated their (mi, pi)

alues with our proposed mo-cGAO and calculated their respective
ounds, which are values directly comparable to the ones presented

n [20]. These test-benches are not representative for our proposed
pproach since they do not contain unpredictable for loops and
re small enough to not justify the usage of a training-test-based
pproach as ours, but this corroborates with the accuracy of our
roposed approach since their results are comparable with a pre-
ise method approach on their class of algorithms.

. Conclusions

In this work, we presented EO and mo-cGAO as optimization
ethods to the bit-lengths estimation for a floating to fixed-point

onversion as well as a systematic study to define parameter values
or such methods.

The bit-lengths estimation during the conversion from floating
o fixed-point demand significant computational processing when
ealing with unpredictable algorithms, commonly found in many
elds of application as robotics. This is caused by the big training
ets to estimate the error.

Heuristics based on the error calculation have presented poor
uality results that are achieved after a considerable computation
ime. Evolutionary approaches, on the other hand, are known for
heir exploration capability. They are usually able to return good
olutions within a short computational time.

The mo-cGAO propose in this paper is an estimation of distribu-
ion algorithm that integrates the exploration idea of Evolutionary
pproaches with the probability distribution of solutions in the
earch space.

In the floating to fixed-point conversion, the application of the
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

o-cGAO accelerates the bit-lengths estimation. This improves
roject decisions related with the more appropriated data type to a
iven design. Furthermore, the reduced bit-lengths leads to a more
 ± 0.1 331 ± 2 0.110 ± 0.001
 ± 0.1 285 ± 4 0.106 ± 0.005
 ± 0.1 31 ± 7 0.108 ± 0.004

compact hardware, with lower energy consumption and a possibly
higher maximum frequency.

The coherency of the theoretical results for the mo-cGAO
parameters with the experimentally estimated ones, presented in
Section 6.2, shows that the difficulty of the problem is correctly
supposed to be between the BitInt and OneMax problems. Such
theoretical model for the mo-cGAO indicates that no other evolu-
tionary approach will have a better performance than the mo-cGAO
adjusted according to the model without losing the confidence that
the algorithm will find, if not the best, a near-optimal solution.

As future work, we encourage research exploring different BBs
sizes and its structures to further improve the bit estimation prob-
lem efficiency.

The results in Table 6 shows that our proposed mo-cGAO find
bounds comparable if not better than the formal approaches, which
do not guarantee to find the best solution, but guarantee error
obedience. On the other hand, our proposed approach cannot
guarantee either error obedience or optimality, although we have
theoretical evidence of near-optimal solutions as discussed before.

Acknowledgments

The authors would like to thank FAPESP (Ref. 2014/14918-2),
for the financial support given to the development of this project,
and Marcillyanne Gois for helping us with the writing verification.

References

[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, Scratchpad
memory: design alternative for cache on-chip memory in embedded systems,
in: Proceedings of the Tenth International Symposium on Hardware/Software
Codesign, CODES’02, ACM, New York, NY, USA, 2002, pp. 73–78, http://dx.doi.
org/10.1145/774789.774805.

[2] A. Malinowski, H. Yu, Comparison of embedded system design for industrial
applications, IEEE Trans. Ind. Inform. 7 (2) (2011) 244–254, http://dx.doi.org/
10.1109/TII.2011.2124466.

[3] L. Rosa, C. Toledo, V. Bonato, Accelerating floating-point to fixed-point data
type conversion with evolutionary algorithms, Electron. Lett. 51 (2015)
244–246, http://dx.doi.org/10.1049/el.2014.3791.

[4] G. Harik, F. Lobo, D. Goldberg, The compact genetic algorithm, IEEE Trans.
Evol. Comput. 3 (4) (1999) 287–297, http://dx.doi.org/10.1109/4235.797971.

[5] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial relationships in
robotics, in: Autonomous Robot Vehicles, Springer-Verlag New York, Inc.,
New York, NY, USA, 1990, pp. 167–193 http://dl.acm.org/citation.
cfm?id=93002.93291.

[6] D. Fox, S. Thrun, W. Burgard, F. Dellaert, Particle filters for mobile robot
localization, in: A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte
Carlo Methods in Practice, Statistics for Engineering and Information Science,
Springer, New York, 2001, pp. 401–428, http://dx.doi.org/10.1007/978-1-
4757-3437-9 19.

[7] M.L. James, G.M. Smith, J. Wolford, Applied Numerical Methods for Digital
Computation, vol. 2, Harper & Row, New York, 1985.

[8] M. Moyers, D. Stevens, V. Chouliaras, D. Mulvaney, Implementation of a
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

processor, in: IEEE International Conference on Eletronics Circuits and
Systems (ICECS), Tunisia, 2009.

[9] G. Mingas, E. Tsardoulias, L. Petrou, An FPGA implementation of the
SMG-SLAM algorithm, Microprocess. Microsyst. 36 (3) (2012) 190–204.

924

925

926

927

dx.doi.org/10.1016/j.asoc.2016.08.035
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1145/774789.774805
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1109/TII.2011.2124466
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1049/el.2014.3791
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
dx.doi.org/10.1109/4235.797971
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
http://dl.acm.org/citation.cfm?id=93002.93291
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19
dx.doi.org/10.1007/978-1-4757-3437-9_19

 ING Model
A

t Com

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[Q4

[

[

[

[

[

[

[

[

[

[

[
[
[

[
Innovation: Lessons from and for Competent Genetic Algorithms, Springer US,
Boston, MA, 2002, pp. 71–100, http://dx.doi.org/10.1007/978-1-4757-3643-4

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035
ARTICLESOC 3777 1–15

L.S. Rosa et al. / Applied Sof

10] T. Hill, AccelDSP synthesis tool floating-point to fixed-point conversion of
MATLAB algorithms targeting FPGAs, in: White Papers, Xilinx, 2006, p. 18.

11] P. Belanovic, M. Rupp, Automated floating-point to fixed-point conversion
with the fixify environment, in: The 16th IEEE International Workshop on
Rapid System Prototyping, 2005 (RSP 2005), IEEE, 2005, pp. 172–178.

12] D. Menard, D. Chillet, O. Sentieys, Floating-to-fixed-point conversion for
digital signal processors, EURASIP J. Appl. Signal Process. 2006 (2006) 77,
http://dx.doi.org/10.1155/ASP/2006/96421.

13] C. Shi, R.W. Brodersen, An automated floating-point to fixed-point conversion
methodology, in: Proc. IEEE Int. Conf. on Acoust., Speech, and Signal
Processing, 2003, pp. 529–532.

14] A. Banciu, E. Casseau, D. Menard, T. Michel, Stochastic modeling for
floating-point to fixed-point conversion, in: 2011 IEEE Workshop on Signal
Processing Systems (SiPS), 2011, pp. 180–185, http://dx.doi.org/10.1109/SiPS.
2011.6088971.

15] S. Roy, P. Banerjee, An algorithm for converting floating-point computations
to fixed-point in MATLAB based FPGA design, in: Proceedings of the 41st
Annual Design Automation Conference, DAC’04, ACM, New York, NY, USA,
2004, pp. 484–487, http://dx.doi.org/10.1145/996566.996701.

16] A.B. Kinsman, N. Nicolici, Bit-width allocation for hardware accelerators for
scientific computing using SAT-modulo theory, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 29 (3) (2010) 405–413, http://dx.doi.org/10.1109/
TCAD.2010.2041839.

17] A. Kinsman, N. Nicolici, Automated range and precision bit-width allocation
for iterative computations, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 30 (9) (2011) 1265–1278, http://dx.doi.org/10.1109/TCAD.2011.
2152840.

18] D. Boland, G.A. Constantinides, Automated precision analysis: a polynomial
algebraic approach, in: 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2010, pp.
157–164.

19] D. Boland, G.A. Constantinides, A scalable approach for automated precision
analysis, in: Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA’12, ACM, New York, NY, USA, 2012, pp.
185–194, http://dx.doi.org/10.1145/2145694.2145726.

20] D. Boland, G.A. Constantinides, Bounding variable values and round-off effects
using Handelman representations, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 30 (11) (2011) 1691–1704, http://dx.doi.org/10.1109/TCAD.
2011.2161307.

21] K. Makino, M. Berz, Taylor models and other validated functional inclusion
methods, Int. J. Pure Appl. Math. 4 (4) (2003) 379–456.

22] O. Sarbishei, Y. Pang, K. Radecka, Analysis of range and precision for
fixed-point linear arithmetic circuits with feedbacks, in: 2010 IEEE
International High Level Design Validation and Test Workshop (HLDVT),
2010, pp. 25–32, http://dx.doi.org/10.1109/HLDVT.2010.5496667.

23] D.P. Boland, G.A. Constantinides, Word-length optimization beyond straight
line code, in: Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ACM, 2013, pp. 105–114.

24] L. de Souza Rosa, V. Bonato, A method to convert floating to fixed-point
EKF-SLAM for embedded robotics, J. Braz. Comput. Soc. 19 (2) (2013)
181–192, http://dx.doi.org/10.1007/s13173-012-0092-4.

25] V. Bonato, E. Marques, G. Constantinides, A floating-point extended Kalman
Please cite this article in press as: L.S. Rosa, et al., Design and analysis

fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org

filter implementation for autonomous mobile robots, J. Signal Process. Syst.
56 (1) (2009) 41–50, http://dx.doi.org/10.1007/s11265-008-0257-8.

26] S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for
mobile robots, Artif. Intell. 128 (1–2) (2001) 99–141, http://dx.doi.org/10.
1016/S0004-3702(01)00069-8.

[

 PRESS
puting xxx (2016) xxx–xxx 15

27] S. Hong, M. Bolic, P.M. Djuric, An efficient fixed-point implementation of
residual resampling scheme for high-speed particle filters, IEEE Signal
Process. Lett. 11 (5) (2004) 482–485.

28] H. Abd El-Halym, I. Mahmoud, S. Habib, Proposed hardware architectures of

particle filter for object tracking, EURASIP J. Adv. Signal Process. 2012 (1)
(2012), http://dx.doi.org/10.1186/1687-6180-2012-17.

29] S.-A. Li, C.-C. Hsu, W.-L. Lin, J.-P. Wang, Hardware/software co-design of
particle filter and its application in object tracking, in: 2011 International
Conference on System Science and Engineering (ICSSE), IEEE, 2011,
pp. 87–91.

30] J. Gallagher, S. Vigraham, G. Kramer, A family of compact genetic algorithms
for intrinsic evolvable hardware, IEEE Trans. Evol. Comput. 8 (2) (2004)
111–126, http://dx.doi.org/10.1109/TEVC.2003.820662.

31] E. Mininno, F. Cupertino, D. Naso, Real-valued compact genetic algorithms for
embedded microcontroller optimization, IEEE Trans. Evol. Comput. 12 (2)
(2008) 203–219, http://dx.doi.org/10.1109/TEVC.2007.896689.

32] C.F.M. Toledo, M. da Silva Arantes, R.R.R. Oliveira, A.C.B. Delbem, A hybrid
compact genetic algorithm applied to the multi-level capacitated lot sizing
problem, in: Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC’13, ACM, New York, NY, USA, 2013, pp. 200–205, http://dx.
doi.org/10.1145/2480362.2480404.

33] A. Methods, F. Vainstein, Error detection and correction in numerical
computations, in: H. Mattson, T. Mora, T. Rao (Eds.), Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, vol. 539 of Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, 1991, pp. 456–464, http://dx.
doi.org/10.1007/3-540-54522-0 133.

34] T. Bailey, J. Nieto, J. Guivant, M. Stevens, E. Nebot, Consistency of the
EKF-SLAM algorithm, in: 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2006, pp. 3562–3568.

35] T. Bäck, D.B. Fogel, Z. Michalewicz, Evolutionary Computation 1: Basic
Algorithms and Operators, vol. 1, CRC Press, 2000.

36] S.A. Frank, M. Slatkin, Fisher’s fundamental theorem of natural selection,
Trends Ecol. Evol. 7 (3) (1992) 92–95, http://dx.doi.org/10.1016/0169-
5347(92)90248-A.

37] P.K. Shukla, K. Deb, On finding multiple Pareto-optimal solutions using
classical and evolutionary generating methods, Eur. J. Oper. Res. 181 (3)
(2007) 1630–1652, http://dx.doi.org/10.1016/j.ejor.2006.08.002.

38] K. Deb, P. Zope, A. Jain, Distributed computing of Pareto-optimal solutions
with evolutionary algorithms, in: C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, K.
Deb (Eds.), Evolutionary Multi-Criterion Optimization, vol. 2632 of Lecture
Notes in Computer Science, Springer, Berlin/Heidelberg, 2003, pp. 534–549,
http://dx.doi.org/10.1007/3-540-36970-8 38.

39] H. John, Holland, Adaptation in Natural and Artificial Systems, 1992.
40] H.A. Simon, The Sciences of the Artificial, vol. 136, MIT Press, 1996.
41] J.P. Martins, C.M. Fonseca, A.C. Delbem, On the performance of linkage-tree

genetic algorithms for the multidimensional knapsack problem, in: Bridging
Machine Learning and Evolutionary Computation (BMLEC) Computational
Collective Intelligence, Neurocomputing 146 (2014) 17–29, http://dx.doi.org/
10.1016/j.neucom.2014.04.069.

42] D.E. Goldberg, A design approach to problem difficulty, in: The Design of
of evolutionary bit-length optimization algorithms for floating to
/10.1016/j.asoc.2016.08.035

6.
43] M.K. Crocomo, Algoritmo de otimizaç ao bayesiano com detecç ao de

comunidades, Universidade de São Paulo, 2012 (Ph.D. thesis).

1036

1037

1038

dx.doi.org/10.1016/j.asoc.2016.08.035
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1155/ASP/2006/96421
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1109/SiPS.2011.6088971
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1145/996566.996701
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2010.2041839
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1109/TCAD.2011.2152840
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1145/2145694.2145726
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/TCAD.2011.2161307
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1109/HLDVT.2010.5496667
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s13173-012-0092-4
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1007/s11265-008-0257-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1016/S0004-3702(01)00069-8
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1186/1687-6180-2012-17
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2003.820662
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1109/TEVC.2007.896689
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1145/2480362.2480404
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1007/3-540-54522-0_133
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/0169-5347(92)90248-A
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1016/j.ejor.2006.08.002
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1007/3-540-36970-8_38
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1016/j.neucom.2014.04.069
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6
dx.doi.org/10.1007/978-1-4757-3643-4_6

	Design and analysis of evolutionary bit-length optimization algorithms for floating to fixed-point conversion
	1 Introduction
	2 Related work
	3 Conversion from floating to fixed-point problem
	4 Conversion algorithm
	5 Methods
	5.1 Fitness function and fixed parameters
	5.2 Evolutionary Optimize (EO)
	5.3 Multi-objective compact genetic algorithm

	6 Computational results
	6.1 Analysis of the Evolutionary Optimize
	6.1.1 Allele_Exp
	6.1.2 Severity
	6.1.3 Mutation_Rate
	6.1.4 Poppulation_Exp
	6.1.5 Stop_Variation
	6.1.6 Threshold
	6.1.7 Gap
	6.1.8 Final EO parameters values

	6.2 Analysis of mo-cGAO
	6.2.1 Empirical evaluation of mo-cGAO parameters
	6.2.2 Final mo-cGAO parameters values

	6.3 Methods comparison

	7 Conclusions
	Acknowledgments
	References

