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a b s t r a c t

A method for the fast approximation of dexterity indices for given underwater vehicle-manipulator
systems (UVMS) configurations is presented. Common underwater tasks are associated with two well-
known dexterity indices and two types of neural networks are designed and trained to approximate
each one of them. The method avoids the lengthy calculation of the Jacobian, its determinant and the
computationally expensive procedure of singular value decomposition required to compute the dexter-
ity indices. It provides directly and in a considerably reduced computational time the selected dexterity
index value for the given configuration of the system. The full kinematic model of the UVMS is consid-
eed-forward back-propagation neural
etworks
adial basis function neural networks
ast approximation of high complexity
unction
igh performance of underwater

ered and the NN training dataset is formulated by the conventional calculation of the selected dexterity
indices. A comparison between the computational cost of the analytical calculation of the indices and
their approximation by the two NN is presented for the validation of the proposed approach. This paper
contributes mainly on broadening the applications of NN to a problem of high complexity and of high
importance for UVMS high performance intervention.

© 2016 Published by Elsevier B.V.

ehicle-manipulator systems

. Introduction

Unmanned Underwater Vehicles (UUV) are being used nowa-
ays in a wide range of underwater operations. Common UUV
asks include manipulation of valves and switches on underwater
acilities such as control panels on hydrocarbon underwater sites,
nspection and maintenance of subsea structures, object recovery
nd survey of the sea bottom. A vast majority of tasks require
vehicle equipped with a manipulator, composing a redundant
nderwater Vehicle Manipulator System (UVMS). Remotely Oper-
ted Vehicles (ROVs) and Intervention Autonomous Underwater
ehicles (IAUV) are typical UVMS. ROV are robot submersibles con-
ected to a mother ship by a coaxial cable, transferring power
nd data, and operated by experienced pilots, whereas IAUV are
eployed by their mother ship and operate untethered.

The term autonomous operation is synonymous with the IAUV
perations, though current trends indicate that more and more ROV
ission components tend to become autonomous. Online motion
lanning is a key element of every underwater mission and an
fficient motion plan that could be adapted according to sensor
eadings is essential for an IAUV mission. Though, such a motion
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E-mail addresses: psotirop@upatras.gr, psotirop@mech.upatras.gr

P. Sotiropoulos), asprag@mech.upatras.gr (N. Aspragathos).

ttp://dx.doi.org/10.1016/j.asoc.2016.08.033
568-4946/© 2016 Published by Elsevier B.V.
planning algorithm could also benefit an ROV mission leaving the
pilot with a supervisory role.

A common underwater mission scenario for a UVMS on an
underwater site is illustrated in Fig. 1, where the vehicle approaches
a control panel equipped with control valves, commonly used in
underwater hydrocarbon facilities.

Usually in a single mission several interventions have to be
made, referred to as tasks and subtasks. The vehicle could either
dock near the task area to perform the intervention or navigate
while executing it. In the latter case, due to the unconstrained
movement of the main body of the UVMS, apart from the degrees
of freedom (dof) of the manipulator, there are six more dof added
to the system that could allow the UVMS use additional configu-
rations to achieve a given end-effector pose and subsequently a
trajectory for a given task. An optimal motion planning algorithm
should therefore make use of the redundancy of the UVMS in order
to perform the mission in the most efficient manner.

Depending on the task in hand there exist several indices that
could quantify the system’s ability to either move the end-effector
with high speed, or apply force or even move with accuracy around
a certain point in the workspace. There are numerous studies in the
literature regarding dexterity indices for stationary robot manip-

ulators. Yoshikawa [1] proposed dexterity indices based on the
kinematic and the dynamic manipulability ellipsoid in order to
provide a quantitative measure of a robot’s ability to achieve high
speed of the end-effector or apply great force on the environment.

dx.doi.org/10.1016/j.asoc.2016.08.033
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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Fig. 1. UVMS approaching hydrocarbon facility control panel.

he conditioning number of the Jacobian was used by Salisbury and
raig [2] and provided a measure of isotropy that indicated the ease
f the end effector to move towards any direction from the current
onfiguration. The kinematic conditioning index (KCI) defined as
he inverse of the condition number was introduced by Angeles
nd Lopez-Cajun [3] and could be considered as a measure of the
nd effector positioning and orientation accuracy.

Though, the Jacobian matrix contains elements for translational
nd rotational joints as well as for the translational and rotational
peeds of the end-effector. Yoshikawa solved that issue by nor-
alising the Jacobian using the upper limits of the joint’s and

he end-effector’s speeds. An alternative approach would be to
xamine the dexterity index by separating the Jacobian into its
ranslational and rotational components. Cardu et al. [4] proposed

 modified dexterity index based on the decomposition of the
acobian into a translational and a rotational matrix to evaluate
eparately translational and rotational speeds on the end effector.

Taking into account the directionality of certain robot tasks
ubey and Luh [5] have introduced the manipulator velocity ratio

MVR) to quantify the ability of the end-effector to move towards
 given direction. The term of manipulator mechanical advantage
MMA)  was also introduced in the same publication, to quantify the
nd-effector’s ability to apply force along a given direction.

Later works examined the use of dexterity to retrieve dexter-
us poses for mobile vehicle manipulator systems (MVMS). Tchon
nd Zadarnowska [6] have proposed a local and a global dexterity
easure based on an endogenous configuration space approach, to

uantify the MVMS  dexterity and provide optimal poses for mobile
anipulators. Bayle et al. [7] studied the extension of the manipula-

ility introduced by Yoshikawa for a non-holonomic MVMS  relating
t to the shape of the manipulability ellipsoid.

Regarding UVMS, the importance of dexterity indices in motion
oordination, while executing a task, was pointed out by Padir and
olff [8], where they have studied the use of a dexterity index for

he case of two cooperating UVMS. The index was  based on the
anipulability and it was formed to describe the manipulability

f the system of the two vehicles for a rigid object transportation
ask. Pseudovelocities were introduced to incorporate the coupling
onstraints into the kinematic equations of the whole system. Jun
t al. [9] proposed a method to provide a UVMS with optimal
onfigurations, while executing a given task, based on the task
riented manipulability measure. Asokan et al. [10] proposed a
ethod to retrieve a docking pose for a UVMS while executing a
elding task that would maximise the end-effector’s workspace
anipulability. The dexterity of the manipulator was considered

n the optimization criteria for the determination of the docking
ose on the structure under constraints. The importance of a well

elected docking pose was discussed, since it would allow the vehi-
le to avoid singular configurations, while performing the tasks and
herefore to avoid possible re-docking that would cost in terms of
ime and energy. Using an extended dexterity index Sotiropoulos
oft Computing 49 (2016) 352–364 353

et al. [11] have studied the optimal docking pose for a UVMS,  on an
underwater facility control panel where the vehicle had to execute
a series of manipulation tasks. The dexterity measure of Yoshikawa
was used to formulate the Area Manipulability Measure (AMM) in
order to retrieve an appropriate docking pose for the vehicle that
would allow high values of manipulability inside its task area.

The majority of the dexterity indices proposed so far are based
on the Jacobian matrix either by calculating its determinant or
by performing singular value decomposition (SVD) to determine
its singular values. However, even the analytical calculation of
the Jacobian matrix, requires a great number of mathematical
operations, since each element of the Jacobian includes complex
trigonometric functions of the joint variables. The computational
issues for the motion planning of UVMS were considered early on by
Quinn and Lane [12] and therefore a fast calculation of the indexes
could benefit motion planning algorithms in general.

During the last decades, Neural Networks (NN) have been widely
used for complex linear and nonlinear function approximation
problems. Various NN architectures have been proposed in the
literature for robotic applications and especially for the approxi-
mation of the robot kinematics model [13]. Numerous studies have
been dedicated to the use of an appropriate NN architecture for the
solution of the inverse kinematics problem of serial manipulators
[14–16] while the forward kinematics problem has been addressed
mainly for parallel robot applications [17]. The use of NN in the
aforementioned studies, aims to reduce the computational cost for
the calculation of the system’s kinematics, when an analytical solu-
tion is hard to be found. While re-examining the problem of UVMS
docking Sotiropoulos et al. [18] have proposed a NN for the fast
calculation of the dexterity on the task area, avoiding the calcula-
tion of the vehicle’s inverse kinematics. The use of a NN provided
computational time gain on the calculation of the AMM  proposed
in [11], however the environment in this case was constrained by
the nature of a docking operation and the dimensions of the prob-
lem were reduced to the pose of the docking probe (y, z and �) with
respect to the docking plane.

On an underwater mission, the computational potential of
UVMS is limited to the system’s on-board resources. Given that the
vehicle should operate in a rather dynamic and uncertain environ-
ment, the UVMS should be able to update the motion plan based
on its sensor readings rapidly. The online generated motion plan
should ensure efficient task execution, thus appropriate dexterity
indices should be considered. Formulating the Jacobian matrix, can-
didate configurations could be graded according to the dexterity
index selected. The calculation of the Jacobian matrix and the dex-
terity indices derived from it may  be a straightforward procedure,
though, the computational gain of using NN to approximate dexter-
ity indices rapidly should be investigated. Possible time gain would
reduce the computational cost of any motion planning algorithm
for efficient task execution accordingly.

In this paper we test two types of NN for the fast calculation of
two dexterity indices directly from the configuration of the UVMS.
The two  types of NN used, are the feed forward and the radial
basis function networks. Basic tasks that could be possibly under-
taken by a UVMS in an underwater mission are examined and
related with the two dexterity indices, the manipulability measure
w and the kinematic conditioning index KCI. Both types of NN have
been designed and trained to approximate the index value. The full
kinematic model of the UVMS is taken under consideration when
designing the NN and thus the entire set of dof could be utilised on
a dexterous motion planning algorithm.

Moreover, a comparison is performed between the algebraic

operations required by the NN approximation and those required
by the analytical calculation of the indices. To demonstrate the time
gains of the proposed approach the computational time the calcu-
lation of the dexterity indices by a numerical method that uses the
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nalytical expression of the Jacobian and well known algorithms
or the calculation of its determinant and SVD, is compared with
he NN method.

The contribution of this paper is towards the application of NN in
 highly demanding problem such as the optimum motion planning
or a high-dof system able to perform an autonomous interven-
ion task. The approximation of widely used dexterity indices by
N would provide a valuable tool for efficient online motion plan-
ing algorithms and reduced cycle time during interventions with

 minimal computational cost.
The rest of the paper is divided in the following sections: Section

 presents the kinematics of a UVMS and the association of the
exterity indices to certain underwater tasks. In Section 3 the two
ypes of NN architectures selected for this work are described in
etail. In Section 4 the performance of the networks is presented
nd discussed.

. Kinematics and UVMS dexterity

.1. Description of the UVMS

UVMS systems in general are fully actuated systems, though
assive by design in roll and pitch angles [19]. A representative
xample of such a vehicle used mainly for scientific operations is the
ason ROV of the Woods Hole Oceanographic Institution, equipped

ith six propellers actuated by DC motors that can move the vehicle
n any direction [20].

The system described here is composed by a holonomic vehicle
nd a six dof manipulator attached to its front side resulting on

 total twelve dof system. Regarding the UVMS base movement
he three translational and three rotational dof are modelled as
ranslational and rotational joints attached to the centre of gravity
CoG) of the vehicle. The vector � describing the displacements of
he vehicle and of the manipulator’s joints is given by:

 = [x, y, z, �x,�y, �z, �m1, �m2, �m3, �m4, �m5, �m6]

here x, y and z refer to the base translation, �x , �y and �z refer to
he base rotation according to XYZ Euler angles representation and
m1,. . .,�m6 refer to the manipulator’s joint displacements.

The movement of every joint (�n) could be described with a twist
�n) [21]. The twist for a rotational joint is given by:

n =
[

−ωn × qn

ωn

]
(1)

and the twist for a translational joint by:

n =
[
kn

0

]
(2)

here ωn, kn and qn denote the unit vector for rotation, the unit
ector for translation and a point on the axis of rotation respec-
ively.

The UVMS’s model, with the axes of translations k and rotations
 for every joint along with the CoG of the vehicle and the manipu-

ator base point (MB), is illustrated in Fig. 2. The axes of translation
nd rotation of the UVMS joints at the reference configuration are
iven by:

1 = [100]T , k2 = [010]T , k3 = [001]T

4 = [100]T , ω5 = [010]T , ω6 = [001]T
7 = [001]T , ω8 = [−100]T , ω9 = [−100]T

10 = [001]T , ω11 = [−100]T , ω12 = [010]T
oft Computing 49 (2016) 352–364

While the points considered on the respective axes are:

q1 = [0, 0, 0]T ,

q2 = [0, yMB, l1]T ,

q3 = [0, yMB + l2, l1]T ,

q4 = [0, yMB + l2 + l3, l1]T

where yMB, is the distance along the y-axis from the CoG to the
manipulator base (MB).

2.2. UVMS kinematics

The forward kinematics problem for a robotic system refers to
the determination of its end-effector pose for a specified set of joint
values using the systems kinematic equations. Rigid body transfor-
mations can be represented by the exponential of a twist and the
final pose of the end effector could be defined by the product of
exponential of the twists for the presented platform-manipulator
system:

gst (ϑ) = e�1�1 · ... · e�12�12gst (0) (3)

gst (0) =
[
R (0) p (0)

0 1

]
(4)

where gst(0) refers to the end-effector pose in the reference con-
figuration of the UVMS, R(0) = I equals to [3 × 3] identity matrix
that denotes the rotation matrix and p (0) = [0, yMB + l2 + l3, l1]T

the position vector of the end-effector.
The Jacobian matrix relates the joint speed vector to the end-

effector speed vector according to Eq. (5)

ṙ = Jsst
(
�
)
�̇ (5)

The Jacobian could be derived using the adjoint transformations
of the twists as:

Jsst
(
�
)

=
[
�1, . . .,  �′

n, . . .,  �′
12

]
(6)

�′
n = Ad(e�1�1 ....e�n−1�n−1 gst (0)) where, Adg denotes the adjoint of the

matrix g.
It can be observed that the last joint �12 does not affect the value

of the Jacobian by its definition.

2.3. Dexterity indices related to underwater tasks

In this section the engineering meaning of the manipulability
index and the kinematic conditioning index is presented, as well as
their relation to some critical underwater tasks. Yoshikawa in [1]
introduced the manipulability index based on the properties of the
Jacobian. Since the Jacobian’s elements are the coefficients of both
linear and angular velocities, the matrix could be normalized as:

J
(
�
)

= UJsstG
−1 (7)

where, G = diag
(

1/�̇1max, ..., 1/�̇12max
)

and U =
diag

(
1/ṙ1max, ..., 1/ṙ6max

)
the diagonal matrices that contain

the maximum joint velocities and the maximum end-effector
velocities respectively.

The manipulability index w is given by:

w = �1·�2·...·�6 (8)
Or alternatively by:

w =
√
det

(
JJT

)
(9)
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Fig. 2. UVMS at the

here det denotes the matrix determinant and �1,. . .,  �6 denote
he singular values of the Jacobian matrix.

The analytical form of the manipulability index could be calcu-
ated using symbolic computation software and the analytical form
f the Jacobian and its determinant are given in the Appendix A.
onsidering the eigenvectors u1,. . .,u6 of the Jacobian an ellipsoid
ould be formed that its axes are given by �1u1,. . .,�6u6. The manip-
lability index is proportional to the volume of the ellipsoid. In a
imilar manner one could define the force ellipsoid that is reciprocal
o the manipulability ellipsoid. Across the manipulability ellipsoid’s

ajor axis (�1u1) the end-effector could move with high speed,
hereas across its minor axis (�mum) its speed capability is reduced

nd it could apply higher forces. A zero value of the manipulabil-
ty index would imply that the end-effector cannot move towards
ertain directions which could prove a great disadvantage while
xecuting a task that requires high speed along these directions.
n Fig. 3, the manipulability ellipsoid is demonstrated graphically
y taking into account only the translational speeds of the end
ffector.
Angeles et al. [3] have proposed the kinematic conditioning
ndex to grade the proximity of the system’s configuration to
sotropy, where the end-effector could move towards any direc-
ion with the same ease. The kinematic conditioning index is

Fig. 3. UVMS close to the intervention a
ence configuration.

given by the ratio of the minimum versus the maximum singular
value:

KCI = 1
k (J)

= �m
�1

(10)

For the special case that �m = �1 the ellipsoid becomes a sphere
such as the one illustrated in Fig. 3 that lies inside the original
manipulability ellipsoid.

During a UVMS intervention where the end-effector should
accomplish a series of subtasks, the value of the manipulabil-
ity index indicates its ability to move with high velocity on the
end-effector, an attribute that could minimize the cycle time of a
mission. On the other hand a value of KCI close to one, would indi-
cate that the end-effector could move with the same ease in every
direction and therefore such configurations could be utilized dur-
ing interventions requiring accuracy on the end-effector. From the
application’s point of view the manipulability index could be asso-
ciated with underwater operations whose velocity and force are of

high importance.

There are several underwater operations that could be analysed
depending on their requirements of speed, force/torque and accu-
racy by the end-effector. Such an analysis would help identify the

rea and manipulability ellipsoid.
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Table  1
Indices associated with tasks.

Index Task Comments

Manipulability Index (w) 1. Manipulation valves/levers
2. Installation and replacement of structural

components.
3. Object recovery
4. Debris removal
5. Multiple task execution
6. Cutting
7. Cleaning

Determine the configurations that the
end-effector can have the high speed or
apply great force.

Kinematic Conditioning Index (KCI) 1. Precise manipulation
2. High precision cutting
3. Welding

ment

Evaluate the accuracy of the end-effector
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4. Small component replace
5. Non-destructive testing

ppropriate dexterity index for a given task and rank configurations
hat could compose a dexterous motion plan.

For example in the area of repair and maintenance, operations
uch as cutting off damaged parts and cleaning underwater struc-
ures using water jet are quite common and require application
f constant force by the system. Dexterous configurations could
e considered for such a task, though for high precision cutting
perations the value of KCI should also be taken into account.

Often UVMS should check and replace jumpers or perform speci-
ed non-destructive testing on given components, operations that
ould benefit from a high level of accuracy by the end effector.
elding operations are also part of the repair and maintenance of

nderwater installations where the accuracy of the end effector is
f great importance, since the speed should be kept constant across
he weld and the end effector should keep close to the surface.

In the area of general underwater manipulations, like manip-
lation of valves and levers on underwater control panels, the
nd-effector has to apply torque about a certain axis, whereas on
ebris removal operations the application of excessive force would
e required. On the case of underwater archaeological sites and
ragile object recovery the accuracy is rather important. Further-

ore, in any case where multiple tasks are to be performed in a
mall task area, the time required from the end-effector to travel
rom one task to the next should be minimized and therefore con-
gurations with great speed potential should be preferred. Table 1
resents a mapping of selected indices to UVMS tasks such as
anipulations, inspections and interventions on underwater struc-

ures.
Following this association the importance of dexterity indices

n motion planning for task execution becomes rather obvious.
owever their computational cost should remain at a minimum

evel in order to be used in practical real world missions, where
 motion planning algorithm would examine several hundreds of
onfigurations on every cycle. Even the slightest improvement in
erms of computational time for the dexterity indices, would lead
o significantly reduced computational time for the planner.

. Neural networks for dexterity indices approximation

In this paper two types of artificial neural networks are exam-
ned for the rapid calculation of the selected dexterity indices. The
wo types of NN are the feed-forward back-propagation networks
FFBN) and the radial basis function networks (RBFN). Both types
f NN are widely used for function approximation problems [13].

ecent studies [22] have demonstrated that hyper-basis function
etworks (HBFN) could be an alternative to classic RBFN provid-

ng scaling to local input dimensions and resulting to compact and
eliable networks. However the discussed method could produce
unnecessarily large networks for certain problems and the HBFN
were not considered further for this particular study.

FFBN can be easily designed having sigmoid neurons on their
hidden layer and linear neurons in the output layer. In their training
procedure, using back-propagation methods, a significant amount
of time is required for network convergence. The convergence time
depends on the size of the training set and the number of neurons
used for the model.

RBFN are designed by appropriately selecting data from the
training dataset and an optimal spread value for the activation of
the radial basis function of each neuron, in order to cover the search
space effectively. RBFN tend to have more neurons than a compa-
rable FFBN, since sigmoid neurons can have outputs over a large
region of the input space, while the radial basis function neurons
could only respond to relatively small regions of the input space
depending on their spread value (spread). The result is that the
larger the input space (in terms of number of inputs, and the ranges
those inputs vary over) the more neurons required for an RBFN.

There are two general approaches on the training of neural net-
works, the batch training approach and the sequential training
approach. On the sequential approach the network is adapted on an
example by example basis whereas on the batch training the entire
set of training examples is presented and the network is adjusted
on an epoch-by epoch basis.

For on-line applications and towards the minimization of the
neurons used by a RBFN, Huang et al. in [23] have introduced the
concept of significance for hidden neurons that would allow a neu-
ron to be added on the network only its contribution to the network
output is above a certain threshold. Vukovic and Miljkovic in [24]
have discussed the use of standard Extended Kalman Filters to deal
with outliers in heavy tail noise data. They use a sequential training
approach and the network could easily be adapted in case new data
become available without the need to memorise the previous data.

Even though sequential training could demonstrate better
performance on online applications and pattern classification
problems, the batch training approach remains better suited for
nonlinear regression problems [25]. In this work given that the
example dataset is well defined with no outliers present and since
the network would not be updated online during the application, a
batch approach has been followed during the training phases that
are performed off-line.

3.1. Dataset
By adequately sampling the UVMS configuration space and by
having determined the normalised Jacobian matrix of the sys-
tem using Eqs. (6) and (7), the values of the dexterity indices are
computed for each configuration based on Eqs. (9) and (10). It
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hould be noted that since J does not depend on �12, both the manip-
lability index and the kinematic conditioning index do not depend
n its value. Therefore the last joint �12 is not considered among the

nput variables. Furthermore, the value of the determinant of the
atrix [JJT] does not depend on the first three translational and

he first rotational joints of the UVMS due to the base invariance
roperty discussed by Gotlin and Troch [26] and Synodinos et al.
27].

For the KCI,  a training dataset D1 is formed using the joint values
or each sample configuration that affect the value of the index, as
nputs and the corresponding index values as outputs. Following
he discussion held before the last joint is not considered among
he training inputs. The i-th element of the training dataset is given
y:

i
1 =

[
�i1, . . .,  �i11|KCI

]
(11)

Regarding w,  the training dataset D2 is formed considering the
ase invariance property and therefore the inputs contain only the
even joints that affect the value of the index. The i-th element of
he dataset is given by:

i
2 =

[
�i5, . . .,  �i11|w

]
(12)

The design process for every network consists of training and
esting phase. A set of test datasets Tj , (j = 1,2), were created in a sim-
lar manner that would serve to validate the networks during the
esting phase. For the sake of simplicity, the subscript j is dropped
n the following section where the neural network architectures
re described.

.2. Neural networks structure

Having defined the training and testing datasets, the two  neural
etwork architectures are described briefly hereafter. In Fig. 4, a
FBN with an input layer, one hidden layer (Layer 1) and an output
ayer (Layer 2) is illustrated. Given an input � the activation function
f the first layer fTS is a tangential sigmoid function given by Eq.
13), while the activation function of the second layer fL is a linear
unction given by Eq. (14).

TS (�) = e� − e−�

e� + e−�
(13)

L (�) = � (14)

Given a training input vector Din = [�1,. . .,�r] the j-th output of
he hidden layer XjH would be:

j
H = fTS(

r∑
i=1

(Wi,j
1 · Diin) + bj1) (15)

here, r denotes the number of system joints considered in the
raining dataset and are equal to the input neurons.

The network’s simulated output Sout would be:

out = fL(
k∑
i=1

(Wi
2 · DiH) + b2) (16)

here Sout = KCI or w.
The second type of the NN architecture is composed of an input

ayer, a hidden layer (Layer 1) and an output layer (Layer 2). A typical

BFN is illustrated in Fig. 5. The activation function fRB is a radial
asis function given by:

RB (�) = e−�
2

(17)
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Again, given a training input vector Din = [�1,. . .,�r], the j-th out-
put of the hidden layer XjH would be:

XjH = fRB

((
r∑
i=1

Diin − Wj,i
1

)
bj1

)
(18)

The bias vector b affects the output of the radial basis function
by amplifying or compressing it. The biases b of the hidden neurons
are set to 0.833/spread that would give an output of 0.5 or larger
for any distance that equals or is less than +/−spread. The network’s
simulated output Sout (Sout = KCI or w) is computed using Eq. (16).

3.3. FFBN design procedure, training and testing

The design process for the FFBN, is an iterative procedure for the
determination of the minimum number of neurons in the hidden
layer. It is composed of two coupled phases: the training and the
testing.

Starting with a single neuron network the number of neurons is
increased by one each iteration of the design phase and the derived
NN is trained. During the training process the weights and the
biases of the network are updated until the mean square train-
ing error (emse) falls below the desired training error (Emse) or the
training epochs reach the maximum limit (Lepochs). The emse for each
stage of the training phase is given by:

emse = 1
q

q∑
i=1

(
Siout − Diout

)2
(19)

where, Siout is the simulated network output given the training
input vector Di

in
, Diout is the corresponding training dataset dex-

terity index value and q denotes the number of training vectors in
the training dataset.

The network is trained using the Levenberg-Marquardt back
propagation algorithm embedded in Matlab Neural networks tool-
box. The Levenberg-Marquardt algorithm is designed to approach
second-order training speed without having to compute the Hes-
sian matrix and it is among the fastest methods for training
moderate-sized feed-forward neural networks [28]. The algorithm
is based on the computation of the network’s Jacobian matrix Jn
to update the weights, an approach that is less complex than the
computation of the Hessian matrix on Newton methods. The update
rule is given by:

Wk+1 = Wk −
[
JTn Jn + �I

]−1
JTn e (20)

The Levenberg-Marquardt algorithm performs as a combination
of a steepest descent algorithm and a Gauss-Neuton algorithm and
switches between the two during the training process. For small
values of the coefficient � the equation approaches the Gauss-
Neuton algorithm while for very large values it approaches gradient
descent methods with a small step size. As described by Hagan and
Menhaj in [29] the Levenberg-Marquardt algorithm is much more
efficient than conjugate gradient methods and variable learning
rate algorithms for networks that consist of no more than a few
hundred neurons.

Following the training phase of the FFBN, testing is performed
using the test dataset, to simulate the network. The simulated net-
work outputs Sout are compared with dexterity index values (Tout)
on the test dataset and the testing error (e) is given by:∣ ∣

e = max

i=1:t

∣∣∣Tiout − Siout
T iout

∣∣∣ (21)

where t denotes the number of test configurations.
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Fig. 4. FFBN architecture.
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The design procedure terminates when the value of e for the
iven network falls below the maximum allowed testing error (E),
r if the number of neurons reaches the design iteration limit (Liter).

.4. RBFN design process, training and testing
The design process for the RBFN aims to minimise the network’s
umber of neurons in the hidden layer by finding an optimal spread
alue. The approach is based on a similar procedure as the one
hitecture.

described before, though a second iteration is required. Given the
training dataset D and an initial spread value, a RBFN is designed
and trained. The training dataset D is used to simulate the network
and compute the emse. The testing phase initiates when the emse
falls below the training error threshold (Eth) to acquire a network

with the minimum number of neurons for the given spread value.
In principle the value of Eth is higher than the value of Emse.

During the testing procedure if the value of e falls below E, the
design process is terminated. In the opposite case, if the emse is
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Fig. 6. a) FFBN design process flow chart b) RBFN design process flow chart.

Table 2
Vehicle parameters.

UVMS parameters

hv = 1 m
lv = 1.5 m
wv = 1 m
rmin = 0.2 m
rmax = 1 m

a
w
o
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p
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s
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4

4
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b
d
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T

area, where the positions of the base joints of the system were con-
sidered. The remaining configuration space was sampled in a range

◦ ◦ ◦ ◦
bove the desired error Emse, a neuron is added in the hidden layer
ith weights equal to the values of the input vector with the biggest

utput error and the updated network is simulated again. If not, the
pread value is increased by a predefined amount (st spread)  and the
rocedure starts over until the spread value reaches the maximum
pread limit (Ls). The procedure is based on a modified version of
he newrb function (a built-in Matlab function) where the testing
tage is incorporated into the training process.

The flowcharts for the combined design and training process for
oth FFBN and RBFN are illustrated in Fig. 6.

. Performance and comparison of neural networks results

.1. Problem parameters

In order to compare the two neural network architectures, a
VMS was considered with its parameters given in Table 2. r max

nd r min denote the radiuses of the maximum and the minimum
oundary of the manipulator’s workspace, whereas hv, lv and wv
enote the height, the length and the width of the vehicle respec-

ively. The parameters used in the design procedure are given in
able 3.
Fig. 7. Sample area around a task point (TP) on x-y plane.

4.2. Data sampling

For the first six joints that represent the pose of the UVMS’s
base, there are no physical constraints such as the ones imposed on
the manipulator’s joints. However, the pose of the base should be
such that would allow the intervention point to remain inside the
manipulator’s workspace during the entire task execution.

Given a random task point (TP) as the one in Fig. 7, only configu-
rations that allow the manipulator’s base (MB) to remain inside the
illustrated area were considered in the search space. The illustrated
search area is defined by r max and rmin. Therefore, during data sam-
pling the ranges of the translational joints �1, �2 and �3 of the UVMS
that correspond to the CoG displacement were restricted accord-
ingly. In Fig. 7, 	 = 30◦ denotes the sampling angle inside the search
of 30 , from −15 to 15 with a step of 5 , per manipulator joint in
an attempt to reduce the amount of data. Nevertheless the findings
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Table  3
Design procedure parameters.

Design parameters RBFN-w RBFN-KCI FFBN-w FFBN-KCI

E (testing error) 0.02 0.02 0.02 0.02
Emse (training error) 10−6 10−6 10−3 5 × 10−6

Eth (error threshold) 10−2 10−4 – –
Liter (iteration limit/number of neurons) – – 100 100

– 100 100
10 – –
1000 1000 1000
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Table 4
Number of operations required per index.

Analytical Computation FFBN RBFN
Lepochs (epochs limit) – 

Ls (spread limit) 10 

T  (number of test configurations) 1000 

f this work could be extended to cover the entire configuration
pace. For the case of the manipulability index approximation, only
he joints that have an impact on the index’s value are considered,
amely joints �5 to �11.

It should be noted that after the training of the network the TP
ould correspond to any point inside the UVMS workspace and the
rained network could approximate the dexterity index for every
onfiguration once the dataset is extended.

.3. Neural networks designed to approximate the manipulability
ndex (w)

Both neural network architectures proved capable of approxi-
ating the indices within the acceptable error E during the design

rocess, though as expected the RBFN procedure led to networks
arger than the FFBN. The best RBFN found had 149 neurons in its
idden layer, while the corresponding FFBN managed to approach
he index using only 8 neurons in its hidden layer.

Considering Eqs. (13)–(18), one could compute the number of
perations required by each network to approximate the dexter-

ty index. Given that the computational time for multiplications
nd additions differs depending on the available hardware and the
ccuracy required, in this paper these are considered as equivalent
perations and the total number of operation presented is based on
his assumption. Though, the number of addition and multiplica-
ion operations is also presented separately. For the case of w, the
otal number of operations for the FFBN network rises to 184 from
hich 80 additions and 104 multiplications, while for the RBFN

he total number of operations required is 4172, from which 1788
dditions and 2384 multiplications.

The performance of the networks during the design process
or the RBFN is illustrated in Fig. 8. In Fig. 9 the training conver-
ence to the best network derived from the design procedure is
llustrated. As the spread value increases more neurons have a sig-
ificant impact on the network’s output and the network is able to
eneralise and have better performance on the test dataset.

Fig. 10 demonstrates the design process for the FFBN, while
ig. 11 shows the training procedure for the best network config-
ration. In this case the small number of neurons would provide a
etwork that would generalise better.

The performance of each new network depends highly on the
nitialisation of the weight’s matrices. This could explain why  the
etworks that have six and seven neurons in the hidden layer give

nferior results than the one with eight neurons that was  finally
elected, while the networks with 4 and 5 neurons in the hidden
ayer give good results.

.4. Neural networks designed to approximate the kinematic
onditioning index (KCI)

The types of neural networks used to approximate the KCI were

rained using a significantly bigger dataset. As a consequence it
an be observed from the results that, regarding the RBFN a larger
pread value (spread = 8.9) was required for the network to achieve
he desired performance while for the FFBN a larger number on neu-
w 21810 184 4172
KCI  21594 775 3976

rons (25 neurons), compared to the number of neurons of the FFBN
used to approximate w, had to be added in the hidden layer for the
network to converge. It can be noted that both types of networks
managed to reach the testing error E during the design procedure.
The total number of operations in this case for the FFBN network
rises to 775 from which 350 additions and 425 multiplications,
while for the RBFN to 3976 from which 1704 addition operations
and 2272 multiplication operations.

Figs. 12 and 14 demonstrate the design procedure for the RBFN
and FFBN respectively while Figs. 13 and 15 illustrate the training
process for the best network in each case.

On the design process and for spread values higher than 1.5,
there are RBFN with testing error less than 5%. Though, the limita-
tion on the number of neurons (Liter) on the hidden layer does not
permit these networks to reach E during testing.

Having designed the NN, the total number of operations
required for the best NN of each case is compared with the oper-
ations required by the analytical computation of the dexterity
indices in Table 4. It should be noted that the number of operations
for the analytical computation of KCI is approximated, as stated in
the Appendix A.

It can be easily observed that the number of operations required
by the analytical approach is significantly higher than the one
required by both NN architectures. As expected, the FFBN approach
requires less operations since the number of neurons in every case
is considerably smaller (Table 5).

4.5. Computational time results

Apart from the obvious computational gain, due to the con-
siderable difference in the number of operations required by the
analytical computation and the neural network approximation of
the indices, a set of running time tests were performed to further
validate the method. Since an analytical expression for the SVD
does not exist, the two selected indices were calculated based on
the analytical expression of the Jacobian and a pair of well-known
algorithms for the calculation of the determinant and the singu-
lar values. The determinant of the Jacobian is calculated using LU
decomposition in Matlab as the product of the diagonal elements
of the upper triangular matrix of [JJT ]. The method is based on the
Gaussian elimination method that is among the fastest proposed
so far [30]. In order to perform the singular value decomposition
for the calculation of KCI, Maltlab’s built in function dgesvd is used
that is based on Lapack routines. The method is considered among

the fastest and most robust algorithms [31] known.

The run-time testing procedure was  designed to provide the
mean running time tmr of a hundred runs for each method and
index. A test set of 1000 inputs was used for testing. The runs were
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Fig. 8. Design process RBFN-manipulability.

Fig. 9. Training process RBFN-manipulability.

Fig. 10. Design process FFBN-manipulability.

Fig. 11. Training process FFBN-manipulability.
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Fig. 12. Design process RBFN-KCI.

Fig. 13. Training process RBFN-KCI.

Fig. 14. Design process FFBN-KCI.

Fig. 15. Training process FFBN-KCI.
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Table  5
Comparison of the proposed methods’ mean running times.

Computation based on the analytical Jacobian tmr (s) Feed-forward Back-Propagation Network tmr (s) Radial Basis Function Network tmr (s)
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w 0.7043 0.0057
KCI  0.7283 0.0069

erformed on an Intel Core i7-3930K @ 3.8 Ghz processor, with
6 Gb of RAM running 64-bit Windows 7 Professional operating
ystem.

Following the run-time tests it becomes obvious that both neu-
al network approaches are faster than the analytical one, by a
actor of a hundred the FFBN and by a factor of ten the RBFN. More-
ver, the comparison among RBFN and FFBN shows that FFBN is the
astest, a fact that was expected since RBFN tend to require more
eurons that the FFBN for the same problem parameters. How-
ver a post-training pruning phase might benefit the RBFN in order
o reduce the neurons in the hidden layer and subsequently their
omputational time.

It should be noted that the running time results are in accor-
ance with the numerical operations required by each method
Table 4). The minor inconsistencies observed are mainly due to
he initialization of the networks and their variables. Regarding KCI
nalytical computation the method is iterative and therefore the
onvergence plays an important role on its exact computational
ime.

Both network architectures can provide a good approximation
f the dexterity indices given a UVMS configuration, within 2%
rror. The two selected dexterity indices are used as an indicator
f whether a configuration is near singularity or isotropy, there-
ore, high accuracy is not required and an error of 2% is considered
cceptable.

Concluding, the apparent choice for a method to rapidly approx-
mate a dexterity index, such as the ones discussed in this paper,

ould be a FFBN. Considering the high importance of computa-
ional time in real world operations where several hundreds of
onfigurations have to be evaluated instantly, a speedup of 10–100
or this specific process becomes rather significant. On a typical

otion planning algorithm this could lead to savings of more than a
econd per iteration and thus bringing it closer to a real time perfor-
ance. These time savings could allow a motion planning algorithm

o utilise high dexterity configurations and produce efficient plans
or UVMS during task execution.

. Conclusions

In this paper common underwater tasks are associated with
ell-known dexterity indices and two types of neural network are

esigned to rapidly approximate the dexterity index given a UVMS
onfiguration. In the design process and during the testing phase
t can be observed that both FFBN and RBFN can approximate the
exterity indices within an error of no more than 2%. The dexter-

ty is not considered as an absolute criterion on motion planning
ut rather as an indicator of appropriate dexterous configurations
epending on the task, therefore, such a small error is acceptable

or an underwater mission motion planning algorithm.
The number of algebraic operations required for the analytical

alculation of the selected dexterity indices was compared with
umber of operation required by the NN approximation. The com-
arison proved that the NN derived by the design process require
onsiderably less computations than the analytical calculation.
uring the run-time testing procedure, the difference of the mean
unning time tmr , among the computational solution based on the
xact form of the Jacobian and both neural network types is proven
o be significant. Moreover the FFBN is proved even faster than
he RBFN in every case mainly due to the less neurons utilised in
0.0152
0.0172

the hidden layer. Even though a post-training pruning phase could
benefit the RBFN by reducing the number of neurons in their hid-
den layer, the difference in their time performance remains quite
significant. Based on the tmr performance the FFBN prove to be the
best option among the networks proposed. The computational time
reduction (10–100 times faster) yields better performance for a
real-time motion planning algorithm for a UVMS that is to perform
an intervention and dexterity is taken under consideration.

The proposed method is applicable on any type of UVMS and
could be extended in other dexterity indices too, creating a library
of index approaching neural networks. The potential design of
neural networks in hardware form could lead to even further com-
putational time savings. The method could easily be extended into
space robotic systems by eliminating the passivity of pitch and roll
angles or even mobile systems by constraining the respective dof.

In our future plans the integration of the FFBN method in an on-
line motion planner for a UVMS is considered, in order to enhance
its performance towards real-time navigation. The development of
a series of NN to approach other known dexterity indices and their
association with additional underwater tasks is also considered.

Appendix A.

The calculation of the numerical operations required to com-
pute the Jacobian matrix J and the two  dexterity indices, was
based on the analytical expression of J retrieved by the Symbolic
toolbox of Matlab. Since several different operations are required,
some assumptions had to be made to calculate the total number
of operations. Therefore in this work, we  assume that additions
and multiplications require the same computational time. In fact
the difference between the two  kinds of operations depends on
the accuracy achieved and the hardware available. The sine and
cosine functions are calculated taken into account the Matlab for-
mula and they could be approached by 3 multiplications/divisions
and 1 addition/subtraction. The sine and cosine functions are given
by:

sin (x) = eix − e−ix

2i
(22)

cos (x) = eix + e−ix

2
(23)

The exponential of a number is considered to cost the same as a
multiplication operation.

The analytical expression of the Jacobian is given in Appendix
B, whereas the expression for the determinant of the [JJT ] matrix
is given in Appendix B. From the analytical expressions presented
and given the assumptions made beforehand it comes up that a total
of 21162 operations are required to calculate the Jacobian matrix,
from which 5889 addition operations and 15273 multiplication
operations.

To calculate the manipulability measure w the determinant of
the matrix [JJT ], where JT denotes the transpose of J, has to be com-
puted. To multiply the two matrices 432 multiplications and 396
additions are required. The calculation of the determinant of the
6 × 6 [JJT ] matrix requires 3600 multiplications and 719 additions.

Therefore, the total operations required to analytically calculate the
manipulability index, w, are 19305 multiplications and 7005 addi-
tions, 26310 operations in total considering the operation required
to compute the Jacobian.
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Regarding the calculation of the kinematic conditioning index
CI, an exact analytical solution does not exist since singular value
ecomposition is performed on the Jacobian using iterative algo-
ithms. According to the literature [31], the fastest algorithms
roposed so far, for a matrix mxn, where m < n, requires approx-

mately m2n operations to perform singular value decomposition.
or a 6 × 12 Jacobian matrix, SVD results in 432 operations taking
nto account that this is an approximate number of operations since
his is an iterative procedure. Therefore the approximated number
f operations required for the calculation of the KCI would be 21594.

ppendix B. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at http://dx.doi.org/10.1016/j.asoc.2016.08.033.
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