
Applied Mathematical Modelling 40 (2016) 9118–9130

Contents lists available at ScienceDirect 

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm 

Measuring the performance of a dehydration plant of apples

Rodrigo A. Sánchez-Ramírez 

a , Vincent Charles b , ∗, Marcela C. González-Araya 

c ,
Juan Carlos Paliza 

b 

a Centro de Estudios en Alimentos Procesados (CEAP), Project CONICYT GORE-MAULE R09I2001, Av. San Miguel N ° 3425, Talca, Chile
b CENTRUM Católica Graduate Business School, Pontificia Universidad Católica del Perú, Calle Daniel Alomía Robles 125-129, Los Álamos

de Monterrico, Santiago de Surco, Lima 33, Peru
c Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Camino a Los Niches km 1, Curicó, Chile

a r t i c l e i n f o 

Article history:

Received 10 August 2014

Revised 10 March 2016

Accepted 17 May 2016

Available online 3 June 2016

Keywords:

Performance

Productivity

Efficiency analysis

Processed food industry

Dried apples

Data envelopment analysis

a b s t r a c t 

Given the importance of the Chilean dried-fruit market and the characteristics of the in- 

dustrial process of dehydration, it becomes imperative for companies to measure the ef- 

ficiency of their production processes in order to identify critical areas and take the nec- 

essary actions to improve them. Hence, the present work performs an efficiency analysis

for the production of dried apples in a plant of the Maule region, Chile. The methodology

used is Data Envelopment Analysis, considering both discretionary and non-discretionary

variables. The results indicate that the application of the model without non-discretionary

variables shows higher efficiency indices than the model with non-discretionary variables.

Additionally, the efficiency analysis results, segregated by variety, origin, and fruit type, in- 

dicate that the selection of these segregations could be used to increase the production

or generate higher efficiencies. Finally, the technological change in the same plant is ana- 

lyzed through the Malmquist index. The findings of this research could help improve the

decision-making process of managers concerned with the efficient use of resources within

the company.

© 2016 Elsevier Inc. All rights reserved.

 

 

 

 

 

 

 

 

 

1. Introduction

Over the past few decades, the consumer demand for both fresh and processed food has increased substantially. It is

interesting to note that what was once thought to be a choice of an elite who have the intellectual ability to grasp the

importance of consuming healthy fresh products, today is becoming the choice of a larger category of the population. 

Chile is well recognized internationally as one of the top fresh fruit suppliers. Considering the Southern Hemisphere

alone, Chile is the leading shipper of fresh fruits, representing 59.3% of all fresh fruit exports from the region. Among

exported fresh fruits we can find apples and fresh grapes which alone account for more than 50% of the total fresh Chilean

fruit exports [1] . According to the Food and Agriculture Organization of the United Nations, Chile’s food exports have grown

at an average annual rate of 10% over the past decade [2] . 

The generally accepted definition of fresh food describes these products as holding the same state as where they were

harvested. We say generally accepted because the meaning of the term fresh is somehow always changing. Take, for example,

the case of food that travels for weeks or even months all over the world in refrigerated containers: though months ́old, the
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food is sold in supermarkets under the label of fresh . In this context, it becomes imperative that we define three main

aspects of fresh : (a) space: Where does the fresh food come from?, (b) time: How long has it been since the fresh food was

harvested?, and (c) composition/material: What is there in the fresh food (chemical substances, special gases, wax, bacteria,

dirt)? 

Processed food, on the other hand, according to The United States Federal Food, Drug, and Cosmetic Act, Section 201,

Chapter II, can be defined as “any food other than a raw agricultural commodity and includes any raw agricultural com-

modity that has been subject to processing, such as canning, cooking, freezing, dehydration, or milling”. The parameters

contained in this definition are used by the concerned authorities ( i.e., Food and Drug Administration ) to regulate the quality

and safety in the food processing industry in a market in which consumers of dried food are demanding not only prod-

ucts with a high nutritional value, but also with enhanced textural properties [3] . However, the optimization of the relevant

parameters to achieve appropriate equilibrium between quality and safety continues to present major challenges in food

processing. It is essential to point out that dried fruit is an important category of processed foods on the market with

a worldwide annual production of 9.5 million metric tons in 2012, which represents a 13% increase with respect to the

production in 2011 [4] . 

In this context, it becomes relevant to discuss the issue of the food supply chains, especially given the fact that these

are considered to be an important part of the global economy [5,6] . A supply chain represents a sequence of activities

established with the purpose of satisfying customers ́demands [7] by delivering fresh products with the best quality possible

[8] . 

The fresh food supply chain is a complex process due to the high volume, but also due to various attributes of the

food products [9] ; as such, food has a perishable nature and there are high requirements for traceability and cost pressure

[10] . Moreover, concerns related to fragility and food security are constantly present on the international agenda [11] . In fact,

within food supply chains, there is a continuous quality change from the moment the raw material leaves the producer until

the product is bought by the final consumer. Any activity established in the chain has a potential impact on the product, due

to the interaction between the surrounding environment and the product itself [12,13] . This phase contributes considerably

to the determination of the product’s final cost as well as to the quality perceived by the consumer. Hence, this is a very

important matter for the design and management of the distribution of the supply chain, for aiming to deliver a product

at the precise moment, for ensuring the desired quality level, and for maintaining the product management costs (storage,

refrigeration, etc.) as low as possible. Along with the above, the presence of the inevitable biological variability of products

and the uncertainty, both of which affect some aspects of the management of the delivery process, make this phase even

more complex [14] . 

The term Agri-Food Supply Chains (ASC) was generated to describe exactly the activities from production to distribution

of agricultural or horticultural products [15] . The ASC are formed by the companies responsible for the production (farmers),

distribution, processing, and marketing of products to the final consumers [16] . With the purpose of developing a mathe-

matical model for this supply chain, each product can be considered as an "object" described by a dynamic model, which

takes into account the physiological processes that occur in the same product. These processes are generally affected by

the surrounding environmental conditions ( e.g. , temperature, humidity, etc.) that affect the product. At the same time, the

products, by themselves, may affect the intermediate environment [14] . 

Given the importance of the Chilean dried-fruit market and the characteristics of the industrial process of dehydration, it

becomes imperative for companies to measure the efficiency of their production processes in order to identify critical areas

and take the necessary actions to improve them. 

The subsequent sections of the paper are organized as follows. The next section contextualizes the supply chain of dried

apples. Thereafter, the theoretical background is presented by means of introducing the Data Envelopment Analysis (DEA)

models used for the efficiency and productivity change analysis. The succeeding section discusses the factors considered for

the analysis, followed by the main results. The final section concludes the paper and provides managerial implications. 

2. Contextualizing the supply chain of dried apples 

In relation to the types of products and supply chains previously mentioned, the dehydration of food has certain par-

ticularities and high relevance for the Chilean market. In 2009, the exports of processed fruits and vegetables amounted

to US$1244 million, which includes preserved fruits (US$335 million), dried fruits and vegetables (US$452 million), frozen

fruits and vegetables (US$275 million) and juices (US$182 million). Within the dried ones, apple exports reached 6.5% of

the total, with an estimated amount of US$30 million, approximately. In addition, the company in which the study was

conducted covers around 43.0% of the total national exports [17] ; hence, the effect of any improvement implemented as a

consequence of this work, would be notoriously amplified. In this context, Fig. 1 shows the major components of the supply

chain of dried fruits and vegetables. 

The producer (farmer) is responsible for producing and providing fruits and vegetables that will be subsequently treated

in the processing plant, in which the fruits will be received, selected, dried, packaged, and stored; so then, the final prod-

ucts, which are considered as ingredients for other companies, will be delivered to the exporter, who will be in charge of

delivering these final products to consumers around the world, as shown in Fig. 2. 

The technique of dehydration is probably the oldest food preservation method used by mankind. The removal of mois-

ture prevents the growth and reproduction of microorganisms that cause putrefaction and diminishes many deteriorative
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Fig. 1. Supply chain of dried apples. 

Fig. 2. Dehydration production process. 

Fig. 3. Diagram of the production stages of apple cubes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reactions caused by the same. Also, there is a substantial reduction in weight and volume, which minimizes the packaging,

storage, and transportation costs, allowing the storage of the product at a normal environmental temperature. 

With regards to the mentioned process of dehydration, Fig. 3 shows the stages required for the production of apple

cubes, which is the product most traded abroad by the national industry. 

In the above figure, we can observe that the dehydration begins with washing. The apples considered for the process are

washed with water and a solvent that allows the reduction of the bacterial load; then these apples are selected, in order

to detect deteriorated fruits or fruits that do not meet the standard quality of the process. Subsequently, these apples are

transported to the peeling operation, which is performed by two Atlas machines that are pre-configured for the type and size

of the apples. These machines extract the skin and core of the apples, so their settings are crucial for the productive yield,

because if one machine is set for smaller apples, this machine will extract more flesh than necessary, which could negatively

affect the performance. After the apples are peeled, they must be cut to obtain the cubes, whose size is predetermined by

the client; in this stage, it is desirable to have fruits with high pressure, so that the cut will be more accurate. Once the fresh

fruits are cut and ready to go into the dryers, a bisulfite compound is spread over these fruits, which aims at stopping the

oxidation of the fruits. This is called the sulfiting process. Later, there is an optical selection, mainly by color, and a metal

detection; so then, they can go for drying, in which a series of continuous hot air ovens powered by steam are used. In this

process, it is very important to control the fruit moisture before the entry and the time of the process, as these factors will

affect the costs and quality of the final product. Then, if necessary, the apples go to a re-drying, which aims at reducing the

fruit moisture between 3% and 5%, approximately. Finally, the dried apple cubes are inspected and packaged. 

Along with a strong increase in energy costs, the interest in drying techniques increases, too. Innovation techniques

and the development of new methods have been made for a wide range of products, especially for instant reconstitutable

ingredients, from fruits and vegetables with properties that might not have been seen before. 

Despite the importance of the food sector, the management of the ASC has received little attention in the literature.

The reason could be that this particular type of management is complicated given the specificity of the product or of the

process characteristics. These characteristics often limit the possibilities to integrate the Supply Chain 

1 in the ASCs [18] .

Regarding the modeling approaches, the inclusion of specific characteristics of the food is necessary for the correct devel-

opment of this area. One of the essential characteristics is to consider the quality of the products through the supply chain

[19] . Maintaining the high quality of the food, which is degraded depending on the storage and transport conditions [20] , is

of vital importance to the performance of the supply chain. Apart from being a performance measure of its own, quality is

directly related to other food attributes, such as integrity, safety, and shelf life [19] . In this regard, Trienekens and Zuurbier

[21] argued that the quality assurance will dominate the production and distribution processes in future food chains. This

also means that the flow of products with different quality attributes could be directed through different logistic channels
1 According to Van Donk et al. [ [18] , p. 218], the integration of the supply chain can be described “as the seamless flow of products and information 

from supplier on to customer”. 
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of distribution (with different environmental conditions) and/or different consumers (with different demands for quality) in

the supply chain. Indeed, one of the key aspects of the ASC is the integrated view of logistics and quality, which is called

by Van der Vorst et al. [22] as "quality-controlled logistics". In this context, according to Trienekens and Zuurbier [21] , food

products and production processes have a specific number of characteristics that influence the quality and quality assurance

through the production process. For example, the production yields are often uncertain due to, among others, the surround-

ing environmental conditions and the variation of quality of the raw materials inside and among the production lots [21] .

Hence, it becomes relevant to keep a track of the performance and productivity of the chain, either from a purely industrial

standpoint or from a quality standpoint. 

Most fruits and vegetables contain over 80% water and, therefore, have high perishability. Water loss and the moderating

account of their losses, which are estimated at more than 30–40% in developing countries, are due to improper handling,

transportation, and storage of these fruits and vegetables. Besides physical and economic losses, there are serious losses

which occur in the availability of essential nutrients, especially vitamins and minerals. 

The necessity to reduce post-harvest losses of perishable horticultural products is very important for developing countries

in order to increase their availability, especially in the current context, when the limitations on food production (land, water,

and energy) do not stop from expanding. It is increasingly evident that the production of more and better food alone is not

enough and should go hand in hand with appropriate post-harvest conservation techniques to minimize losses, thereby

increasing the supply and availability of nutrients and giving an economic incentive to produce more. One of the main

objectives of food processing is the conversion of perishable foods like fruits and vegetables into stabilized products that

can be stored for long periods of time in order to reduce their post-harvest losses and, thereby, generate added value for

the retailer. In turn, many process technologies have been used on an industrial scale to preserve fruits and vegetables; thus,

the most important technologies are preservation, freezing, and dehydration. Among these, dehydration is especially suitable

for developing countries with poor establishment of low temperature and thermal processing facilities. This provides a very

effective and practical means of conservation in order to reduce post-harvest losses and compensate for the shortage of

supply. The present study focuses on evaluating the efficiency of the dehydration process of apples. 

Given the importance of the aforementioned market and the characteristics of the industrial process of dehydration,

which is highly sensitive to the cost of energy, it is necessary to maintain a constant monitoring of the performance of the

operations in order to maintain a stable evolution of the production to ensure that the production cost stays within the

established ranges. Hence, a company needs to have information about the efficiency of the production process of its plant

in order to identify critical areas and take the necessary actions to improve them. Thus, it is imperative for a company to

know its benchmark processes, which can be used as a reference when its practices become inefficient. 

To this end, the present paper performs an efficiency analysis considering the seasons between 2004 and 2010 for the

production of dried apples in a plant of the Maule region. The method used to perform this efficiency analysis is DEA. The

analyzed situation involves performing two approaches for the analysis, in which, on the one hand, purely production factors

are studied and, on the other hand, the incidence of the quality factors of fresh fruit on the dehydration process yields

is studied. The analysis makes use of two types of models, the model without non-discretionary variables (Discretionary

Model—DVM) and the model with non-discretionary variables (Non-discretionary Model—NDM). The main purpose is to

find the best way to show two different strategic management situations. One situation assumes that the plant manager has

control over some variables that impact fruit quality and the other situation assumes that he/she does not. These variables

are “Caliber B”, “Turgor”, “Sugar Content”, and “Strong Bruise”. The comparison between both situations is done aiming to

show the effect of the decision-making process on the production process performance, regarding the consumption of fresh

fruit and the storage time. 

3. Theoretical background 

The different approaches to efficiency measurement can be divided broadly into two groups, namely frontier and non-

frontier approaches. Each one can further be subdivided into parametric and non-parametric methods ( [23] , p. 75). The

traditional non-frontier approaches to efficiency measurement are based on the assumption that the observed production

in each period is equivalent to the efficient production, i.e. , the boundary of the technology is assumed to pass through the

observed points. Thus, it ignores the distinction between two main sources of productivity growth, i.e. , technological change

and technical efficiency change. Among the frontier approaches, the parametric (econometric) approach assumes an explicit

functional form for the underlying production technology and is, thus, subject to specification errors. In addition, here the

single optimized regression equation is assumed to apply to each decision-making unit (DMU). In contrast, DEA, originally

pioneered by Charnes et al. [24] , does not require any underlying functional form specification, but it enables one to obtain

a maximal performance with the sole requirement that each DMU lies on or below the external frontier. 

Hence, DEA is handy to use. This fact is reflected in the large amount of literature on theoretical developments and

practical applications using DEA, which emerged after the publication of the first model (see, for example, [25,26] ). 

Nevertheless, the literature regarding the specific use of DEA to perform an efficiency analysis for the production of dried

apples is very scarce. The few cases available include the study by Gul [27] , who estimated the technical efficiencies of apple

production in Turkey, the study by Mousavi-Avval et al. [28] , who analyzed the efficiency of farmers, with an emphasis on

the optimization of energy consumption and input costs for apple production in Iran, and the study by Wang et al. [29] ,

who conducted a two-stage DEA to calculate the technical and cost efficiency of rural household apple production in China.
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A more general application, to the case of agriculture (which includes apple crops), can be found in the study by Atici and

Podinovski [30] , who employed DEA to assess the technical efficiency of units with different specializations. 

3.1. DEA models used in efficiency analysis 

One of the assumptions in the efficiency analysis was that the dehydration process of a processing plant of fruits and

vegetables may exhibit variable returns to scale (VRS), be it increasing, decreasing, or constant, depending on whether an

increase of scale, up or down, of an observed maximum value for any input or output can be assumed possible or not. In

part, this was due to the fact that at various stages of the process there is human intervention, such as the calibration of the

peeling and cutting equipment, whose capacity varies depending on the fruit type and the settings predefined by the plant

operating staff. Hence, any variation of the installed capacity of production or of the productivity does not always involve a

proportional increase or decrease of the used resources. Thus, the suitable DEA model for this situation corresponds to the

one developed by Banker et al. [31] , better known as the BCC model or VRS model. It is worth mentioning that the returns

to scale reflect the degree to which a proportional increase in all inputs will increase the outputs. 

In this efficiency analysis, an input-oriented DEA model was applied, as the quality of the raw materials is the main issue

that can be controlled by the company and it could be very difficult to increase the dried kilograms if the wet kilograms

have low quality. Thus, if the wet kilograms of the company have a better quality, it will use a lower quantity of raw

materials to obtain dried kilograms. According to this, input-oriented DEA models aim at minimizing the input level while

the output level is kept constant. The mathematical formulations of these models are presented below. 

3.1.1. Input-oriented BCC-DEA model 

For all DEA models, the relative efficiency of a given DMU (DMU 0 ) is calculated in relation to the performance of the

n observed DMUs (including the analyzed DMU), assuming that each DMU consumes m inputs x i 0 , i ∈ M = { 1 , 2 , . . . , m } , to
produce s outputs y r0 , r ∈ S = { 1 , 2 , . . . , s } . In the case of the input-oriented BCC-DEA model, the objective is to minimize the

input level of the DMU 0 (DMU of interest), keeping constant its level of observed outputs and assuming VRS. Given these

assumptions, the mathematical formulation for the epsilon form of the input-oriented BCC model in line with Banker et al.

[31] is as follows: 

( BC C I ) Min θ − ε 

( ∑ 

r∈ S 
s + r + 

∑ 

i ∈ M 

s −
i 

) 

, (1) 

subject to ∑ 

j∈ N 
λ j x ij + s −

i 
= θx i 0 , i ∈ M, 

∑ 

j∈ N 
λ j y rj − s + r = y r0 , r ∈ S, 

∑ 

j∈ N 
λ j = 1 , 

s −
i 
, s + r , λ j ≥ 0 , i ∈ M, r ∈ S, j ∈ N = { 1 , 2 , . . . , n } , 

θ is unconstrained , 

where 

j – subindex of the set of observed DMUs, 

i – subindex of the inputs, 

r – subindex of the outputs, 

θ – proportion by which all inputs can be reduced, 

λj – intensity of the participation of the DMU j in the construction of the “compound” DMU or benchmark, 

x ij – quantity of the input i consumed by the DMU j , 

y rj - quantity of the output r produced by the DMU j , 

x i 0 – quantity of the input i consumed by the DMU of interest (DMU 0 ), 

y r 0 – quantity of the output r produced by the DMU of interest (DMU 0 ), 

s −
i 

– input slacks, 

s + r – output slacks. 

y rj , x ij ≥ 0 represent the observed values of the s outputs and m inputs, respectively, for every DMU of the total set. 

In the BCC I model, shown in system ( 1 ), the objective function minimizes the proportion of the input level of the DMU 0 ,

represented by the variable θ , which can be used to produce at least the same output level. The constraint of the system ( 1 )∑ 

j∈ N λ j x i j + s −
i 

= θx i 0 guarantees the proportional reduction of inputs until it reaches the efficient frontier. The constraint of

the same system 

∑ 

j∈ N λ j y r j − s + r = y r0 prevents the compound DMU from producing fewer outputs than DMU 0 . Finally, the

constraint 
∑ 

j∈ N λ j = 1 is known as the convexity restriction, which ensures that inefficient DMUs could only be compared
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with DMUs that produce a similar output level to them. Hence, the compound DMU is obtained through a convex linear

combination of the observed DMUs. 

The selection of the non-Archimedean epsilon values plays vital roles in System ( 1 ) due to the known fact that some

difficulties arise when selecting the infinitesimal because of finite tolerances in computer calculations. Mehrabian, et al.

[32] and Amin and Toloo [33] presented procedures to choose the non-Archimedean epsilon values; recent packages started

incorporating this fact into their codes. 

According to Coelli et al. [34] , for the majority of DEA applications, the model used in the efficiency evaluation is the

BCC-DEA model. The reason behind is that the majority of production processes operate with VRS. 

Given the characteristics of the studied process, there are variables that cannot be changed or controlled by the decision-

maker, such as those related to the quality or the effect of fruit variety on industrial performance. Hence, the need for

incorporating models that evaluate the efficiency, considering non-discretionary variables (NDVs), arises. Below, the input-

oriented BCC-DEA model with non-discretionary variables (NDM) is presented. 

3.1.2. Input-oriented BCC-DEA model with non-discretionary variables 

According to the aforementioned DEA models, these use inputs and outputs that can be modified by the decision-maker.

However, what happens in a study situation when there are variables, either inputs or outputs, which cannot be modified

or are exogenously handled from the reach of the decision-maker but that to some extent are relevant for measuring the

efficiency? Formally, in the case of the models which were mentioned in the previous subsection, these use discretionary

variables (DVs). On the other hand, NDVs refer to variables, inputs or outputs, which cannot be discretionally modified by

the decision-maker. The authors Banker and Morey [35] wrote an article in which they used input- and output-oriented DEA

models considering exogenously determined variables or NDVs. In this subsection, we present the mathematical formulation

of the NDM. 

In line with the input-oriented model presented in the previous subsection, the mathematical formulation incorporating

NDVs with input orientation is as follows: 

Min θ − ε 

( ∑ 

r∈ S 
s + r + 

∑ 

i ∈ M 

s −
i 

) 

, (2)

subject to ∑ 

j∈ N 
λ j x i j + s −

i 
= θx i 0 , i ∈ D, 

∑ 

j∈ N 
λ j x i j + s −

i 
= x i 0 , i ∈ ND = M\ D, 

∑ 

j∈ N 
λ j y r j − s + r = y r0 , r ∈ S, 

∑ 

j∈ N 
λ j = 1 , 

s −
i 
, s + r , λ j ≥ 0 , i ∈ M = D ∪ ND, r ∈ S, j ∈ N = { 1 , 2 , . . . , n } , 

θ is unconstrained . 

Productivity and efficiency are related but, at the same time, are different concepts ( [36] , p. 2252). According to Coelli

et al. [37] productivity is essentially a level concept and its measurement can be used to compare the performance of

companies or certain units, from a point of view. By contrast, the change in productivity refers to shifts in the productivity

performance of the same unit or company through time. 

However, the proposed measurement of efficiency in this paper considers homogeneous situations between two or more

units of measurement. The situations in which a technological change occurs are not considered. 

In recent years, the measurement of productivity change has generated a great deal of interest among researchers who

study the performance and behavior of firms. In this framework, the Malmquist index was first introduced to the productiv-

ity literature by Caves et al. [38] . Färe et al. [39] decomposed the productivity change into technical efficiency change and

technical change, and used non-parametric mathematical programming models for its calculation. Thus, with the decom-

position of the Malmquist index, we can easily deduce that technical efficiency is only one of the factors that determine

productivity ( [36] , p. 2252). 

It is possible to calculate the envelopment, i.e. , the measure of relative efficiency, provided that the optimal production

function does not change; this implies that there is not a significant change that alters the nominal capacity of a produc-

tion system. However, if the company purchases a new machine, or a conveyor belt, etc. ( i.e. , improves its capabilities),

the framework conditions for the measurement of productivity vary, implying that the measurements of efficiency will be

significantly different. In this case, it is most likely that the measurement of efficiency presented above lacks objectivity,

because different technologies are involved. This lack of objectivity of DEA is also because DEA results “are highly sensitive

to the presence of outliers, since the frontier is constructed from existing observations within the sample used” ( [40] , p. 3),
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and because these outliers could be caused by a technology change, which could change the frontier production function

estimated by means of DEA. Hence, productivity change requires to be measured, as we know that a technological change

occurred in 2007 ( i.e. , a machinery renovation in the plant) and because the efficiency analysis with DEA models cannot

measure, by separate, the effect of a technological change. 

3.2. Malmquist productivity change index 

The Malmquist productivity change index was introduced by Caves et al. [38] , inspired by the work of Malmquist [41] ,

and its objective is to measure the productivity change between two time periods. 

By examining the changes between two time periods, we can have two production technologies for setting the compar-

ison: from the initial time period and from the final time period. Hence, it is possible to obtain two productivity indexes

according to the assumed technology. Färe et al. [42] constructed a DEA-based Malmquist index, which corresponds to the

geometric mean of these two productivity indexes. 

Unlike other approaches for measuring productivity, the Malmquist index also provides information on the origin of the

productivity change through the decomposition of this index into two components: one of technical change and another of

efficiency change. The first one includes the variation due to the shift of the efficient frontier, so it expresses the degree

to which the analyzed unit has experienced a technical change. The second expresses the variation attributable to the im-

provement of the relative performance of the unit with respect to the improvements in each time period, i.e. , the analyzed

unit has experienced an efficiency change. 

3.2.1. DEA-based Malmquist productivity change index 

Let us assume that there is a production function at time t and another one at time t + 1. For a given DMU 0 , the cal-

culation of its respective Malmquist index requires: two measurements obtained from the observations made separately in

each time period and two measurements obtained from the mixture of the observations made in each time period. Thus,

the input-based Malmquist productivity index proposed by Färe et al. [42] , which measures the productivity change for a

given DMU 0 between time period t and t + 1 , is given by: 

M 0 = 
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, (3) 

where 

D 
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0 
(x t 

0 
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0 
) corresponds to the measure of technical efficiency of the DMU 0 in time period t , which is obtained by using

the observations of all DMUs in time period t , i.e. , D 

t 
0 
( x t 

0 
, y t 

0 
) = θ t 

0 
; 
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t+1 
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(x t+1 
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) corresponds to the measure of technical efficiency of the DMU 0 in time period t + 1, which is obtained

by using the observations of all DMUs in time period t + 1, i.e. , D 
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( x t+1 
0 

, y t+1 
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) = θ t+1 
0 

; 

D 

t 
0 
( x t+1 

0 
, y t+1 

0 
) corresponds to the measure of technical efficiency of the DMU 0 obtained by replacing the data of DMU 0 

in time period t with the same data in time period t + 1, while the observations of the rest of the DMUs have been

made in time period t ; 

D 

t+1 
0 

( x t 
0 
, y t 

0 
) corresponds to the measure of technical efficiency of the DMU 0 obtained by replacing the data of DMU 0 in

time period t + 1 with the same data in time period t , while the observations of the rest of the DMUs have been made

in time period t + 1. 

In the case that M 0 > 1, it is assumed that the DMU 0 is more productive in relation to the initial period. This increase in

the relative productivity of DMU 0 could be due to different causes. On the one hand, it is possible that DMU 0 has improved

its relative efficiency. On the other hand, it is possible that the available technology has been improved. 

Färe et al. [42] proposed a decomposition of the Malmquist index which allows us to separate it into two terms, both

related to the sources of productivity change: 
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measures the technical efficiency change of DMU 0 between time period t and t + 1, and
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] 1 / 2 measures the technological change of DMU 0 between time period t and t + 1. 

�EF t ,t +1 
0 

reflects the change that has occurred in the relative efficiency of the DMU (variation in the distance that sep-

arates it from its current frontier), while �T t ,t +1 
0 

reflects the productivity change that can be attributed to the shift of the

frontier between time period t and t + 1. Hence, the index of technical change measures the shift of the frontier caused by

the evaluated DMU (defined as a geometric mean in order to avoid choosing an activity level). 
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Table 1 

Number of DMUs analyzed by variety, origin, and type. 

Segregation Variety Fruit origin Fruit type 

Fuji Granny Smith Orchard Packing plant Ordinary Organic 

N º of analyzed lots 660 700 637 1131 205 660 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Factors considered for the analysis 

The efficiency analysis performed for the dehydration process of apples considered each production lot produced in the

season of 2010 as a DMU. Because each variety requires a different treatment, it is not possible to consider the processed

lots of different varieties of apples as homogeneous. Specifically, this is due to the fact that these varieties have different

organoleptic, quality, and origin characteristics and, hence, they show different behaviors during the process. For this rea-

son, an efficiency analysis by variety, origin, and type of processed apple was made. Table 1 depicts the number of DMUs

analyzed by variety, origin, and type. 

Segregations by variety, origin, and fruit type were conducted for the efficiency analysis. Regarding the segregation by

variety, the varieties named as Fuji and Granny Smith were used; this happens because these are the main varieties used for

the production of dried apple cubes; additionally, they have different industrial performances and agronomic characteristics.

Regarding the segregation by origin, it is interesting to analyze this factor because the fruit, either from the packing plant or

from the orchard, has different treatments and, mainly, storage times. The latter could affect the quality of the final product

because, the longer the storage time, the higher the sugar content of the fruit or the lower the turgor of the fruit (more

likely to be damaged). 

On the other hand, the segregation by fruit type, either ordinary or organic, could affect the caliber or size, the sweetness,

or other agronomic characteristics of the fruit that, finally, could affect the industrial performance and, thus, the efficiency

of the entire production process of the dried apple. For analytical purposes, we have used at least 205 DMUs or lots in the

case of the ordinary fruit, and at most 1131 DMUs in the case of the fruit from the packing plant. 

Regarding the above table, for a better analysis and representation of the current situation of the company, we conducted

a segregation of the data with respect to the variety, fruit origin, and fruit type. 

Additionally, in order to evaluate the efficiency of each lot, we considered six inputs and one output for each studied

segregation. 

The inputs used in the analysis were as follows: 

Storage : Corresponds to the period of time, in days, in which the fruit remained in the cellars of controlled atmosphere. 

Caliber B : This variable corresponds to the percentage of fruit which has a Caliber B size within a quality sample of a

production lot. 

Turgor : This variable corresponds to the average pressure in the fruit, measured in pounds, within a quality sample of a

production lot. 

Sugar content : This variable represents the degree of average sweetness at which the apple arrives before entering the

process, measured in degrees Brix, within a quality sample of a production lot. 

Strong bruise: This variable corresponds to the percentage of fruit which shows bruises before entering the process, within

a quality sample of a production lot. 

Wet kilograms: Corresponds to the total number of fruits which enter the process, measured in kilograms, of a given lot. 

The identified output in the study was: 

Dried kilograms: This variable represents the total number of dried apples, measured in kilograms, at the end of the

overall process. 

For this case, the variables explained above have been included because of their practical relevance. Each of these cor-

responds to a performance indicator of the control operations from the major dried food companies. While some of these

represent agronomic characteristics, like raw materials, and others represent operational characteristics, there is a direct re-

lationship between them. For example, when the storage time increases, then the fruit quality decreases and, thus, the fruit

turgor decreases, affecting the peeling and cutting processes. Also, some of these variables were selected from statistical

studies carried out by the research department of the company which provided the data. 

According to the incorporation of these variables into the models presented above, all of them were used as DVs in the

DVM. For the NDM, only the variables “Caliber B”, “Turgor”, “Sugar Content”, and “Strong Bruise” were considered as NDVs;

this happens because the main objective was the comparison of the current situation against a new proposal, which requires

changes in the decision-making process. 

The following section presents a summary of the main results obtained after applying the models defined in the theo-

retical background section. 
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Table 2 

Main results of the efficiency analysis by fruit variety. 

Variety NDM DVM 

N ° of Efficient 

Lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

N ° of efficient 

lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

Fuji 63 80 .95 20 .87 64 92 .48 7 .37 

Granny Smith 76 66 .69 26 .50 87 89 .07 7 .65 

Table 3 

Main results of the efficiency analysis by fruit origin. 

Origin NDM DVM 

N ° of efficient 

lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

N ° of efficient 

lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

Orchard 81 57 .34 37 .56 89 88 .32 8 .04 

Packing Plant 86 58 .89 39 .40 95 88 .98 8 .36 

Table 4 

Main results of the efficiency analysis by fruit type. 

Type NDM DVM 

N ° of efficient 

lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

N ° of efficient 

lots 

Average 

efficiency (%) 

Coefficient of 

variation (%) 

Ordinary 113 51 .43 44 .70 137 87 .60 8 .59 

Organic 56 79 .19 22 .35 56 92 .33 7 .28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Main results 

5.1. Comparisons between DVMs and NDMs and recognition of the improvement sources 

In this subsection, Tables 2 , 3 , and 4 present the efficiency analysis results, segregated and explained by factor. These

tables show the comparisons between DVMs and NDMs (current situation). For these tables, on the one hand, all the inputs

were used as DVs in the DVM and, on the other hand, only the variables “Caliber B”, “Turgor”, “Sugar Content”, and “Strong

Bruise” were considered as NDVs in the NDM. 

In the above Table 2 , for both models, we can observe that the lots, which processed the variety named as Fuji, obtained

higher average efficiency, lower quantity of efficient lots, and, thus, lower coefficient of variation, which indicates that there

is a more homogeneous behavior of the lots around the average efficiency. However, if we analyze both varieties by model,

the DVM reaches higher efficiencies. The latter indicates that if the company had considered within its decision-making pro-

cess some efficiency analysis and fruit segregation, by factor analyzed in this research, it could have improved its operational

performance. 

Similarly, Table 3 shows the results of the efficiency analysis by fruit origin. In this case, the efficient lots and the coeffi-

cient of variation have increased, however, the average efficiency has decreased. As in the previous case, the DVM shows the

best performance of the process, so that the efficiency analysis and the segregation by fruit origin would allow to increase

the average efficiency by at least 30% and have a coefficient of variation of less than 9%, which means that the lots could

improve their performance and perform homogeneously. In this situation, the average efficiency is 89%, approximately. 

Finally, Table 4 shows the results of the efficiency analysis by fruit type, either ordinary or organic. In this case, the

DVM (variables modified by the decision-maker) achieves the highest efficiency. This is relevant because an organic orchard

requires special treatment and, therefore, generates fruits with different agronomic characteristics, such as sweetness, size,

or pressure. 

In conclusion, whichever the factor is, the situations in which the decision-maker can make changes, i.e. , DVMs, suggest

higher levels of efficiency. The following Fig. 4 presents the potential goals suggested by the efficiency analysis in order to

achieve the relative efficiency for the overall segregations. 

Fig. 4 shows a comparative analysis of the goals of resource reduction for every variable considered in the efficiency

studies. In this case, the results were averaged according to the model utilized, either NDM or DVM 

2 , because the aim of

this research is to show the effect of the decision-making process on the production process performance. Hence, in the

case of fresh fruit consumption (wet kilograms), the gap between the current consumption and the efficiency goal is lower
2 For Fig. 4 , on the one hand, all of the inputs were used as DVs in the DVM and, on the other hand, only the variables “Caliber B”, “Turgor”, “Sugar 

Content”, and “Strong Bruise” were considered as NDVs in the NDM. 
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Fig. 4. Goals of resource reduction: average values in percentage for the overall segregations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the DVM, as it can be reduced, on average, by 12%. In the case of the storage time variable (storage), the goal indicates

an average reduction of 35% for the DVM. Thus, both variables are very important for the production process, because they

represent the highest costs for this kind of companies. This is very important because the cost of a ton of fruit stored in an

external warehouse is 11.0 US$/month, approximately. In general, an average dried apple company maintains its fresh fruit

stored for approximately 6 months ( i.e. , 66.0 US$/ton). Hence, a reduction of 3.8 US$/month means a potential saving of 23.1

US$/year per ton of fresh fruit, approximately. 

According to the NDM in Fig. 4 , the “Storage” variable shows the highest potential improvements, i.e. , an average re-

duction of approximately 40% in the storage time, for the overall segregations. Additionally, the consumption of fresh fruit,

represented by the “Wet kilograms” variable, can be reduced by approximately 23%, considering the average value for the

overall segregations. Hence, according to the obtained data, this model could get a reduction of 4.4 US$/month, which means

a potential saving of 26.4 US$/year per ton of fresh fruit, approximately. 

In consequence, although the NDM gives higher potential savings for the variables “Storage” and “Wet kilograms” (vari-

ables which represent the highest costs for this kind of companies), it is more important to consider the results of the

average efficiencies, in order to determine the most appropriate model for the operations management of the dehydration

plant; because the average efficiencies are applied to the overall model, while the potential savings are applied only to some

variables. 

Additionally, the results obtained with respect to the improvements in the use of resources employed for the process of

apple segregation are summarized in Fig. 5 . In this figure, we show the average percentage reduction of inputs (Storage, Cal-

iber B, Turgor, Sugar content, Strong bruise, and Wet kilograms); so the inefficient lots can achieve the efficiency, according

to the segregation of the processed fruit and considering the average values between DVMs and NDMs. 3 

According to Fig. 5 , the main goals of resource reduction are related to the variables “Storage” and “Wet kilograms”,

reaching values of up to 50% and 30%, respectively. This is very interesting because those factors can be directly controlled by

the decision-maker and, thus, can improve the operations management; they can also promote and improve competitiveness,

from a resource point of view. 

5.2. Analysis of the impact of technological change 

Based on the efficiency analysis, we found potential improvements in relation to variables associated with production and

agronomic decisions. Thus, the efficiency analysis provides to the decision-maker potential areas for improvement, which

allows achieving the efficient frontier. Similarly, this type of calculation methodology can be used to study the effect of

a technological change on the productivity. In this case, the company in which the research was conducted made some

changes in the production system. In the following Table 5 , we present the results of the analysis of technological change,
3 For Fig. 5 , on the one hand, all of the inputs were used as DVs in the DVM and, on the other hand, only the variables “Caliber B”, “Turgor”, “Sugar 

Content”, and “Strong Bruise” were considered as NDVs in the NDM. 
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Fig. 5. Estimated percentage reductions for inputs by fruit segregation: average values between DVMs and NDMs. 

Table 5 

Results of the analysis of technological change using the Malmquist index methodology. 

Time period 

Technical efficiency 

change 

Technological 

change 

Pure technical 

efficiency change 

Scale efficiency 

change 

Total factor productivity 

(TFP) change 

20 04–20 06 0 .910 0 .870 0 .973 0 .935 0 .792 

2004–2010 1 .017 1 .009 1 .013 1 .003 1 .025 

2006–2010 1 .117 1 .180 1 .041 1 .073 1 .317 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

through the Malmquist index, specifically by using the total factor productivity change and considering the overall segrega-

tions as an aggregated data set, i.e. , we have not considered any distinction between segregations. A value of less than 1 of

the Malmquist index and of any of its components implies a deterioration in the performance, whereas a value greater than

1 implies an improvement in the relevant performance ( [23] , p. 78). 

The analysis of technological change was made using the DEAP V2.1 software and the DMUs were considered to be

the lots aggregated between March and September of each year. Additionally, this analysis used the variables, on the one

hand, “Dried kilograms” as the output and, on the other hand, “Wet kilograms” and “Labor” as the inputs; considering only

the DVM. The experiments were conducted in the periods 20 04–20 06, 20 04–2010, and 20 06–2010. The most significant

change in the productivity was obtained in the period 2006–2010 (1.317). Specifically, the TFP in experiment 1 was 0.792,

in experiment 2 was 1.025, and in experiment 3 was 1.317. The results give a positive gesture, because the decision to

make improvements to the process was taken in 2006 and these improvements 4 began to be implemented in 2007. Hence,

according to the obtained indicators, we can say that the most relevant change, which had an effect on the productivity,

was generated between 2006 and 2010. Furthermore, in the period 2006–2010, the technological change contributed to the

TFP change more than the pure technical efficiency change and the scale efficiency change. 

Similarly to the aforementioned analysis, we found that the highest growth in the productivity was obtained in the

month of July, in the period 2006–2010 ( Table 6 ). 

As it has been indicated previously, the production process of dried apples is cyclic, because it increases in the first

trimester of the year and reaches its peak at the beginning of the third trimester. By observing the values in the above

Table 6 , a positive variation can be seen in the TFP, as this indicator achieves the best values in the referred periods. Hence,

this could mean that the modified production system was gradually adjusting to the changes, as it achieves better returns

and operational results at the end of the period. 
4 These improvements are related to changes in the production lines at a technical level, including machinery renovation and a new selection process of 

the fruit. 



R.A. Sánchez-Ramírez et al. / Applied Mathematical Modelling 40 (2016) 9118–9130 9129 

Table 6 

TFP change by month and time period. 

Month 20 04–20 06 2004–2010 2006–2010 

March 0 .916 1 .010 1 .117 

April 0 .905 0 .938 1 .058 

May 0 .868 1 .008 1 .276 

June 0 .774 1 .028 1 .319 

July 0 .641 1 .082 1 .684 

August 0 .687 0 .985 1 .427 

September 0 .794 1 .138 1 .441 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

DEA models have been proven to be a reliable, flexible, and efficient tool in measuring the performance of the dehydra-

tion process. This work examines two input-oriented BCC-DEA models, with DVs and NDVs. Thus, the NDM provides the

technical efficiency measurement in the current decision process of the company, while the DVM provides the measure-

ment in a proposed strategic decision process. The information obtained from both models helps managers to identify the

inefficient lots and helps to take the corrective actions in order to continue the improvement. 

Through the BCC-DEA models, it was possible to: calculate an efficiency measure for each processed lot, identify the

efficient lots, and provide benchmarks for the inefficient lots according to the segregation or classification performed. This

fact is highly relevant for a company, as it allows to determine the possible causes of inefficiencies and to estimate the

possible improvements in the use of resources. 

In general, irrespective of fruit segregation (variety, origin, or type), the application of the DVM shows better results,

higher efficiency indices, and lower variability coefficients than the NDM. However, regardless of fruit origin, the production

process reaches similar efficiency levels with both models. This information could help solve bottlenecks in the buying pro-

cess and improve the logistics process. Additionally, processing organic apples allows higher efficiency levels than processing

ordinary apples. This result could be used to promote the consumption of the organic apple varieties in the dehydration pro-

cess, and to increase the commercial prices of products labeled as organic. 

Considering the efficiency analysis for the overall segregations (as an aggregated data set), it could be observed that the

relative efficiency frontier obtained by applying a DVM is higher, by approximately 13%, than the relative efficiency frontier

of the current situation, which is represented by a NDM. This implies that a change in the decision process, either in the

selection of the fruit or in the setting process of the machinery, could allow a cost reduction. At the same time, according to

the DVM in Fig. 4 , we have found potential reductions in the storage time, by approximately 35%, which results in savings

and better efficiency levels. 

Additionally, by analyzing the results obtained through the input-oriented BCC-DEA model, shown in Tables 2, 3 , and 4 ,

we can observe that the lots involved in the production process of the Fuji apple variety and of the organic apples showed

a greater average of technical efficiency i.e. , 92.48%, followed by the organic fruit with 92.33%. It is interesting to note

that these lots show segregations and a low dispersion in the efficiency, which indicates that the analyzed sample had a

homogeneous performance with respect to the production levels. On the other hand, the least efficient lots were related to

the ordinary fruit and the fruit from the orchard, which showed average efficiencies of 87.60% and 88.32%, respectively. We

can observe that although the efficiency is below the best practices, the efficiency dispersion and the number of efficient

lots is similar to those of the lots with better performance. 

As initially stated, in this research we analyzed two situations related to the production process management and their

impact in the operational efficiency. The results indicate that variables related to fruit characteristics are relevant for a better

efficiency of the dehydration process, which has an impact on the reduction of fuel costs and fresh fruit consumption per

kilogram of dried product. For this reason, it was found that the longer the storage time of the fresh fruit, the worse the

quality indicators of the fruit at the beginning of the process, negatively affecting the efficiency results of the production. 

According to this research, a manager could use these methodologies and results to promote better practices within the

decision-maker process, regarding the consumption of fresh fruit or the storage time; also, the selection of these segre-

gations could be used to increase the production or generate higher efficiencies. Hence, we can say that the DVM is the

most appropriate model for the operations management of this dehydration plant of apples, because it reaches the highest

efficiencies. 

In this paper, we also analyzed the impact of technological change in the same plant, through the Malmquist index, and

we found that the most relevant change, which had an effect on the efficiency, was generated between 2006 and 2010.

Furthermore, in this period, the technological change contributed to the TFP change more than the pure technical efficiency

change and the scale efficiency change. Also, we found that the production process of dried apples is cyclic, because it

increases in the first trimester of the year and reaches its peak at the beginning of the third trimester. 

Given the utility of the results obtained through the DEA models, the management of the company has implemented

this methodology in the processing plant of apples and, furthermore, plans to extend this type of efficiency analysis to the

rest of the plants in the company. 
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