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a b s t r a c t 

Fault detection methods in power transmission lines aim to detect deviations of the electri- 

cal signals from the expected behavior of such signals under normal operating conditions.

One approach is to model, as accurately as possible, the expected behavior of the electri- 

cal signals under normal operating conditions. Furthermore, even under normal conditions,

electrical signals are subject to random noises. Therefore, upper and lower limits must be

established. The larger the limits, the harder the fault detection. On the contrary, the nar- 

rower the limits the more likely to detect false faults. Functional analysis of power trans- 

mission lines was originally proposed to represent the behavior of the electrical signals

and to estimate the upper and lower limits under normal operating conditions. Nonethe- 

less, the originally proposed estimates are biased and rely on statistical assumptions that

do not hold in practice. This work proposes new methods to estimate the parameters of

the functional model and new upper and lower limits that do not rely on specific statisti- 

cal assumptions. Simulated and real case results show that the proposed robust functional

analysis reduces bias and provides more accurate false fault detection rates, as compared

to the previous method.

© 2016 Elsevier Inc. All rights reserved.

 

 

 

 

 

 

 

 

 

1. Introduction

An Electric Power System (EPS) consists of many components that can be damaged over time, either by natural deteri-

oration or misuse of equipment. In general, detection of faults in any EPS component in early stages is crucial, since faults

may affect the supply of energy to consumers. Moreover, a fault in an EPS represents an abnormal condition such as an

electrical failure in one or more elements in the electrical system. 

Electricity is transmitted from generation stations to consumers along the transmission lines, which traverse great dis-

tances as illustrated in Fig. 1 (a). The transmission lines typically operate in a three phase system (A, B and C), conducting

alternating currents. This configuration reduces energy loss in power transmission. In general, there is one transmission line

for each phase, and each phase is represented by its voltage and current signals. Under normal operating conditions, the

expected signals of voltage and current are represented by cosine functions, shown in Eqs. (1) and ( 2 ). 

v ( t ) = V 0 · cos ( wt ) , (1)

i ( t ) = I 0 · cos ( wt − ϕ ) , (2)
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(a) The electrical power system is composed of
genera�on, transmission and distribu�on systems.

(b) The voltage and current signals of a three 
phase transmission line are represented by 
cossine func�ons.

Fig. 1. Energy distribution system (a) and the expected behavior of the voltage and current signals for each phase (A, B and C) of a transmission line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ϕ is the delay between the current signal i ( t ) and the voltage signal v ( t ) , V 0 and I 0 are the peak values of the voltage

and current signals, respectively, and w = 2 π f is the angular velocity. In the Brazilian system, f = 60 Hz and cos ( ϕ) is also

known as the power factor (PF). Eqs. (1) and ( 2 ) show that the current and voltage signals are time dependent. Fig. 1 (b)

shows the voltage and current signals of a three phase transmission line with phases A, B and C. Faults represent conditions

in which signal behavior deviates significantly from expected behavior. 

In general, wavelet transform and Fourier transform are the dominant methods for feature extraction of electrical signals

in transmission lines. The features are used as inputs for different classification methods, in which Artificial Neural Networks

(ANN) and Fuzzy Logic (FL) are the most common methods. For example, Rafinha and Moshtagh [1] present a method for

fault location in underground lines using wavelet transform and FL. Using simulated scenarios, the authors concluded that

wavelet transform effectively represent time characteristics of the line signals, whereas FL can locate and classify faults

accurately. Aggarwal et al. [2] present a method for detection and location of faults based on ANN and genetic algorithm

(GA), using only current signal information. The authors observed that the spectral energy and peak current are considerably

different among different fault types. Sundaravaradan et al. [3] present a survey of the most recent methods applied in fault

detection in transmission lines. 

Nonetheless, different statistical models have been presented. Morales et al. [4] , Samantaray [5] and Morales and Orduna

[6] use Principal Component Analysis (PCA) for fault classification. Yusuffa et al. [7] use wavelet transform and statistical

regression methods. Upendar et al. [8] proposed a detection and fault classification method using wavelet transform and

regression trees (CART). The authors compared the proposed algorithm with the classification results using ANN. The sim-

ulation study shows that the proposed classification method is simpler than ANN and achieves high accuracy. Furthermore,

statistical models using simple trigonometric functions, instead of complex mathematical equations, have been successfully 

applied to detect and classify faults in transmission lines [9-11] . 

In particular, Gomes et al. [10] introduced a novel monitoring system for a single phase of a transmission line in which

the mean behaviors of the voltage and current signals under normal or nominal operating conditions are represented as

a two-dimensional ellipse. Furthermore, by assuming additive independent Gaussian noises for voltage and current signals,

upper and lower limits for the ellipse are estimated. This method can be seen as a non-linear two-dimensional control chart

and it allows monitoring of the electrical signal. 

Control charts aim at determining if a manufacturing process is in a state of statistical control, i.e., the process is follow-

ing its expected mean and expected variability under normal operating conditions. These charts can be extended to detect

faults in transmission lines, as long as the expected mean and variability under normal operating conditions are known.

Therefore, one may think of multivariate control charts for both voltage and current signals. In this case, the Hotelling’s

T 2 control chart is the most common used tool [12,13] . Robust alternatives to Hotteling’s T 2 control chart also have been

proposed [14] . In brief, the T 2 control chart is equivalent to the squared Mahalanobis distance, as shown in Eq. (3) 

χ2 
0 = n ( ̄x − μ) 

T �−1 ( ̄x − μ) , (3) 
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where n is the sample size, x̄ is the observed sample mean, μ is the mean vector and � is the covariance matrix. For ex-

ample, using current and voltage signals, x T 
(t) 

= [ v (t) , i (t) ] and x̄ T = [ ̄v , ̄i ] , ̄v = 

∑ n 
t=1 v (t) /n and ī = 

∑ n 
t=1 i (t) /n . The parameters

μ and � must be known in advance. 

As shown in Eq. (3) , it is commonly assumed that the mean vector is constant under normal operating conditions, i.e.,

does not change over time. On the contrary, the expected behavior of voltage and current signals under normal operating

conditions does change over time, as previously shown. In addition, the method is computationally simpler than most com-

monly applied fault detection methods in Electric Power Systems, such as Wavelets [1,2,4,7] , Fourier Transforms [15] and

models of Artificial Intelligence [2,16] , and it achieves superior fault detection rates. Furthermore, mathematical and sta-

tistical modeling of transmission lines under normal operating conditions are much simpler than modeling specific fault

conditions, such as transitory effects produced by atmospheric current discharges [17] . 

Functional analysis of power transmission lines aims to represent voltage and current signals under normal operating

conditions using stochastic models, as accurately as possible. Consequently, faults can be detected as fast as possible, since

upper and lower bounds for the signals under normal operating conditions can be statistically estimated. Furthermore, false

faults can be controlled. Briefly, the faster a fault is detected the more likely the occurrence of false faults. This is a stan-

dard problem in statistical signal analysis, and often neglected by standard fault detection methods. Furthermore, estimates

of the functional model may present bias because some of the statistical assumptions do not hold in practice, such as in-

dependent Gaussian noise errors. Therefore, the functional model proposed by Gomes et al. [10] has major limitations: it

produces both higher false fault rates than originally expected and also biased estimates of the current and voltage signal

parameters. 

This work proposes improvements to the functional analysis model of transmission lines. A constrained linear op-

timization problem achieves more accurate estimates of current and voltage signal parameters. Using quantile regres-

sion and elliptical equations, new upper and lower bounds are estimated achieving a more precise false fault rate, as

compared to the previous approach. Thus, this work evaluates the main limitations of the method proposed by Gomes

et al. [10] , which are: (i) the estimated confidence intervals are inconsistent with the α-level chosen by the user, and

(ii) the estimates of the parameters are biased. In addition, we propose new estimates for the parameters of the el-

lipse, and new upper and lower limit estimates using non-linear quantile regression [18,19] . Therefore, we do not rely

on any statistical assumptions about noise distribution. In brief, to estimate the mean parameter using a sample of size

n , one can solve the following optimization problem, min μ
∑ n 

i =1 ( x i − μ) 2 , which leads to ˆ μ = x̄ , where x̄ is the sam-

ple mean. Similarly, the estimated median is the solution of the following optimization problem: min m 

∑ n 
i =1 | x i − m | . In

general, the p th quantile, hereafter named q , can be estimated as the solution of an optimization problem presented in

Eq. (4) . 

min q 
1 − p 

n 

∑ 

y i <q 

| y i − q | + 

p 

n 

∑ 

y i >q 

| y i − q | . (4)

Eq. (4) can be applied to estimate quantile regression models, for example, a linear equation model can be estimated

using Eq. (4) and q ( β0 , β1 ) 
= β0 + β1 x (see [18,19] ). In the present work, a non-linear equation is applied. It is assumed that

both the upper and lower limits are represented by ellipse equations. 

This paper is organized as follows: Section 2 reviews the functional analysis for power transmission lines, presents

new estimates for the functional model and proposes new upper and lower limits using non-linear quantile regression.

Section 3 presents results using simulated and real case data sets. Discussion and conclusion are presented in Section 4 . 

2. Materials and methods 

2.1. Monitoring statistic for transmission lines 

Although the transmission line has three phases, a monitoring system can be applied to each phase individually, as if

they were independent. For each phase, a control chart can be applied to voltage and current signals, separately. Gomes

et al. [10] proposed a new approach in which both current and voltage signals are simultaneously controlled using a two-

dimensional control region. Following Gomes et al. [10] , under normal operating conditions and assuming no noise, voltage

and current signals can be represented by the ellipse given by Eq. (5) 

V 

2 
0 v 

2 
( t ) − 2 V 0 I 0 cos ( ϕ ) v ( t ) i ( t ) + I 2 0 i 

2 
( t ) − V 

2 
0 I 

2 
0 sin ( ϕ ) = 0 . (5)

Eq. (5) can be applied directly to any point P ( v ( t ) , i ( t ) ). If the result is zero, then the point ( v ( t ) , i ( t ) ) belongs to the ellipse,

regardless the value of time t . Furthermore, a control region is created assuming additive random variables for both voltage

and current signals, as shown in Eq. (6) . 

v ( t ) = V 0 · cos ( wt ) + ξV · V 0 , 

i ( t ) = I 0 · cos ( wt − ϕ ) + ξI · I 0 , 
(6)

where ξV and ξ I are two random variables, with means of zero and variances of σ 2 
V 

and σ 2 
I 

, respectively. They represent

noise components associated to voltage and current signals, respectively. 
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The monitoring statistics are the standardized values of voltage and current. First, instant values of voltage and current

signals are divided by their peak values: x (t) = 

v (t) 

V 0 
, and y (t) = 

i (t) 

I 0 
. Second, the points are rotated using an angle of θ = 

π
4 ,

or θ = 

3 π
4 . The standardized and rotation operations further simplify the equation of the ellipse, Eq. (6) , which is reduced

to Eq. (7) . 

x 2 r ( t ) 

a 2 
+ 

y 2 r ( t ) 

b 2 
= 1 , (7) 

where x r ( t ) and y r ( t ) are the voltage and current signals after standardization and rotation, respectively, and a and b are

constant values related to V 0 , I 0 and ϕ. An alternative representation of Eq. (7) is presented in Eq. (8) . 

x r ( t ) = a · sin ( wt ) + ξV , 

y r ( t ) = b · cos ( wt ) + ξI . 
(8) 

From Eq. (8) , and assuming independent Gaussian variables for ξV and ξ I , upper and lower limits for the control region

are given by Eq. (9) . 

x 2 r ( t ) (
a + Z 

α
2 

· σV 

)2 
+ 

y 2 r ( t ) (
b + Z 

α
2 

· σI 

) ≤ 1 , 

x 2 r ( t ) (
a − Z 

α
2 

· σV 

)2 
+ 

y 2 r ( t ) (
b − Z 

α
2 

· σI 

) ≥ 1 , (9) 

where Z 

α
2 

is the Z-score statistic with 1 − α
2 confidence level. For instance, if α = 0 . 3% then Z 

α
2 

≈ 3 . Fig. 2 (a) shows voltage

and current signals over time assuming stochastic error components. Fig. 2 (b) shows the elliptical behavior of voltage and

current signals in one phase of a transmission line. Fig. 2 (c) shows the ellipse after standardization and rotation. Fig. 2 (d)

shows upper and lower limits, assuming independent and Gaussian noises, under normal operating conditions. 

2.1.1. Upper and lower limits estimates 

Estimates for the V 0 , I 0 , and cos ( ϕ) parameters have been proposed [10] based on the solution of a linear equation

system, which is a simplified version of Eq. (5) . In this case, all terms are divided by V 2 0 I 
2 
0 sin (ϕ) . Let t = 1 , . . . , N be the

time period in which the voltage and current signals are under normal operating conditions. Let v = [ v (1) , v (2) , . . . , v (N) ] 
T 

be the voltage signal column vector and i = [ i (1) , i (2) , . . . , i (N) ] 
T the current signal vector. Let X = [ v 2 vi i 2 v i ] be a matrix

of dimensions N × 5, and βT = [ β1 β2 β3 β4 β5 ] be the vector of parameters ( β5 × 1 ). The estimates of the parameters are

the solution of the following linear equation: X β = 1 , where 1 is the unitary vector. In this case, the solution can be written

as ˆ β = ( X 

T X ) −1 X 

T 1 . The estimates of V 0 , I 0 , and cos ( ϕ) are shown in Eq. (10) . 

cos 
(

ˆ ϕ 

)
= 

− ˆ β1 √ 

ˆ β1 · ˆ β3 

, 

ˆ I 0 = 

1 √ 

ˆ β1 · sin 

2 
(

ˆ ϕ 

) , 

ˆ V 0 = 

1 √ 

ˆ β3 · sin 

2 
(

ˆ ϕ 

) . (10) 

The estimated parameters shown in Eq. (10) are used to standardize both the voltage and current signals, and to estimate

parameters a and b (see Eq. (7) ). To estimate the variance parameters of the stochastic components, σ 2 
V and σ 2 

I , we first

estimate the residuals of the standardized and rotated signals using a one-dimensional optimization procedure for each

point in the sample, as shown in Eq. (11) . Thus, for each value of i = 1 , . . . , N, voltage and current residuals are calculated

by solving one non-linear optimization problem. 

t ∗i = arg min 

t 

{(
x r ( i ) − ˆ a · sin ( wt ) 

)2 + 

(
y r ( i ) − ˆ b · cos ( wt ) 

)2 
}

, (11) 

r x ( i ) = x r ( i ) − ˆ a · sin 

(
wt ∗

i 

)
, 

r y ( i ) = y r ( i ) − ˆ b · cos 
(
wt ∗

i 

)
. 

(12) 

From the estimated residuals, the estimated variances are 

ˆ σ 2 
V = 


N 
i =1 

r 2 x ( i ) 

N − 1 

, 

ˆ σ 2 
I = 


N 
i =1 

r 2 y ( i ) 

N − 1 

. (13) 
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(a) Current and voltage signals over �me assuming 
stochas�c noise components.

(b) Voltage and current signals projected into the
 bi-dimensional space(voltage versus current).

(c) Voltage and current signals a�er standardiza�on
 and rota�on opera�ons.

(d) Es�mated upper and lower limits assuming stochas�c
 error components under normal opera�ng condi�ons.

Fig. 2. Voltage and current signals over time (a). Elliptical behavior of voltage and current signals of a phase in a transmission line (b). Voltage and current 

signals after standardization and rotation (b). Upper and lower limits, assuming independent Gaussian noises under normal operating conditions. 

 

 

 

 

 

 

 

 

As will be shown in the simulation study, the proposed estimates have major limitations, such as assuming independence

between the voltage and current residuals. Furthermore, the estimated values present some bias, and the Gaussian noise

assumption does not hold in practice. Therefore, the confidence level of the control limits is much lower than the α-level

chosen by the user, which leads to a higher level of false detection rates. Gomes et al. [10] proposed the use of residual

percentiles in the upper and lower equations in order to overcome the Gaussian assumption. Nevertheless, this solution

further compromises the α-level, which significantly deviates from the original value chosen by the user. We provide a

robust approach to estimate the parameters of the ellipse and to estimate upper and lower limits. 

2.2. Robust upper and lower limits using non-linear quantile regression 

Our proposal does not rely on any stochastic assumption about the voltage and current noises. We do rely on a paramet-

ric form for upper and lower limits, which is the ellipse equation. Nevertheless, before estimating upper and lower limits,

we propose a more efficient procedure to estimate the parameters of the ellipse equation. 
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(a) Voltage and current signals a�er standardiza�on and 
rota�on opera�ons. 

(b) Absolute values of the standardized and rotated
voltage  and current signals .

Fig. 3. The non-linear quantile regression equation ( Eq. (16) ) is applied to the absolute values of the standardized and rotated signals (b), since they are 

symmetric with respect to the axis (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the voltage and current signals, the general equation of a second order conic section is a second order polynomial

equation, as shown in Eq. (14) . 

β1 v 2 ( t ) + β2 v ( t ) i ( t ) + β3 i 
2 
( t ) + β4 v ( t ) + β5 i ( t ) + β6 = 0 . (14) 

Following Fitzgibbon et al. [20] , Eq. (14) represents an ellipse if the following constraint is applied: β2 
2 

− 4 β1 β3 < 0 .

Therefore, the parameters of the ellipse can be estimated solving the optimization problem shown in Eq. (15) (see Halir and

Flusser [21] ). 

min ( X β) 
T 
X β

subjectto : βT C β = 1 , 
(15) 

where X = [ v 2 vi i 2 v i 1 ] , βT = [ β1 β2 β3 β4 β5 β6 ] , and 

C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 2 

0 −1 0 

2 0 0 

· · ·0 

. . . 
. . . 

. . . 

0 · · ·0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Eq. (15) provides robust estimates for the parameters of the ellipse even, if partial data are available. Halir and Flusser

[21] provide further information about computing aspects of the estimates. 

From Eq. (15) and using Eq. (10) , new estimates for V 0 , I 0 and ϕ are achieved. A simulation study presented in Section

3 shows that this approach provides more reliable estimates than the previous one. 

From the estimated values, the voltage and current signals are standardized and rotated, which generates data that fol-

lows a reduced ellipse equation, as shown in Eqs. (7) and ( 8 ). Since the data are centered at the origin and symmetrically

dispersed with respect to the axis, we consider the absolute values of the signals, as shown in Fig. 3 . Thus, for positive

values of voltage and current signals, i.e., | x r ( t ) | and | y r ( t ) |, Eq. (7) can be rewritten as: 

y r ( t ) = 

b 

a 

√ 

a 2 − x 2 
r ( t ) 

. (16) 

Different from the previous approach, the radii of the upper and lower limits are no longer estimated from stochastic

components, i.e., the residuals. Nevertheless, our approach also assumes that both upper and lower limits are represented as

ellipses. We propose to estimate separate values for the parameters a and b in Eq. (17) , i.e., a ( p ) and b ( p ) are the parameters

of the ellipse that leaves 100 p % of the points below the ellipse, p ∈ {0, 1}. Thus, for the upper limit p = 0 . 975 , and for the

lower limit p = 0 . 025 . In this case, estimated upper and lower limits using quantile regression hold approximately 95% of
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Fig. 4. Flowchart of the proposed fault detection method using ellipse equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the sample points under normal operating conditions. Upper and lower limits are estimated using Eq. (17) . 

(
a ( p ) , b ( p ) 

)
= arg min a,b 

1 − p 

n 

∑ 

y r ( i ) < q i 

∣∣y r ( i ) − q 
(
x r ( i ) , a, b 

)∣∣ + 

p 

n 

∑ 

y r ( i ) > q i 

∣∣y r ( i ) − q 
(
x r ( i ) , a, b 

)∣∣, (17)

where q i = q ( x r(i ) , a, b ) = 

b 
a 

√ 

a 2 − x 2 
r(i ) 

, and p represents the p th quantile selected by the user. Thus, using non-linear quantile

regression, upper and lower limit equations with 95% of statistical confidence can be written as: 

x 2 r ( t ) [
a ( 0 . 975 ) 

]2 
+ 

y 2 r ( t ) [
b ( 0 . 975 ) 

]2 
≤ 1 , (18)

x 2 r ( t ) [
a ( 0 . 025 ) 

]2 
+ 

y 2 r ( t ) [
b ( 0 . 025 ) 

]2 
≥ 1 . 

Eq. (18) shows that upper and lower limits are estimated by means of optimization problems rather than stochastic

assumptions for the noise distribution. 

2.2.1. Design of the control region 

In practice, assuming a regular sample period of 32 points per cycle, a single sample is collected every 0.52 ms, or

1920 samples/s. In this case, due to the large number of samples in such short time, the monitoring of the signals is online.

Gomes et al. [10] suggest using additional sensitivity criteria of three consecutive points lying outside the control region, in

order to detect true faults and minimize false fault detection rates. Thus, assuming a 3-sigma confidence level (99.7%) a false

fault occurs with every 40,0 0 0,0 0 0 sampled points, or at every 6 h, on average. Furthermore, the confidence level and the

number of points lying outside the control region can be chosen properly in order to adjust the average run length (ARL)

[22,23] . Fig. 4 illustrates the proposed fault detection method using the proposed lower and upper bound ellipse equations.

2.2.2. Computational algorithm for the two-dimensional monitoring system 

In addition to Fig. 4 , the algorithm shown below provides detailed information of the estimates of the parameters of the

upper and lower bound ellipses under normal operating conditions, and the applications of the model to detect faults. 

Design of the control limits 

• Step 1: Using a sample of size n of voltage and current signals under normal operating conditions, solve the linear opti-

mization problem presented in Eq. (15) . Then, apply Eq. (10) to the estimated coefficients in order to estimate parameters

V 0 , I 0 , and cos ( ϕ). 
• Step 2: Calculate the standardized voltage and current signals using the estimated voltage and current peak values,

x (t) = 

v (t) 

ˆ V 0 
, and y (t) = 

i (t) 

ˆ I 0 
. 

• Step 3: Rotate the standardized signals by an angle θ = 

π
4 or θ = 

3 π
4 . 

• Step 4: Calculate upper and lower values for a ( p ) and b ( p ) using Eq. (17) . Use p = 0 . 975 for upper limit ( a (0.975) , b (0.975) )

and p = 0 . 025 for lower limit ( a (0.025) , b (0.025) ). Thus, a confidence level of 95% is assumed. 

The online monitoring system 

• Step 5: For new values of voltage and current signals, first apply the standardized and rotation operations using the

estimated parameters under normal operating conditions (Steps 1–3). 
• Step 6: Use Eq. (18) and the estimated parameters in Step 4 to test whether the voltage and current signals are within

the control limits. 
• Step 7: If three or more consecutive points lie outside the control region then it is assumed that the system is not under

normal operating conditions, i.e., there is evidence that an electric fault occurred in the transmission line. 

Next, we describe a simulation study to evaluate our proposed method. 
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(a) voltage signals before and a�er the fault. (b) current signals before and a�er the fault.

Fig. 5. Voltage and current signals for the transmission line (phases A, B and C) after and before a lightning fault. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. The Monte-Carlo simulation study 

We propose the following simulation study to compare the original estimates of V 0 , I 0 and ϕ, and the method which we

are presenting. Based on a real case scenario, we set V 0 = 770 kV , I 0 = 8 . 76 kA , and ϕ = 

2 π
3 ( cos (ϕ) = −0 . 5 ). Current and

voltage signals were generated using a standard sampling scheme for transmission lines with 32 points per cycle, as shown

in Eq. (19) . 

v ( t ) = V 0 · cos 
(
w · k 

32 ×T 

)
+ ξV · V 0 , 

i ( t ) = I 0 · cos 
(
w · k 

32 ×T 
− ϕ 

)
+ ξI · I 0 , 

(19) 

where k = { 0 , 2 , . . . , n −1 } and T = 

1 
f 
. The sample size, n , was set as n = 320 , or 10 cycles. Random values for ξV and ξ I were

generated using independent Gaussian distributions with means of zero and equal variance. We used the following variance

values: σ 2 
V 

= σ 2 
I 

= ( 0 . 005 2 , 0 . 01 2 , 0 . 05 2 and 0 . 10 2 ) . The total number of Monte Carlo simulations was set at 10,0 0 0. For

each Monte Carlo simulation voltage and current signals of size n = 320 were generated using Eq. (19) . Then, estimates for

V 0 , I 0 and cos( ϕ) were calculated using methods proposed by Gomes et al. [10] and Fitzgibbon et al. [20] . Finally, upper and

lower limits were calculated based on Gaussian and independence assumptions of the residuals, non-Gaussian residuals and

using non-linear quantile regression. The proportion of points within the control limits were calculated for each method. 

2.4. The Brazilian energy distribution company data set 

A real case scenario was obtained from CEMIG, a Brazilian energy distribution company. CEMIG is one of the largest

energy companies in Brazil, located in the southeast region. The data represent records of voltage and current signals of a

transmission line a few moments before an electrical lightning event which caused a phase-ground fault. The lightning fault

happened in 2003 and the data base has 650 observations, which represent a time range of 0.45 s. The data were sampled

using a sampling rate of 24 points per cycle, or one point per 0.07 ms. During the initial 215 observations, or 0.15 s, the line

is under normal operating conditions. At observation number 216 the lightning fault happens. Due to the opening time of

the electrical breaker, which usually starts, on average, within three sine cycles after the fault, or 0.05 s, observation numbers

217–289 represent the voltage and current signals during the fault. We used voltage and current signals from phase A. 

Fig. 5 (a) and (b) shows voltage and current signals for each phase before and after the occurrence of the fault. It can be

seen that the current signal is more sensitive to the fault as compared to the voltage signal. 

3. Results 

Using the simulated data, Table 1 shows the results for the parameters, estimated using the previous approach [10] and

the approach proposed by Fitzgibbon et al. [20] . For smaller values of variances, both methods achieved very similar results.

The larger the variances the better are the estimates using Fitzgibbon et al. [20] , as expected. In practice, under normal

operating conditions the noise variances for both voltage and current signals are very small and close to 0.01 2 . Under these

circumstances, both methods provide similar results. 
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Table 1 

Estimated peak values of voltage and current signals, and estimated power factor, using simulated data. Best results are shown in bold. 

Variance (values) Statistics Gomes et al. [10] Fitzgibbon et al. [20] 

σ 2 
V = σ 2 

I cos( ϕ) V 0 I 0 cos( ϕ) V 0 I 0 
True value −0.50 770 8760 −0.50 770 8760 

0.005 2 Mean −0 .4999 770 .0521 8760 .5986 −0 .4999 770 .0016 8760 .0239 

SD 0 .0 0 07 0 .3909 4 .4885 0 .0 0 07 0 .3908 4 .4884 

Error (%) 0 .0178 0 .0068 0 .0068 0 .0178 0 .0 0 02 0 .0 0 03 

0.01 2 Mean −0 .4996 770 .2150 8762 .4826 −0 .4996 770 .0130 8760 .1844 

SD 0 .0014 0 .7943 9 .0024 0 .0014 0 .7939 8 .9950 

Error (%) 0 .0754 0 .0279 0 .0283 0 .0753 0 .0017 0 .0021 

0.05 2 Mean −0 .4903 775 .1050 8817 .7664 −0 .4905 770 .1851 8761 .8014 

SD 0 .0069 3 .9318 45 .5769 0 .0068 3 .8706 44 .8428 

Error (%) 1 .9349 0 .6630 0 .6594 1 .8986 0 .0240 0 .0206 

0.10 2 mean −0 .4635 790 .3784 8993 .1207 −0 .4659 772 .0260 8784 .3151 

SD 0 .0142 7 .9376 90 .8065 0 .0135 7 .5240 85 .6990 

Error (%) 7 .2993 2 .6465 2 .6612 6 .8297 0 .2631 0 .2776 

Absolute error (%): 100 ×|(real value −estimated value)/real value|. 

Table 2 

Proportion of points within the control limits for each method in 10,0 0 0 simulations. Mean values of the proportion of 

points are indicated as bold. 

Variance values 

σ 2 
V = σ 2 

I Statistics 

Independent Gaussian 

assumption 

non-Gaussian 

assumption 

Non-linear quantile 

regression 

0.005 2 Minimum 89 .0625 37 .8125 92 .1875 

Mean 92 .5620 45 .9676 94 .6291 

Maximum 95 .9375 54 .0625 96 .2500 

0.01 2 Minimum 89 .0625 37 .1875 91 .8750 

Mean 92 .5672 45 .9618 94 .6194 

Maximum 96 .2500 54 .0625 95 .9375 

0.05 2 Minimum 89 .0625 36 .5625 91 .2500 

Mean 92 .5797 45 .4936 94 .6096 

Maximum 96 .2500 53 .4375 95 .9375 

0.10 2 Minimum 89 .3750 37 .1875 91 .8750 

Mean 92 .6403 44 .8731 94 .6658 

Maximum 95 .9375 52 .50 0 0 95 .9375 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using previous estimated values, upper and lower limits were calculated assuming Gaussian random variables and using

the percentiles of the residuals (non-Gaussian approach). In addition, upper and lower limits were calculated using non-

linear quantile regression. Table 2 presents the proportion of points within the control limits using the same simulated data

that were applied to estimate the parameters. By doing so, it is expected to find the proportion of points close to ( 1 − α)% ,

where α was chosen as 0.05 (5%). Results show that control limits, assuming independent Gaussian random variables hold

fewer than 95% of points within the control limits. On average, 92.5% of simulated points are within the control limits, even

though the simulation and the original method were based on independent Gaussian random variables. As a consequence,

7.5% of the points, on average, are outside the control limits. Using the percentiles of the residuals (non-Gaussian assump-

tion), the proportion of points within the control limits is approximately 45%. This is the smallest value among the evaluated

methods and represents almost half of the proposed confidence level (95%). Thus, if this method is applied, approximately

64% of the points will lie outside the control limits. Consequently, this method will frequently detect faults (false faults) even

though the transmission line is operating under normal conditions. In practice, we do not recommend such an approach.

Finally, the non-linear quantile regression approach holds 94.6% of the points within the control limits, which is much closer

to 95% than previous approaches. 

Using the Brazilian energy distribution company data set, the parameters of the transmission line were estimated using

the first 215 observations under normal operating conditions, as shown in Fig. 6 (a). Table 3 shows estimated parameters

of voltage and current using the linear equation approach proposed by Gomes et al. [10] and using the penalized linear

equation approach [20] . Results show differences with respect to voltage and current peak values. The parameters were

estimated using the observations before the fault, i.e., under normal operating conditions. The final estimated voltage and

current peak values are ˆ V 0 = 768 . 53 V and 

ˆ I 0 = 8743 . 06 A . The voltage and current standard deviations, for the standardized

signals under normal operating conditions, are s V = 0 . 0074 and s I = 0 . 0107 . It is worth mentioning that the current standard

deviation is larger than the voltage standard deviation. As shown in Fig. 5 (b), this is because current signals are more

sensitive than voltage signals to disturbances in transmission lines, even under normal operating conditions. It is also worth

mentioning that the estimated values are similar to the values used in the simulation study. 

Upper and lower limits with confidence level of 99.7% were estimated using our proposed method, shown in Fig. 6 (b);

using the Gaussian residuals approach [24,25] , shown in Fig. 6 (c); and using the method of non-Gaussian residuals [25,26] ,
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(a) Current and voltage signals under normal 
opera�ng condi�ons.

(b) Voltage and current signals under normal 
opera�ng condi�ons within the control limits, 
es�mated using quan�le regression.

(c) Voltage and current signals under normal 
opera�ng condi�ons within the control limits, 
es�mated assuming gaussian residuals [10]

(d) Voltage and current signals under normal 
opera�ng condi�ons within the control limits, 
es�mated using non-gaussian residuals [10].

Fig. 6. Real case scenario using voltage and current signals from CEMIG. The signals under normal operating conditions are shown in (a). Control limits 

with 99.7% confidence level estimated using our proposal are presented in (b). The Gaussian and non-Gaussian control limit estimates are shown in (c) 

and (d), respectively. 

 

 

 

 

 

 

 

shown in Fig. 6 (d). As previously described in the simulation study, the methods using Gaussian and non-Gaussian residuals

generate narrow control limits with false fault rates greater than the selected parameter which is 0.3%. This is illustrated

in Fig. 6 (c) and (d), which show observations lying outside the control region. Our proposed approach, shown in Fig. 6 (b),

provides a proper fit of the observations under normal operating conditions, as expected using a 99.7% confidence level. 

Fig. 7 (a) shows current and voltage signals before and after the lightning fault, which is represented by the dotted vertical

line. Fig. 7 (b) shows that the current and voltage signals leave the control region, representing an abnormal condition. If the

criterion of three consecutive points lying outside the control region is applied, then the lightning fault condition is detected

within 0.208 milliseconds after the fault, or in one-eighth of a cycle. This value is much smaller than standard fault detection

approaches. 
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Table 3 

Estimates of peak value parameters. 

Phase Parameters Gomes et al [10] Fitzgibbon et al. [20] 

A cos( ϕ) 0.7376 0.7376 

V 0 8.621 kV 8.743 kV 

I 0 757.8 A 768.5 A 

B cos( ϕ) 0.7377 0.7377 

V 0 8.624 kV 8.723 kV 

I 0 763.5 A 772.3 A 

C cos( ϕ) 0.7384754 0.7384752 

V 0 8.520 kV 8.841 kV 

I 0 767.9 A 796.8 A 

(a) Voltage and current signals before and a�er the 
lightning fault (ver�cal do�ed line).

(b) Control region and voltage and current signals 
before and a�er the ligh�ng fault.

Fig. 7. Voltage and current signals, and the control region, a few moments both before and after a lightning fault. Fault is detected after three consecutive 

points lying outside the control region. 

Table 4 

Proportion of points within the control limits for each method under normal operating condition (i.e. the first 

215) observation, using a confidence level of 99.7%. 

Phase Independent Gaussian assumption Non-Gaussian assumption Non-linear quantile regression 

A 84 .19% 45 .12% 98 .14% 

B 86.98% 43.26% 98.14% 

C 85 .12% 41 .86% 98 .14% 

 

 

 

 

 

 

 

 

 

 

Using the data under normal operating conditions, control regions were estimated using the models proposed in [10] and

the proposed non-linear quantile regression approach. For each method the proportion of points lying inside the control

regions were calculated. All methods use a confidence level of 99.7%, i.e., it is expected that, theoretically, 99.7% of the points

will lye inside the control region. Table 4 shows the proportion of points lying inside the control regions. The independent

Gaussian assumption and non-Gaussian assumption models, proposed in [10] , achieved a much smaller proportions of points

within the control region as compared to the value of 99.7%. Our proposed non-linear quantile regression control region

achieved the proportion of points much closer to 99.7% as compared to the previous methods. 

4. Discussion and conclusion 

This paper proposes a new approach to estimate the parameters of the elliptical model which is applied to detect faults

in transmission lines. In addition, it successfully applies non-linear quantile regression to estimate upper and lower control

limits. The simulation study and the real case scenario show that our proposal achieves more accurate values for the param-

eters of the model and provides false detection rates closer to the α-level chosen by the user. Therefore, it provides more

reliable control regions than previous approaches. 
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It is worth mentioning that in energy transmission fault detection methods, voltage and current signals are successively

evaluated in order to detect faults as soon as possible. Faults are deviations of the signals from normal operating conditions.

Extreme deviations from normal operating conditions are detected quickly and easily. On the contrary, subtle deviations

from normal operating conditions are difficult to detect because they approximate normal operating conditions. Therefore,

it is crucial to represent normal operating conditions as accurately as possible, thereby establishing a proper boundary be-

tween normal and fault conditions. Furthermore, the larger the boundary the more difficult to detect faults. On the contrary,

the narrower the boundary, the faster a fault is detected but the greater the chance of false faults. This work proposes new

estimate procedures to create a more accurate mathematical representation of the current and voltage signals under nor-

mal operating conditions. In addition, new parametric upper and lower bounds are proposed and estimated using quantile

regression. This approach does not require any statistical assumption about data uncertainties and create an accurate region

under normal operating conditions. The user can change the width of the region in order to adjust the expected number of

false faults. A real case scenario shows that this approach can detect faults in one eighth of a cycle, on average. 

The main limitation of our proposal, and previous proposals, is the fact that each phase of the transmission line is

controlled independently. In a real case scenario, faults may affect more than one phase simultaneously. Therefore, future

studies aim at developing a three-dimensional control region which controls, simultaneously, the current signals for all

three phases of the transmission line. Furthermore, it is of interest to classify fault conditions, i.e., to use signal information

under fault conditions to identify the types of faults. Such conditions may include a fire close to the transmission line, or

cable entanglement, or electrical lightning, or falling tree, or any other condition. This information is crucial for preparing

maintenance teams for line repair. For instance, statistics calculated from the residuals under fault conditions can be used

as input variables for fault type classification models. 

Finally, the proposed approach can be easily employed in different research areas as control schemes. 
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