
ARTICLE IN PRESS
JID: APM [m3Gsc; June 7, 2016;9:27]

Applied Mathematical Modelling 0 0 0 (2016) 1–22

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Combinatorial approach to exactly solving discrete and hybrid

berth allocation problem

Stevan Kordi ́c

a , ∗, Tatjana Davidovi ́c

b , Nataša Kova ̌c

a , Branislav Dragovi ́c

a

a Maritime Faculty, University of Montenegro, Kotor, Montenegro
b Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia

a r t i c l e i n f o

Article history:

Received 14 March 2015

Revised 28 February 2016

Accepted 4 May 2016

Available online xxx

Keywords:

Combinatorial optimization

Branch and bound

Optimal solution

Berth allocation problem

Minimization of total cost

a b s t r a c t

This paper presents an exact combinatorial algorithm for solving the Discrete Berth Allo-

cation Problem (DBAP) and the Hybrid Berth Allocation Problem (HBAP) with fixed handling

times of vessels based on the original algorithm for solving combinatorial problems called

Sedimentation Algorithm . We address the issues of DBAP and HBAP according to the Rashidi

and Tsang model. To the best of our knowledge, the proposed algorithm is the first ex-

act combinatorial algorithm for solving the general DBAP and HBAP based on Rashidi and

Tsang model. Computational results prove the superiority of the proposed algorithms com-

pared with the exact solvers based on the Mixed Integer Programming (MIP) models. Effi-

cient C implementation enabled us to solve instances with up to 65 vessels. This resolves

most of the real life problems, even in large ports.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Berth Allocation Problem (BAP) consists of allocating berths to a set of vessels that need to be served within a given

time horizon in a container port. Vessels are, among other information, represented by a set of data that includes the

expected time of arrival, size, projected handling time, preferred berth in the port, and penalties. BAP can be defined as

follows: for each vessel in the set, the berth index and the time interval are allocated in the manner that the given objective

function is minimized. In Lim [1] , BAP was proven to be a NP-hard problem.

BAPs can be classified as discrete, continuous or hybrid, see [2] . In DBAP quay is partitioned into a number of units,

called berths, and each berth can serve one vessel at a time. Each vessel, on the other hand, occupies exactly one berth.

Time is also partitioned into discrete units, which allows the usage of integer arithmetic for the calculation of the objective

function value. HBAP is similar to DBAP with the exception that a larger vessel can occupy several successive berths while

smaller vessels can share one berth. Conversely, in the continuous BAP there is no partitioning of the quay, i.e. vessels are

allowed to take arbitrary position within the boundaries of the quay. Another possible classification distinguishes static and

dynamic BAPs. In the static BAP, it is assumed that vessels arrival times impose soft constraint on the berthing times. The

vessels already wait at the port and can berth immediately or the vessel can be speeded up in order to meet berthing time

earlier than the expected arrival time. In the dynamic BAP fixed arrival times are given for the vessels, hence, vessels cannot

berth before expected arrival time. A detailed BAP classification can be found in [2,3] .
∗ Corresponding author.

E-mail addresses: stevan.kordic@gmail.com (S. Kordi ́c), tanjad@mi.sanu.ac.rs (T. Davidovi ́c), knatasa@ac.me (N. Kova ̌c), branod@ac.me (B. Dragovi ́c).

http://dx.doi.org/10.1016/j.apm.2016.05.004

0307-904X/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
mailto:stevan.kordic@gmail.com
mailto:tanjad@mi.sanu.ac.rs
mailto:knatasa@ac.me
mailto:branod@ac.me
http://dx.doi.org/10.1016/j.apm.2016.05.004
http://dx.doi.org/10.1016/j.apm.2016.05.004

2 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

In recent literature, exact approaches addressing BAP are rare, the majority of studies use heuristic or meta-heuristic

methods to obtain suboptimal solutions of BAP. According to the recent surveys of BAP by Bierwirth and Meisel [2,4] exact

methods are applied in 24% of approaches, while the rest of 76% approaches belongs to the heuristic and meta-heuristic

methods.

An exact method for solving BAP can be found in Vacca et al . [5] . The authors proposed an exact algorithm for solving the

Tactical Berth Allocation Problem (TBAP) defined by Giallombardo et al . [6] . The model for TBAP is based on an exponential

number of variables, and it is solved via column generation. To obtain an integer solution, a branch-and-price scheme was

applied along with several accelerating techniques specifically designed for solving TBAP.

Although BAP in container port is different from BAP in bulk port we list two works addressing BAP in bulk port. In

Umang et al . [7] two exact methods, based on mixed integer programing and generalized set partitioning, and one heuristic

methods to solve dynamic hybrid BAP in bulk ports are proposed. Robenek et al . [8] propose branch-and-price exact solution

algorithm.

Heuristic and meta-heuristic methods for solving BAP are far more common. The following short review does not cover

this topic completely. Its purpose is just to illustrate the variety of approaches.

Both static and dynamic discrete BAPs were examined by Imai et al . [9] . In both problem variants, the assignment

and sequencing of vessels to berths was determined by minimizing the vessels’ waiting and handling times. A Lagrangian

relaxation-based heuristic was used to solve the problem. A similar approach, with a stronger Lagrangian relaxation because

of the different formulation used, was applied by Monaco and Samara [10] for the dynamic version of DBAP. Cordeau et

al . [11] modeled DBAP as a Multi-Depot Vehicle Routing Problem with Time Windows and applied the Tabu Search meta-

heuristic to find good sub-optimal solutions for the problem. A similar approach was adopted by Mauri et al . [12] to solve

DBAP. The set partition approach was used by Cristensen and Holst [13] to solve DBAP. Zhen et al . [14] applied a Simulated

Annealing meta-heuristic, whereas de Oliveira et al . [15] applied Clustering Search method using Simulated Annealing for

solutions generation. Lee and Chen [16] and Hansen et al . [17] used a Variable Neighborhood Search for the same variant

of the problem. Genetic Algorithms were applied to several variants of DBAP by Imai et al . [18] , Han et al . [19] , Zhou et

al . [20] , and Nishimura et al . [21] . Iterated Greedy Heuristic for solving DBAP was used by Lin et al. [22] . Lalla-Ruiz and

Voß [23] employ Partial Optimization Metaheuristic Under Special Intensification Condition Metaheuristic (POPMUSIC) for

solving DBAP.

HBAP with fixed handling times was examined by Chen and Hsieh [24] using the MIP problem formulation. In order

to solve HBAP Moorthly and Teo [25] used a precedence graph representation which is analyzed using the Project Evalua-

tion Review Technique. Dai et al . [26] proposed Simulated Annealing algorithm for solving the same version of HBAP. Bee

Colony Optimization was applied by Kova ̌c [27] for solving the Minimum Cost Hybrid BAP with fixed handling times of

vessels.

The HBAP formulations with position dependent vessel handling times are studied in several papers. Imai et al. [28] in-

vestigate indented berths HBAP. Also, Imai et al . [29] developed Genetic Algorithm for the berth allocation of the mega-ships

served from two sides. Cordeau et al . [11] obtain HBAP from DBAP. The works of Nishimura et al . [21] , Cheong et al . [30] and

Hoffarth and Voß [31] include the vessels’ draft into HBAP. The same work proposed a heuristic for solving HBAP.

In this paper the discrete BAP (DBAP) and the hybrid BAP (HBAP) are considered. We present an original exact approach

for solving DBAP and HBAP implemented in two variants. The first variant, named Sedimentation Algorithm (SEDA), is a gen-

eral combinatorial optimization algorithm adopted for solving BAP. SEDA is an exact solver and it works on the combinatorial

branch and bound principles. The second variant differs from the first one because it uses a heuristic in the pre-processing

phase to reduce the search space for SEDA. We name this algorithm the Sedimentation Algorithm with an Estimation & Rear-

rangement Heuristic (SEDA + ERH). To the best of our knowledge, these are the first exact combinatorial algorithms for solving

the general DBAP and HBAP based on Rashidi and Tsang [32] model. Estimations of the complexity of the algorithms are

given. Numerical experiments are conducted on four sets of test examples involving 5, 8 or 13 berths with one or two-week

time horizon. SEDA + ERH enable us to find, in a very short CPU times, the optimal solution for the larger problem instances

with up to 60 vessels to be scheduled during the time horizon of one or two weeks. In addition, we compare our combina-

torial approach (realized through the implementation of SEDA and SEDA + ERH) against commercial MIP based exact solver

CPLEX. Our computational results clearly prove the superiority of the proposed combinatorial algorithms.

The rest of this paper is organized as follows. At the beginning, SEDA and SEDA + ERH are described in Section 2 . Then

BAP notation and problem formulation are introduced in Section 3 . BAP modeling for SEDA and the complexity of SEDA

for solving BAP are described in Section 4 . Computational results are presented in Section 5 . Finally, Section 6 contains

concluding remarks and directions for future research.

2. The sedimentation algorithm

Sedimentation Algorithm (SEDA) is a general combinatorial optimization algorithm introduced for the first time by the

authors in Kordi ́c et al . [33] for solving the Berth Allocation Problem (BAP) at International Association of Maritime Economists

Conference, IAME, Taipei, 2012 . Since the proceedings of this conference is not accessible to wider scientific community here

we present in detail SEDA and SEDA + ERH. The initial version of SEDA and its preliminary computational results presented

at [33] are significantly improved and presented here.
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 3

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

SEDA belongs to the class of branch-and-bound algorithms, which uses the backtracking mechanism combined with some

look-ahead techniques for the exact solving of optimization problems. Here we present a recursive variant of the algorithm

suitable for the minimization type of problems.

In order to solve a problem by SEDA, first we need to present the problem’s model in the form required by SEDA. The

problem modeling consists of: input parameters, internal structures, functions and procedures described in Sections 2.1 ,

2.2 and 2.3 . The description of implementation is given in Section 2.4 . SEDA and its key properties are presented in Section

2.5 . and 2.6 . SEDA + ERH is described in Section 2.7 . Finally, in Subsection 2.8 advantages and disadvantages of SEDA are

listed.

2.1. SEDA input parameters

The SEDA input parameters are the following:

1. X = { x 1 , . . . , x l } – a finite set of decision variables.

2. Dom = { D 1 , . . . , D l } – the set of domains (possible values) of decision variables. SEDA will work only if the domains of

the decision variables D i , for each i ∈ { 1 , . . . , l } are finite nonempty sets.

3. f – the objective function, depending on the values of decision variables, i.e. f (x 1 , . . . , x l) . We assume that the objective

function can be represented as:

f (x 1 , . . . , x l) =

l ∑

k =1

f k (x k) , (1)

where functions f k (x k) are nonnegative for each k ∈ { 1 , . . . , l } .
4. � – the set of heuristic relations. Set � = { ≺1 , . . . , ≺l } consists of heuristic total order relations ≺i ⊆ D

2
i
, for each decision

variable x i ∈ X . For any two members a, b ∈ D i , relation ≺i decides which value of decision variable x i is better: a or b .

The value a comes before b if a ≺i b . Heuristic relations have to satisfy following condition:

(∀ i ∈ { 1 , . . . l }) (∀ a, b ∈ D i) a ≺i b ⇒ f i (a) ≤ f i (b) . (2)

2.2. Internal data structures used by SEDA

Internal structures used by SEDA are the following:

1. o – the sequence in which the values of decision variables corresponding to the current best value of the objective

function are kept during the work of the algorithm. This is the sequence where current best solution is kept.

2. minimum – the variable for keeping the value of the objective function of the current best solution. The value of the

variable minimum is completely determined by the values of the current best solution i.e., minimum = f (o 1 , . . . , o l) if o

is determined, otherwise minimum = + ∞ .

3. θ – the counter of the decision variables. We will also refer to variable θ as a construction step counter.

2.3. Functions and procedures used by SEDA

Procedures used by SEDA are the following:

1. FindSolution(θ , Dom) – the recursive procedure which finds the value for the decision variable x θ , in the domain set

D θ ∈ Dom , and then proceeds until a feasible solution is reached. The procedure will be described in more details in

Subsection 2.5 .

2. Estimation(θ , Dom) – the function which estimates the value of the objective function over the decision variables do-

main sets in Dom . If the values for the first θ − 1 decision variables are determined i.e., values are determined for

{ x 1 , . . . , x θ−1 } , then the function Estimation(θ , Dom) can be represented as:

Estimation (θ, Dom) =

θ−1 ∑

k =1

f k (x k) + NonDetVarEstimation (θ) . (3)

The above sum is calculated according to the objective function definition for the decision variables with deter-

mined values: { x 1 , . . . , x θ−1 } . For the decision variables { x θ , . . . , x l } with still undetermined values we use the function

NonDetVarEstimation(θ) to estimate minimal possible value to approximate objective function f . The quality of the ap-

proximation highly effects the SEDA running time. General assumption about the Estimation(θ , Dom) function is that

its value is lower than or equal to the value of the objective function of the “optimal solution” with determined set of

decision variables { x 1 , . . . , x θ−1 } if the following holds:

(∀ k ∈ { θ, . . . , l }) D k
 = ∅ . (4)

Otherwise the value is + ∞ . It will take value + ∞ if and only if D k = ∅ , for some k ∈ { θ, . . . , l } i.e., feasible solution is not
possible to construct for the given set of variable domains Dom .

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

4 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Fig. 1. The Sedimentation Function.

In this paper, in particular, we will assume that NonDetVarEstimation(θ) is calculated in the following way:

NonDetVarEstimation (θ) =

l ∑

k = θ

{
min

y ∈ D k
f k (y) if D k
 = ∅ ,

+ ∞ if D k = ∅ .
(5)

Therefore, the function Estimation(θ , Dom) can be represented as:

Estimation (θ, Dom) =

θ−1 ∑

k =1

f k (x k) +

l ∑

k = θ

{
min

y ∈ D k
f k (y) if D k
 = ∅ ,

+ ∞ if D k = ∅ .
(6)

For the Estimation(θ , Dom) defined as above general assumption trivially holds.

3. Sediment(θ , x) – the function which propagates the assignment of x to the decision variable x θ for all further exploration

of the domains of the undetermined decision variables: { D θ+1 , . . . , D l } . Also, it applies various general and problem spe-

cific look-ahead techniques for the further reduction of { D θ+1 , . . . , D l } . Upon the “sedimentation”, the function returns the

new value to the set of domains . The pseudocode of the Sediment(θ , x) is given in Fig. 1

The name of the algorithm was inspired by the procedure resembling the natural phenomenon related to the sedimen-

tation of particles in fluids.

4. ReportSolution() – the procedure which checks if the new feasible solution corresponds to a smaller value of the objec-

tive function f than the current best solution. If that is the case, then it becomes the new current best solution and it is

saved in the variable o . Also, its objective function value is saved in the variable minimum .

5. CutOff(θ , ɛ) – the function which deletes elements from the domains of the undetermined decision variables

{ D θ+1 , . . . , D l } that correspond to high values of f k function. Let us denote by M k the sum of the minimal values of

the functions f k over the domain D k for k ∈ { θ + 1 , . . . , l } and a positive number ɛ i.e.,

M k = min

y ∈ D k
f k (y) + ε, k ∈ { θ + 1 , . . . , l } . (7)

The function CutOff(θ , ɛ) returns the new value of the set of domains: { D 1 , . . . , D θ , D

′
θ+1

, . . . , D

′
l
} . The domains of the de-

termined decision variables remain unchanged, while the domains of the undetermined decision variables are calculated

in the following way:

D

′
k

= { y ∈ D k | f k (y) < M k } , k ∈ { θ + 1 , . . . , l } . (8)

6. Minx(D , ≺) – the function returns minimal ≺ element of the set D , i.e., it returns a ∈ D such that:

(∀ y ∈ D) y
 = a ⇒ a ≺ y. (9)

2.4. Implementation of the functions and procedures used by SEDA

The main reason for efficiency of the SEDA algorithm lies in the way how functions Estimation(θ , Dom), Sediment(θ , a),

CutOff(θ , ɛ) and Minx(D , ≺) are implemented. Internally we maintain so called ξ lists for each decision variable. Elements

of the ξ k list for the decision variable x k are ordered pairs (a, f k (a)) for all a ∈ D k , sorted in ascending order according to

the total ordering relation ≺k . If we denote by n k = | D k | , then ξ k list can be represented as:

ξk = 〈 (a k, 1 , f k
(
a k, 1

))
,
(
a k, 2 , f k

(
a k, 2

))
, . . . ,

(
a k, n k

, f k
(
a k, n k

))〉 , k ∈ { 1 , . . . , l } , (10)

providing the following three formulas are true:

(∀ k ∈ { 1 , . . . , l }) D k =

{
a k, 1 , a k, 2 , . . . , a k, n k

}
; (11)
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 5

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

(∀ k ∈ { 1 , . . . , l }) (∀ i, j ∈ { 1 , . . . , n k }) i
 = j ⇔ a k,i
 = a k, j ; (12)

(∀ k ∈ { 1 , . . . , l }) (∀ i, j ∈ { 1 , . . . , n k }) i < j ⇔ a k,i ≺k a k, j . (13)

If we also introduce notation:

ξk (i) =

(
a k,i , f k

(
a k,i

))
,

ξk (i, 1) = a k,i , ξk (i, 2) = f k
(
a k,i

)
, k ∈ { 1 , . . . , l } , i ∈ { 1 , . . . , n k } , (14)

then we can describe implementation of SEDA function and procedures using ξ k list. Implementation of the functions

Estimation(θ , Dom) and Minx(D , ≺) are as follows:

Estimation (θ, Dom) =

θ−1 ∑

k =1

f k (x k) +

l ∑

k = θ

{
ξk (1 , 2) if D k
 = ∅ ,

+ ∞ if D k = ∅ , (15)

Minx (D k , ≺k) = ξk (1 , 1) . (16)

For the implementation of the function CutOff(θ , ɛ) it is necessary to make search for ordered pair (a, f k (a)) in the list ξ k ,

having the highest value of the f k (a) less than M k , for each decision variable x k , k ∈ { θ + 1 , . . . , l } . Since ξ k lists are ordered,

binary search appears to be efficient algorithm for the necessary choice. If we introduce μ operator as:

μy y<z R (z) − The least y < z such that R (y) . if (∃ y ∈ N) y < z ⇒ R (y) ; otherwise z,

then the function CutOff(θ , ɛ) can be implemented as follows:

M k = ξk (1 , 2) + ε, k ∈ { θ + 1 , . . . , l } , (17)

n

′
k = μi i< n k +1 [M k ≤ ξk (i, 2)] , k ∈ { θ + 1 , . . . , l } , (18)

D

′
k =

{
ξk (i, 1) | i ∈

{
1 , . . . , n

′
k − 1

}}
, k ∈ { θ + 1 , . . . , l } . (19)

The function CutOff(θ , ɛ) needs also to update ξ k lists for the further calculations in the following way:

ξ ′
k = ξk (i) | i ∈

{
1 , . . . , n

′
k

}
, k ∈ { θ + 1 , . . . , l } . (20)

Finally, the new values for n ′
k

and ξ ′
k

replace old. This step concludes the implementation of the CutOff(θ , ɛ) function:

n k = n

′
k and ξk = ξ ′

k , k ∈ { θ + 1 , . . . , l } , (21)

D

′
k = { ξk (i, 1) | i ∈ { 1 , . . . , n k } ∧ ϕ (θ, x, k, ξk (i, 1)) } , k ∈ { θ + 1 , . . . , l } . (22)

Function Sediment(θ , x) is implemented as the sequential search through the ξ k lists. Elements satisfying constrains

and heuristic conditions are kept in the list, the other ones are deleted. Predicate ϕ(θ , x, k, y) is defined to be true if

all determined values of decision variables x 1 , x 2 ,…, x θ−1 and x θ = x , x k = y are consistent with constraints and heuristic

techniques of the problem (otherwise it is false). Then we can implement Sediment(θ , x) as follows:

At the end, new values of n k and of ξ k , should be updated according to D

′
k

for further calculations.

In this way all the most essential functions and procedures for SEDA can be reduced to the operations with ξ k lists. The

complexity of these operations does not exceed the general complexity of the algorithm, therefore we omit the proof of

complexity for them.

Described functions and the ξ lists are integral part of SEDA. The ξ k lists, for k ∈ { 1 , . . . , l } are pre calculated before SEDA

starts to work and maintained as described during the work of SEDA, i.e., elements of the ξ lists are deleted in such a

manner that their ascending order according to the total ordering relation ≺k is preserved. This feature inspired us to name

this algorithm as the Sedimentation Algorithm .

In this subsection, we described the functions Estimation(θ , Dom), Sediment(θ , a), CutOff(θ , ɛ) and Minx(D , ≺) in a

mathematical way which is more suitable for understanding how SEDA works. The actual programming implementation is,

although equivalent, more sophisticated and optimized in order to increase the efficiency of the resulting algorithm.

2.5. SEDA description

The pseudo code of SEDA is given in Fig. 2 . It consists of the two parts: the main body of the algorithm, lines (19)–(23)

and the procedure FindSolution(θ , Dom), lines (2)–(18) .

In the main body of the algorithm the variables described in Sections 2.1 and 2.2 are initialized, lines (19)–(21) . Then

procedure FindSolution(1, Dom) is called in line (22) . This procedure recursively determines the values of decision variables,

starting from x 1 , then x 2 , and so on, until x l is reached. After examining all possible values for decision variables, variable

minimum contains the value of the objective function for optimal solution. The optimal solution itself is stored in the se-

quence o . At the end, the values o and minimum are returned from the main body of the algorithm, line (23) . If there is no

feasible solution of the problem, then the return value of the variable minimum is the initial one i.e., + ∞ .

As previously mentioned, the procedure FindSolution(θ , Dom) recursively examines the solution space. In order to de-

scribe how it works, let us suppose that the values of decision variables { x 1 , . . . , x θ−1 } are determined. The input variable
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

6 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Fig. 2. The Sedimentation Algorithm.

Dom is the set of decision variables domains { D 1 , . . . , D l } . We assume that these domains are consistent with the values of

the decision variables { x 1 , . . . , x θ−1 } . The next decision variable for which values is to be examined is x θ .

In line (3) the original values of the whole set of domains Dom are saved in the auxiliary variable Dom

′ . Also, in particu-

lar, the value of the domain D θ is saved in the auxiliary variable D , line (4) . If necessary, the algorithm will examine all the

elements of the set D as the potential values of the decision variable x θ . After examining a particular value a ∈ D , that value

is removed from D . Therefore, the algorithm examines values for the decision variable x θ while D
 = ∅ and there is a chance

to improve the current best solution i.e., Estimation(θ , Dom) < minimum , in the while loop lines (5)–(17) .

In line (6) we select the minimal ≺θ element of set D as the value of the decision variable x θ . After the selection, the

value is removed from the set D in line (7) . The selection of the value for the decision variable x θ will have consequences

on the domains of decision variables yet undetermined: { D θ+1 , . . . , D l } . These consequences are handled by the call of the

Sediment(θ , x θ) function in line (8) which returns new value for decision variables domains. Notice that only the domains

of yet undetermined decision variables may be changed.

Since, the value of the decision variable x θ is determined and all the consequences are reflected in the domains of

yet undetermined decision variables it is befitting to estimate the new minimal possible value of the objective func-

tion f again. Instead of the direct comparison Estimation (θ + 1 , Dom) < minimum in line (10) , the difference minimum −
Estimation (θ + 1 , Dom) is saved in auxiliary variable ɛ in line (9) , then equivalent comparison ɛ > 0 is performed in line

(10) . If ɛ > 0 then the algorithm can proceed with construction of a feasible solution in lines (11)–(14) , otherwise a new

value for decision variable x θ has to be examined, if there is any left.

In line (11) condition θ = l is examined. In the case it is true, then the algorithm checks if the new current best solution

is produced by calling the procedure ReportSolution(). In the case θ < l the algorithm proceeds with the construction of

feasible solution. Firstly, it cuts off the domain elements with too high values of the objective function by calling the function

CutOff(θ , ɛ) in line (12) . After the cutting off, the algorithm continues with the examination of the next decision variable by

calling the procedure FindSolution (θ + 1 , Dom) in line (13).

Finally, the original value of the decision variables domains is restored in line (16) in order to examine the remaining

values for the decision variable x θ .

The backtracking mechanism of SEDA is “hidden” by the recursive formulation of the procedure FindSolution(θ , Dom).

The non-recursive formulation of SEDA is more complex, but also more efficient. This is why the recursive formulation

of SEDA was used to describe the algorithm in this section and non-recursive implementation of SEDA for computational
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 7

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

results in Section 5 . The transformation of any recursive function or procedure to a non-recursive one is, more or less, a

technical matter. Therefore, the description of non-recursive SEDA is omitted here.

2.6. Key SEDA properties

In this section main properties of the proposed algorithm are described. First we prove total correctness of SEDA and

then we address the issue of general complexity of SEDA.

2.6.1. Total correctness of SEDA

SEDA eliminates elements from the domains of the decision variables on four occasions, in lines (5) , (8) , (10) and (12) .

To prove total correctness of SEDA it is sufficient to prove that mentioned eliminations do not prevent algorithm in finding

the optimal solution.

Proposition 1. If the values { x 1 , . . . , x θ−1 } of decision variables are determined in a feasible solution x, then x cannot be better

than the current best solution o if

Estimation (θ, Dom) ≥ minimum. (23)

Proof. If the values { x 1 , . . . , x θ−1 } of decision variables are determined, function Estimation(θ , Dom) is calculated as follows:

Estimation (θ, Dom) =

θ−1 ∑

k =1

f k (x k) +

l ∑

k = θ

{
min

y ∈ D k
f k (y) if D k
 = ∅ ,

+ ∞ if D k = ∅ .
(24)

If for some k ∈ { θ, . . . , l } domain set D k is empty then Estimation (θ, Dom) = + ∞ , so inequality Estimation(θ , Dom) ≥
minimum trivially holds.

If for all k ∈ { θ, . . . , l } domain sets D k are non-empty, then Estimation(θ , Dom) is calculated as follows:

Estimation (θ, Dom) =

θ−1 ∑

k =1

f k (x k) +

l ∑

k = θ
min

y ∈ D k
f k (y) . (25)

The first sum

θ−1 ∑

k =1

f k (x k) in (25) is constant, since values { x 1 , . . . , x θ−1 } of decision variables are determined. The second

sum

l ∑

k = θ
min

y ∈ D k
f k (y) in (25) estimate the values of for the non-determined decision variables { x θ , . . . , x l } with the minimal

values of the objective function in their domains: min

y ∈ D k
f k (y) . This estimation does not necessarily correspond to the feasible

solution, but it has the minimal value. Therefore, any feasible solution has the value of objective function which is greater

than or equal to Estimation(θ , Dom). Hence, if Estimation(θ , Dom) ≥ minimum , for the determined values of decision vari-

ables { x 1 , . . . , x θ−1 } , there cannot exist a solution x containing the determined values for { x 1 , . . . , x θ−1 } that is better than the

current best solution o . �

Consequence 1. The elimination of the elements of domain sets for the non-determined decision variables { x θ , . . . , x l } , in

lines (5) and (10) of the SEDA pseudocode, does not prevent SEDA in finding optimal solution.

The eliminations of the elements of domain sets in line (8) occurs during the execution of the Sediment(θ , x θ) function.

This function eliminates elements of domain sets that does not fulfill constraints of the problem. In addition, it applies prob-

lem specific look-ahead techniques for further reduction of the domain sets. We will take for granted that these techniques

do not prevent SEDA in finding optimal solution. Hence, the following consequence holds.

Consequence 2. The application of the Sediment(θ , x θ) function, in line (8) of the SEDA pseudocode, does not prevent SEDA

in finding the optimal solution.

In order to prove that the domains reductions in line (12) do not prevent SEDA finding the optimal solution we first

prove the following proposition.

Proposition 2. If there is an optimal solution x different from the current best solution o and the values { x 1 , . . . , x θ } of decision

variables in the optimal solution x are determined, then if we denote by :

ε = minimum − Estimation (θ + 1 , Dom) , (26)

the following holds:

ε > 0 ⇔ (∀ k ∈ { θ + 1 , . . . , l }) f k (x k) ≤ min

y ∈ D k
f k (y) + ε. (27)

If we use the notation from the description of the CutOff(θ , ɛ) function in Subsection 2.3 , the above equivalence can be

formulated as:

ε > 0 ⇔ (∀ k ∈ { θ + 1 , . . . , l }) x k ∈ D

′ . (28)
k

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

8 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Before the proof of the equivalence, note that, since the first θ decision variables of the optimal solution x are deter-

mined, the following must hold:

(∀ k ∈ { θ, . . . , l }) D k
 = ∅ . (29)

Proof. Let us first prove the (⇐) direction. By the definition of the variable minimum in Subsection 2.2 , the minimum =
f (o 1 , . . . , o l) holds. If there exists an optimal solution x different from the current best solution o , then f (o 1 , . . . , o l) >

f (x 1 , . . . , x l) i.e.,

minimum − f (x 1 , . . . , x l) > 0 ⇔ minimum > f (x 1 , . . . , x l) . (30)

By the general assumption for the function Estimation (θ + 1 , Dom) and assumption (∀ k ∈ { θ + 1 , . . . , l }) x k ∈ D

′
k
, it holds:

f (x 1 , . . . , x l) ≥ Estimation (θ + 1 , Dom) . (31)

From two previous inequalities (30) and (31) we conclude the (⇐) direction of the proposition equivalence (27):

minimum − Estimation (θ + 1 , Dom) > 0 ⇔ ε > 0 . (32)

The other direction (⇒) of equivalence is proved by reduction ad absurdum . First, let us introduce the following notation:

N k = min

y ∈ D ′
k

f k (y) , k ∈ { θ + 1 , . . . , l } ; (33)

N

′
k = min

y ∈ D ′
k

f k (y) , k ∈ { θ + 1 , . . . , l } . (34)

From the description of SEDA we easily conclude that (∀ k ∈ { θ + 1 , . . . , l }) D

′
k

⊆ D k holds, since the functions Sediment(θ ,

e θ) and CutOff(θ , ɛ) eventually only reduce the elements of domains sets. Therefore, the following statement is true:

(∀ k ∈ { θ + 1 , . . . , l }) N

′
k ≥ N k . (35)

Suppose that ɛ > 0 and (∃ k ∈ { θ + 1 , . . . , l }) x k / ∈ D

′
k

. Let s ∈ { θ + 1 , . . . , l } be such an index that:

x s / ∈ D

′
s ⇔ f s (x s) ≥ min

y ∈ D ′ s
f s (y) + ε ⇔ f s (x s) ≥ N s + ε. (36)

Since minimum > f (x 1 , . . . , x l) and taking into account the properties of the above introduced sequences N k and N

′
k
, for

k ∈ { θ + 1 , . . . , l } in formulas (35) and (36) the following sequence of equalities and inequalities holds:

minimum > f (x 1 , . . . , x l) =

=

l ∑

k =1

f k (x k) =

θ∑

k =1

f k (x k) +

l ∑

k = θ+1

f k (x k) =

=

θ∑

k =1

f k (x k) +

s −1 ∑

k = θ+1

f k (x k) + f s (x s) +

l ∑

k = s +1

f k (x k) ≥

≥
θ∑

k =1

f k (x k) +

s −1 ∑

k = θ+1

N

′
k +

(
N

′
s + ε

)
+

l ∑

k = s +1

N

′
k =

=

θ∑

k =1

f k (x k) +

l ∑

k = θ+1

N

′
k + ε ≥

θ∑

k =1

f k (x k) +

l ∑

k = θ+1

N k + ε =

=

θ∑

k =1

f k (x k) +

l ∑

k = θ+1

min

y ∈ D k
f k (y) + ε = Estimation (θ + 1 , Dom) + ε =

= Estimation (θ + 1 , Dom) + minimum − Estimation (θ + 1 , Dom) =

= minimum. (37)

If we connect the beginning and the end of the above formula, we obtain minimum > minimum, i.e., a contradiction. This

concludes the proof of Proposition 2 . �

Consequence 3. The application of the CutOff(θ , ɛ) function, in line (12) of the SEDA pseudocode, does not prevent SEDA in

finding the optimal solution.

Proof. Let us suppose that there is an optimal solution x different from the current best solution o in some stage of SEDA’s

work. If the determined values of the decision variables differ from the corresponding values in the optimal solution x ,

then the optimal solution x cannot be found until SEDA equalises the values of the determined decision variables with the
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 9

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

optimal solution x . In that case any reductions in domain sets, including the CutOff(k , ɛ) will not have effect on finding the

optimal solution.

On the other hand, if the determined values of the decision variables { x 1 , . . . , x θ } are equal to the corresponding values

in the optimal solution x , then Proposition 2 ensures that the application of the function CutOff(k , ɛ), in line (12) of the

SEDA pseudocode, does not prevent SEDA in finding the optimal solution. �

Theorem 1. SEDA is a totally correct algorithm .

Proof. As it is already mentioned SEDA reduces the domain sets of the decisions variables on four occasions, in lines (5) ,

(8) , (10) and (12) of SEDA pseudocode. Without these reductions it would behave as a brute force algorithm searching whole

space of feasible solutions. Therefore, it is sufficient and necessary to prove that these reductions do not prevent SEDA in

finding optimal solution.

Consequence 1. proves that eliminations in lines (5) and (10) of SEDA pseudocode do not prevent SEDA in finding optimal

solution, Consequence 2. proves the same for the line (8) and finally Consequece 3. provides the proof for the line (12) .

Therefore, SEDA is a totally correct algorithm. �

2.6.2. General complexity of SEDA

Estimation of the complexity of SEDA is difficult as it is a general algorithm for solving problems of combinatorial type.

In the general case it is not possible to determine, even not to estimate, amount of the reduction of domain space done in

lines (5) , (8) , (10) and (12) of SEDA pseudocode. To illustrate that, let us suppose that all domain sets have cardinality of d .

If there are no reductions, then the complexity of the SEDA is O (d l). That is also complexity of the brute force algorithm. If

domain sets are reduced by one element in SEDA, then the complexity of SEDA is O (d(d − 1)(d − 2) · · · (d − l + 1)) = O (d!
l!

) ,

providing d > l . Finally, if we suppose that cardinalities of domain sets are reduced in SEDA by coefficient p , where p ∈ (0, 1),

then the complexity of SEDA is O (d · (p · d) · (p 2 · d) · · · (p l−1 · d)) = O (d l p
l (l −1)

2) . These three sim ple exam ples demonstrate

differences in the complexity of SEDA which may occur depending on the number of reduced elements. In the Subsection

4.2 , more precise estimation of SEDA for BAP is given.

2.7. Sedimentation algorithm with estimation & rearrangement heuristic

The efficiency of SEDA depends heavily on the order of the decision variables. Good ordering for the algorithm is when

we sort the decision variables in a descending order according to their penalty costs in the optimal solution. The problem

is that we do not know this order in advance. To obtain a good initial solution, we run SEDA using a few different order-

ings for a limited time. Then, we order the decision variables according to their penalty costs in the best solution obtained.

Finally, we initialize SEDA with new ordering and run the algorithm until it stops. This simple heuristic yields a signifi-

cant improvement in the efficiency of SEDA. We name this heuristic the Estimation & Rearrangement Heuristic (ERH). When

ERH is applied before SEDA, a new algorithm is obtained; we name it the Sedimentation Algorithm with an Estimation &

Rearrangement Heuristic (SEDA + ERH).

Let us now describe the SEDA + ERH in more details. By a straightforward modification of the described SEDA, algorithm

can start from any predefined ordering ω of the decision variables. The variable ω is a permutation of the decision variables

indices set { 1 , . . . , l } . Instead of accessing the θ th decision variable in the algorithm, we access decision variable ω(θ). We

refer to this SEDA modification as the SedimentationAlgorithm �(l, Dom, �, ω, f) function. Also, by a straightforward modi-

fication of the described SEDA we delete lines (19) “o = 〈∅ | i = 1 , . . . , l〉 ” and (21) “minimum = + ∞ ” in the pseudo code of

the Fig. 3 . Instead, we assume that the variables o and minimum are global variables.

We assume the following functions and procedures for the SEDA + ERH:

1. RunForLimitedTime(function, time) – the function which terminates calculation of the function after time seconds of exe-

cution. It returns a pair result, finished , where result represents the value of the function and finished takes the value true

if the function was completed during the time seconds of execution; otherwise, the function returns false as a value for

the variable finished .

2. RandomPermutation(ω) – the function which returns a random permutation of the sequence ω.

3. SortAccordingTo(C) – the function which, for input sequence C = { c 1 , . . . , c l } , returns the sequence ω such that:

c ω (1) ≥ c ω (2) ≥ . . . ≥ c ω (l) . (38)

The input variable SEDArestarts determines the number of estimations, and the input variable EstT determines the esti-

mation duration in seconds. The pseudo code of SEDA + ERH is given in Fig. 3.

Lines (2)–(4) initialize global variables in the algorithm. In lines (5)–(10) , the algorithm makes estimations. If SEDA

reaches a feasible solution, the solution is saved in the global variable o. The value of the global variable minimum is also

changed accordingly. If the estimations find at least one feasible solution, the value of minimum is less than + ∞ , (line (11)).

Then, we can sort the vessels according to their penalty costs in the feasible solution o by rearranging ω in lines (12)–(13) .

Otherwise, we use the simplest ω, line (15) . Finally, the algorithm runs SEDA starting with the ω ordering of the vessels

and, after the end of its execution, returns the optimal solution of BAP. The estimation of the complexity of SEDA + ERH is

given in Subsection 4.2 .
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

10 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Fig. 3. The Estimation and Rearrange Heuristic.

2.8. Advantages and disadvantages of SEDA and SEDA + ERH

SEDA and SEDA + ERH are general branch-and-bound algorithms for solving combinatorial type of problems. Therefore,

they have some general and some specific advantages and disadvantages. We will briefly list both properties.

Advantages of SEDA and consequently of SEDA + ERH are the following:

1. It can solve various type of problems. Author used it to solve Knapsack Problem, Robust Knapsack Problem, Beth Alloca-

tion Problem, Berth Allocation and Crain Assignment Problem, MAX-SAT, MAX-k-SAT, etc. Most of the problems can be

relatively easy modeled for SEDA.

2. SEDA is proven to be totally correct, it will provide optimal solution if it exists. Also, it will halt if the optimal solution

does not exist.

3. It can solve efficiently some type of combinatorial problems.

4. It have been designed to easily incorporate problem specific look-a-head techniques, which can significantly improve its

efficiency.

5. It can be relatively easy implemented in the variety of programing languages.

Disadvantages of SEDA and consequently of SEDA + ERH are the following:

1. It can solve only problems with finite decision variables domains set. Moreover, for big finite domains set, SEDA will use

a lot of memory for storing them, which will affect its performance.

2. In general, it is not easy to establish more precise its complexity, other than general exponential complexity of a com-

binatorial algorithm. The specific problem complexity for solver based on SEDA heavily depends on the modelling of the

problem and look-a-head techniques implemented.

3. Same as for all combinatorial algorithms, SEDA has worst case problems, which are very hard (time consuming) for SEDA

to solve.

The above lists of advantages and disadvantages are not complete, since this approach needs further developments. Both

lists can serve as a starting points for future SEDA improvements.

3. Berth allocation problem formulation

The process of assigning vessels to berths is very complex; it consists of several problems, such as the Berth Planning

Problem, Berth Allocation Problem, Quay Crane Assignment Problem, and the Quay Crane Scheduling Problem . These problems

can be treated separately like Cordeau et al. [11] , Imai et al . [28] , Hansen et al . [17] , Fu & Diabat [34] etc.; or jointly like

Meisel and Bierwirth [35] and Vacca et al . [5] . In Dragovi ́c et al . [36] , a comprehensive analytical description of vessel-berth

link performance is given.

In this work, we concentrate on minimum-cost DBAP and HBAP. The model for these problems is a sub-model of the

Rashidi & Tsang’s [32] model. We use only the part of that model referring to the berth allocation and reproduced it in the
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 11

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

rest of this section, using exactly the same notation introduced in [32] . We omit the part of the model related to the crane

assignment, assuming that each berth has exactly one crane.

The combinatorial approach adopted in this work for solving DBAP and HBAP directly uses only the input data and

objective function of the Rashidi & Tsang’s sub-model. The algorithms do not use other elements, including the decision

variables and constraints, in the form presented in Rashidi & Tsang’s [32] . Instead, the decision variables are implemented

as functions, and they are used only for the calculation of the objective function value. In our algorithms, the constraints are

implemented in the steps for constructing and maintaining the solution space in which the search for the optimal solution

is conducted.

3.1. Assumptions

We made the following assumptions about berthing of vessel in container port:

Assumption 1. Each vessel has a pre-determined berthing time period. A cost penalty applies if the vessel berths early,

tardy or departs late.

Assumption 2. Each vessel has a preferred berthing location. Preferred location of the vessel depends on some preference

like: location of the storage area where inbound/outbound containers of the vessel are stacked, depth of water, strength and

direction of currents or some other preference. A penalty cost applies if the vessel does not berth on its preferred location.

Assumption 3. At each time period only one container can be loaded/unloaded on a berth. Moreover, we assume that at

each berth there is exactly one crane available for loading/unloading of the vessel.

The Assumption 3 is necessary to establish compatibility with the Rashidi & Tsang’s [32] model for BAP, since here we

deal only with the BAP without crane assignment.

3.2. Input data

Our model and algorithms use the input data listed below:

T : The total number of time periods in the planning horizon.

m : The number of berths in the port.

l : The number of vessels in the planning horizon.

vessel : The sequence of data relevant for vessels, which has the following structure:

v essel = { (ET A k , a k , b k , d k , s k , C 1 k , C 2 k , C 3 k , C 4 k) | k = 1 , . . . , l } . (39)

The elements of a vessel 9-tuple represent the following data for each vessel:

ETA k : The expected time of arrival of a vessel k .

a k : The processing time of the vessel k .

b k : The length of the vessel k , expressed in the number of berths.

d k : The required departure time for the vessel k .

s k : The least-cost berthing location of the vessel k .

C 1 k : The penalty cost for the vessel k if the vessel cannot dock at its preferred berth.

C 2 k : The penalty cost for the vessel k per unit time for arrival before ETA k .

C 3 k : The penalty cost for the vessel k per unit time for arrival after ETA k .

C 4 k : The penalty cost for the vessel k per unit time of delayed departure after d k .

In this paper we present the exact method for solving DBAP and HBAP. Since, in DBAP only one berth is allocated to a

vessel, then the value of the b k parameters must be 1, for all vessels. In the case of HBAP, the values of the b k parameters

range from 1 to m .

3.3. Decision variables and domains

The formulation of BAP given in Rashidi & Tsang’s [32] uses decision variables. Although they are not important for

combinatorial algorithms, we list them here for a proper definition of BAP:

At k : The berthing time of a vessel k to the corresponding berth, A t k ∈ { 1 , . . . , T } .
Dt k : The departing time of the vessel k from the corresponding berth, D t k ∈ { 1 , . . . , T } .
Bi k : The lowest berth index allocated to the vessel k from the corresponding berth, B i k ∈ { 1 , . . . , m } .
X itk : If berth i at the time t is allocated to the vessel k , X itk takes the value 1; otherwise, its value is 0. Obviously, X itk ∈
{0, 1}.

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

12 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

3.4. Constraints

A feasible solution of BAP is subject to two sets of constraints.

Constraints 1. At a time t, each berth can be assigned to only one vessel:

(∀ i ∈ { 1 , . . . , m }) (∀ t ∈ { 1 , . . . , T })
l ∑

k =1

X itk ≤ 1 . (40)

Constraints 2. A berth is allocated to the vessel only between vessels arrival and departure times and where vessel fits:

(∀ k ∈ { 1 , . . . , l }) (∀ t ∈ { 1 , . . . , T }) (∀ i ∈ { 1 , . . . , m })
(A t k ≤ t ≤ D t k ∧ B i k ≤ i < B i k + b k ⇒ X itk = 1) ∧

(t < A t k ∨ D t k < t ∨ i < B i k ∨ B i k + b k ≤ i ⇒ X itk = 0) . (41)

3.5. Objective function

Let us first introduce the auxiliary variable Z k , which represents the sum of the absolute distances between the preferred

location of the vessel k and the berths allocated to the vessel k :

Z k =

T ∑

t=1

m ∑

i =1

{| i − s k | if X itk = 1 ,

0 if X itk = 0 .
(42)

The objective function for the minimization of the port penalty cost can be formulated as follows:

V esselCost =

l ∑

k =1

{
C 1 k Z k + C 2 k (ET A k − A t k)

+ + C 3 k (A t k − ET A k)
+ + C 4 k (D t k − d k)

+ }
. (43)

The objective function minimize the cost of berth position, vessels waiting time, speed up time and tardiness. According

to Meisel [2,3] and the above problem formulation, our BAP can be classified as:

d isc or hybrid | stat | f ix | 	(w 1 wait + w 2 speed + w 3 tard + w 4 pos) .

Original formulation of the objective function (43) in Rashidi & Tsang’s [32] model does not follow the order of “perfor-

mance measure” in Maisel [2,3] classification. In (43) order of “performance measure” is 	(w 4 pos + w 1 wait + w 2 speed + w 3

tard).

From the above problem formulation, it is also evident that we consider minimum-cost variant of the BAP problem either

as DBAP or as HBAP.

The described formulation of the problem is used with the CPLEX 11.2 commercial MIP solver for the comparison with

the SEDA and the SEDA + ERH proposed here.

3.6. Few notes on BAP modeling and Rashidi & Tsang’s model in particular

Rashidi & Tsang’s [32] model is intended for discrete, continuous and hybrid form of BAP, as are the most of the other

models of BAP. Mathematically model remains the same, only the interpretation of the berth and time units differ. The

interpretation for the discrete, continuous and hybrid form of BAP is given in Table 1.

From the Table 1 . it is evident that CBAP is not truly continuous. It is also discrete, but the interpretation of berth and

time unit is different, as it is previously stated.
Table 1

The interpretation of berth and time units in BAP.

Form of BAP Berth unit interpretation Time unit interpretation

Discrete (DBAP) The quay is partitioned into a number of sections, called

berths. Only one vessel can be served at each single berth

i.e., vessel is serviced on one and only one berth. Therefore

b k = 1 , for all vessels in the case of DBAP.

Time unit usually takes a few hours’ time interval. In

our test instances we use 3-h time interval to be

time unit. Plan horizon is usually one or two weeks

i.e. 56 or 112 time units, see [6] .

Continuous (CBAP) The quay is dividend in units of the certain length, in [2,3] the

length of the unit is 10 m. For each vessel b k is calculated as

the length of the vessel measured in the segments of 10 m.

Time unit is usually 1 h, see [2,3] .

Hybrid (HBAP) As in the case of DBAP the quay is partitioned into a number

of sections. Large vessels can occupy more than one berth. In

our test instances, in the case of HBAP, vessels can occupy

up to 3 berths. Some models of HBAP allow small vessels to

share a berth. That is not the case with Rashidi & Tsang’s

model.

Same as for DBAP, time unit is usually a few hours’

time interval. In our test instances we use 3-h time

interval and time horizon of one or two weeks, see

[6] .

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 13

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Fig. 4. Representation of a X itk decision variable of the BAP model.

In the case of DBAP and HBAP berths are regarded as having the same length (size), although physical length may not

be exactly the same size. In the case of HBAP, vessels occupying more than one berth will always add to penalty cost, even

if the least-cost berth location is allocated to them. That is the consequence of the definition of the auxiliary variable Z k in

the formula (42). This feature of the Rashidi & Tsang’s [32] model is justified by the necessity for additional transportation

costs for moving containers from the neighboring berths to the least-cost berth of the vessels.

4. BAP modeling for SEDA

In order to solve BAP by SEDA we have to model BAP to meet SEDA requirements described in Subsection 2.1 and 2.3 .

The BAP model exposed in Section 3 is the starting point in BAP modeling for SEDA.

4.1. Model of BAP for SEDA

The decision variables for each vessel are: At k , Dt k , Bi k and X itk for k ∈ { 1 , . . . , l } . Fig. 4 represents the values of a decision

variable X itk from which we can easily calculate At k , Dt k and Bi k decision variables for a vessel.

From the Fig. 4 it is evident that it is sufficient to know the values of At k and Bi k to calculate Dt k and X itk for k ∈ { 1 , . . . , l } :

D t k = A t k + a k ; (44)

X itk =

{
1 if A t k ≤ t < A t k + a k ∧ B i k ≤ i < B i k + b k ,

0 if otherwise .
(45)

Therefore, it is sufficient to use a pair (At k , Bi k) to uniquely represent the position of the vessel in the berth-time grid.

The pair (At k , Bi k) will be called the vessel’s position in the time-berth grid. This fact is used for the definition of the domain

set Dom = { D 1 , . . . , D l } . Since we can represent vessels as rectangles of a k × b k dimensions in the grid of dimension T × m ,

the domain sets D k for k ∈ { 1 , . . . , l } are:

D k = { (t, b) | t ∈ { 1 , . . . , T − a k + 1 } ∧ b ∈ { 1 , . . . , m − b k + 1 } } . (46)

Each vessel will be associated with one decision variable, so that the set of decision variables in BAP modeling for SEDA

is X = { x 1 , . . . , x l } . SEDA finds a value for each decision variable in the corresponding decision variable set i.e., x k = (t, b) =
(A t k , B i k) ∈ D k , for k ∈ { 1 , . . . , l } .

We define f k for k ∈ { 1 , . . . , l } as:

f k ((A t k , B i k)) = C 1 k Z k + C 2 k (ET A k − A t k)
+ + C 3 k (A t k − ET A k)

+ + C 3 k (D t k − d k)
+
. (47)

The auxiliary variable Z k is calculated as it is described in Subsection 3.5 . The objective function f , we define as follows:

f (x 1 , . . . , x l) = f ((A t 1 , B i 1) , . . . , (A t l , B i l)) =

l ∑

k =1

f k ((A t k , B i k)) =

l ∑

k =1

f k (x k) . (48)

Finally, we define set of heuristic relations � = { ≺1 , . . . , ≺l } . For k ∈ { 1 , . . . , l } and (t 1 , b 1), (t 2 , b 2) ∈ D k we define ≺k as

total order closure of the relation � k defined as follows:

(t 1 , b 1) �k (t 2 , b 2) ⇔

f k ((t 1 , b 1)) < f k ((t 2 , b 2)) ∨

(f k ((t 1 , b 1)) = f k ((t 2 , b 2)) ∧ | b 1 − s k | < | b 2 − s k |) . (49)
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

14 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Fig. 5. Representation of a f k function.

The procedures and functions: FindSolution(θ , Dom), Estimation(θ , Dom), NonDetVarEstimation(θ), ReportSolution() and

CutOff(θ , ɛ) are exactly the same as described in Subsection 2.3 . The function Sediment(θ , x θ) deletes from the domains of

the undetermined decision variables all the positions occupied by setting the vessel θ at the position x θ .

From the described BAP modelling for SEDA and the SEDA properties, we can easily conclude that this modeling meets

all the SEDA requirements. Therefore, when these two combine we get an exact solver for BAP.

4.2. Complexity of SEDA for BAP

To estimate the complexity of SEDA for BAP we consider the case of DBAP. Similar estimation can be conducted for the

case of HBAP, therefore it is omitted from this paper. Without losing generality we can assume that processing time for each

vessel is 1-time unit. We also assume that the penalty costs of not berthing the vessel at its preferred berth, earliness and

tardiness is 1. The penalty cost for delay departure is neglected to make estimation easier. These assumptions we can sum

in the following formula:

(∀ k ∈ { 1 , . . . , l }) a k = 1 ∧ C 1 k = 1 ∧ C 2 k = 1 ∧ C 3 k = 1 ∧ C 4 k = 0 . (50)

Input data satisfying the above condition represent worst case scenario of DBAP, since 1-time unit processing time vessels

makes minimal reductions in the domain sets of its positions. For such scenario a function f k for a vessel k ∈ { 1 , . . . , l } is

shown in the Fig. 5.

From the above figure we trivially calculate that there is one position with cost (value of function f k) equal to 0 and 4 i

positions with the cost (value of function f k) equal to i , for i > 1.

For establishing the complexity of the algorithm we denote by M the estimation of the BAP solution that has value

greater than or equal to optimum. The complexity of the SEDA for BAP can be expressed as the number of leaves (branches)

in the solution search space tree constructed during the work of SEDA. The number of the leaves in the solution search space

tree for l vessels and the estimation M we denote by
(l, M). The
(l, M) can be calculated recursively in the following

way:

(0 , M) = 1 ,
(l, 0) = 1 and

(l, M) =
(l − 1 , M) + 4

M ∑

i =1

i
(l − 1 , M − i) .
(51)

The leaf of the solution search space tree is reached if l = 0 , therefore
(0 , M) = 1 . If the estimation of the optimal

solution is M = 0 , then search is concluded, since solution of the problem consists of the least cost positions of the vessels,

therefore also
(l, 0) = 1 .

The number of the leaves for the
(l, M) is calculated as the number of the leaves in the solution search space subtree if

vessel l takes position with the cost 0 i.e.
(l − 1 , M) , plus all the solution search space subtrees, if vessel l , takes positions

with the cost i , where i ranges from 1 to maximally M . If vessel l takes positions with the cost i , then the number of the

leaves of the solution search space subtree is calculate as
(l − 1 , M − i) . Since there are 4 i positions with the cost i , for i

≥ 1, we easily derive the sum in the formula (51).

Lemma 1. The
(1, M) can be calculated as
(1 , M) = 2 M

2 + 2 M + 1 .

Proof. From the definition of the
(l, M), given in formula (51), we calculate:

(1 , M) =
(0 , M) + 4

M ∑

i =1

i
(0 , M − i) = 1 + 4

M ∑

i =1

i ∗ 1 = 1 + 4

M ∑

i =1

i =

= 1 + 4 · M (M+1) = 1 + 2 M (M + 1) = 2 M

2 + 2 M + 1 . �
(52)
2

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 15

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Lemma 2. Let P (M) = αn M

n + αn −1 M

n −1 + . . . α1 M + α0 be a polynomial of the degree n , i.e., deg (P) = n . Then the degree of

the polynomial :

Q (M) =

M ∑

i =1

iP (M − i) , (53)

is deg (Q(M)) = deg (P (M)) + 2 = n + 2 .

Proof. By expanding expression iP (M − i) in formula (53), we get M

n and i n +1 , as the highest degrees of M and i . The M is

a free variable in the sum, so, we can express iP (M − i) as a polynomial of i as:

iP (M − i) = βn +1 i
n +1 + βn i

n + . . . β1 i, (54)

where coefficients β j , j ∈ { 1 , . . . n + 1 } depend on M and αj , j ∈ { 0 , . . . n } . Polynomial Q (M), then can be written as:

Q (M) =

M ∑

i =1

(
βn +1 i

n +1 + βn i
n + . . . β1 i

)
= βn +1

M ∑

i =1

i n +1 + βn

M ∑

i =1

i n + . . . + β1

M ∑

i =1

i. (55)

From the above formula it is evident that deg (Q(M)) = deg (
M ∑

i =1

i n +1) . Using the well-known Faulhaber’s formula for the

sum of the n + 1 powers of the first M positive integers we obtain:

M ∑

i =1

i n +1 =

1

n + 2

n +1 ∑

j=0

(−1)
j

(
n + 2

j

)
B j M

n +2 − j , (56)

where B j are first Bernoulli numbers, with B 1 = − 1
2 . From the above formula it is evident that deg (Q(M)) = deg (

∑ M

i =1 i
n +1) =

deg (M

n +2) = n + 2 . �

Lemma 3. The deg (
(l, M)) = 2 l, for any M ≥ 0.

Proof. The proof of the lemma is conducted by mathematical induction.

(1) For l = 1 , by the Lemma 1 we have
(1 , M − i) = 2 M

2 + 2 M + 1 , from which we conclude that deg (
(1 , M)) = 2 .

(2) The induction hypothesis: deg (
(l, M)) = 2 l, for any M ≥ 0.

(3) The inductive step: deg (
(l + 1 , M)) = 2(l + 1) .

Let us expand
(l + 1 , M) :

(l + 1 , M) =
(l, M) + 4

M ∑

i =1

i
(l, M − i) . (57)

By the induction hypothesis the following holds:

deg (
(l, M)) = 2 l ∧ (∀ i ∈ { 1 , . . . , M }) deg (
(l, M − i)) = 2 l. (58)

Then, by the Lemma 2 we obtain that deg (
M ∑

i =1

i
(l, M − i)) = 2 l + 2 .

Finally, we get:

deg (
(l + 1 , M)) = max

(
deg (
(l, M)) , deg

(
M ∑

i =1

i
(l, M − i)

))

= max (2 l, 2 l + 2) = 2 l + 2 = 2 (l + 1) .
(59)

�

Theorem 3. The complexity of the SEDA is O (M

2 l).

Proof. The proof is immediate consequence of the fact that
(l, M) is polynomial of M and Lemma 3 which states that

deg (
(l, M)) = 2 l. �

Complexity O (M

2 l) of SEDA is achieved for the worst case. We neglected delay departure penalty and elimination of

the elements of domain sets of the vessels. Delay departure penalty can be included into the calculus of estimation, but the

estimation of complexity remains the same O (M

2 l). Therefore, it is not presented it in this paper. The boundaries of planning

horizon and the number of berths in this estimation are also neglected. The complexity estimation is obtained under the

assumption that they are unlimited. All this factors influence runtimes, so in the most of the tests and real-life examples

the maximal complexity is reached only for a large number of vessels.

Complexity depends on the estimation M of the optimal solution. The quality of the estimation effects the runtime of

SEDA. We conducted complexity estimation for the fixed value of M , although that is not the general case. SEDA finds initial

suboptimal solution very quickly and then improves it until it reaches optimal solution. The most of the runtime, SEDA
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

16 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

uses to prove that there is no better solution than the optimal solution. Hence, the quality of the initial estimation M is

important, but not critical for the work of SEDA.

The SEDA + ERH complexity is much smaller than the complexity of the sole SEDA. ERH puts ahead vessels which con-

tribute in the value of objective function with penalties greater than 0. Since these vessels are at the beginning of the search

they reach their optimal values sooner than other vessels. Because they participate in the value of the objective function

with the values greater than 0, they reduce search space for other vessels coming after them. Once the optimal values are

reached, the only possible positions for the remaining vessels are those with the value 0 of the objective function. Therefore,

only one branch is constructed and the search for the optimal solution is complete. This is the most effective situation when

ERH provides sequence of vessels having at the beginning all the vessels which contribute in the value of objective function

with penalties greater than 0. Although the current version of ERH is not much effective in the cases with a big number of

vessels, nevertheless it significantly improves the running time of SEDA.

Having in mind the above mentioned features of ERH, if ω is a sequence provided by ERH, o is the optimal solution of

the problem and k ω is defined as:

k ω = max
{

i ∈ { 1 , . . . , l } | f ω (i) (o i) > 0

}
, (60)

then the complexity of SEDA + ERH is O (M

2 k ω) . Sometimes it is more convenient to consider quotient D ω = l/ k ω , which we

named slowdown coefficient . The complexity of SEDA + ERH can be equivalently formulated as O (M

2 l
D ω) . Usually D ω ranges

between 2 and 5, which explains much better performance of SEDA + ERH over SEDA.

5. Computational results

In this section, we present the test instances and computational results of SEDA and SEDA + ERH. Finally, we select 10

examples and compare the runtimes of both sedimentation algorithms with that of the CPLEX commercial solver.

5.1. Test instances

The experimental evaluation is performed on three classes of instances that are similar to those introduced by Giallom-

bardo et al . [6] . We consider test instances with 5, 8 and 13 berths and time horizons of 1 or 2 weeks. The time horizon is

divided into 3-h time units. Thus, one week has 56 time units and two weeks are divided into 112 time units. The number

of vessels ranges from 5 to 65, with an increment of 5 vessels, and it is specific for each test class we consider.

The classes of test instances are the following:

Class I : 5 berths, 1 week, and 5 to 30 vessels.

Class II : 8 berths, 2 weeks, and 5 to 60 vessels.

Class III : 13 berths, 2 weeks, and 5 to 40 vessels.

The information required to specify various types of vessels are presented in Table 1 . The specifications resemble those

used by Meisel [2,3] ; however, here they are adjusted to DBAP and HBAP. Three types of vessels are present in the test

population: feeder, medium and mega. For each type, the corresponding percentage of the test population, handling time

range, penalty amounts (in units of US$ 10 0 0) and number of berths occupied in the case of DBAP and HBAP are listed in

Table 2.

The distribution of the least-cost berthing location for vessels is homogeneous. For each instance and the number of

vessels, 500 tests were randomly generated. We recorded the percentage of the tests that were solved in a half-an-hour

period, i.e., 1800 s. For all the tests that were solved in a half-an-hour period, we also recorded the minimum, average and

maximum time required to find the solution. Tests that were not solved in a half-an-hour period were interrupted and they

are not included into the calculation of the minimal, average and maximal time for finding solution. All the times in the

following tables are expressed in seconds.

Number of estimations of the optimal solution and their duration in ERH depended on the number of vessels l . Number

of estimations was set to 10 + 2 l. Duration of the estimation, for any l , never exceeded 0.03 s. Overall duration of the ERH in

all test instances for each example was always less than 4.2 s. The running times of ERH were included in the half-an-hour

time period limitation.
Table 2

Test vessel specifications.

Size, handling times, penalties and number of berths for test vessels

Vessel type Percentage of the

test population

Handling time

range

C 1 C 2 C 3 C 4 Number of

berths DBAP

Number of

berths HBAP

Feeder 60% 1–3 2 3 3 9 1 1

Medium 30% 4–5 3 6 6 18 1 2

Mega 10% 6–8 4 9 9 27 1 3

Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 17

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Table 3

Computational results for the Class I test instances of DBAP.

l Number of vessels Class I: 5 ×56 | 500 samples | DBAP

Sedimentation Algorithm Sedimentation Algorithm with Estimation &

Rearrangement Heuristic

t ≤ ½h min avg max ½h < t t ≤ ½h min avg max ½h < t

5 100 .0% 0 .0 0 0 0 .020 0 .047 0 .0% 100 .0% 0 .0 0 0 0 .018 0 .063 0 .0%

10 100 .0% 0 .015 0 .027 0 .078 0 .0% 100 .0% 0 .015 0 .024 0 .047 0 .0%

15 100 .0% 0 .015 0 .044 1 .531 0 .0% 100 .0% 0 .015 0 .032 0 .157 0 .0%

20 99 .8% 0 .018 0 .705 63 .999 0 .2% 100 .0% 0 .015 0 .058 0 .218 0 .0%

25 96 .8% 0 .015 24 .828 1158 .455 3 .2% 100 .0% 0 .021 0 .149 7 .410 0 .0%

30 – – – – – 100 .0% 0 .031 1 .328 80 .4 4 4 0 .0%

35 – – – – – 96 .6% 0 .047 17 .311 1399 .490 3 .4%

Table 4

Computational results for the Class II test instances of DBAP.

l Number of vessels Class II: 8 ×112 | 500 samples | DBAP

Sedimentation Algorithm Sedimentation Algorithm with Estimation &

Rearrangement Heuristic

t ≤ ½h min avg max ½h < t t ≤ ½h min avg max ½h < t

5 100 .0% 0 .0 0 0 0 .021 0 .094 0 .0% 100 .0% 0 .003 0 .018 0 .034 0 .0%

10 100 .0% 0 .015 0 .030 0 .110 0 .0% 100 .0% 0 .014 0 .022 0 .047 0 .0%

15 100 .0% 0 .015 0 .036 0 .172 0 .0% 100 .0% 0 .015 0 .030 0 .094 0 .0%

20 100 .0% 0 .022 0 .056 4 .115 0 .0% 100 .0% 0 .015 0 .043 0 .485 0 .0%

25 100 .0% 0 .030 3 .100 1278 .34002 0 .0% 100 .0% 0 .031 0 .069 0 .772 0 .0%

30 100 .0% 0 .031 5 .580 1127 .433 0 .0% 100 .0% 0 .031 0 .132 0 .843 0 .0%

35 98 .0% 0 .014 16 .227 998 .805 2 .0% 100 .0% 0 .031 0 .300 1 .469 0 .0%

40 – – – – – 100 .0% 0 .046 0 .606 1 .875 0 .0%

45 – – – – – 100 .0% 0 .047 0 .903 2 .273 0 .0%

50 – – – – – 100 .0% 0 .047 1 .518 22 .098 0 .0%

55 – – – – – 100 .0% 0 .066 4 .453 385 .473 0 .0%

60 – – – – – 100 .0% 0 .240 6 .510 780 .002 0 .0%

65 – – – – – 99 .4% 0 .407 41 .819 1753 .066 0 .6%

5.2. Comparison between SEDA And SEDA + ERH

SEDA and SEDA + ERH were coded in the C programming language. Code was compiled by Microsoft C/C ++ Optimizing

Compiler version 18.00.31101 for x86 . The tests were conducted on a computer with an Intel Core i7-4500 U @ 1.80 GHz—

2.40 GHz CPU and 8GB of RAM running the Microsoft Windows 8.1 64-bit operating system.

Table 3 shows the computational results for the Class I test instances of DBAP. In the trivial cases of 5 and 10 vessels,

both algorithms perform equally well. In the cases of 25 vessels, SEDA + ERH solves problems on average 166.63 times faster

than SEDA. The results of the SEDA execution for the cases with the number of vessel larger than or equal to 30 are not

presented in Table 2 because the time needed for solving 500 examples was too long. Note that the average runtime of

SEDA + ERH for 35 vessels is still lower than the average runtime of SEDA for 25 vessels. Also, the percent of problems

solved in a half-an-hour period is almost the same if we compare SEDA for 25 vessels (96.8%) and SEDA + ERH for 35 vessels

(96.6%).

Table 4 shows the computational results for the Class II test instances of DBAP. In the trivial cases of 5, 10, 15 and 20

vessels, both algorithms perform equally well. In the cases of 25 or more vessels, SEDA + ERH solves problems faster than

SEDA. In the case of 25 vessels it is 44.92 times faster, in the case of 30 vessels it is 42.27 times faster and in the case of

35 vessels it is 54.09 times faster. The results of the SEDA execution for the cases with the number of vessels greater than

or equal to 40 are not presented in Table 3 because the time needed for solving 500 examples was too long. Note that the

average runtime of SEDA + ERH for 55 vessels is still lower than the average runtime of SEDA for 30 vessels. The percentage

of problems solved in a half-an-hour period of SEDA + ERH for 60 vessels is 100.0%, while SEDA can solve 100.0% problems

only for 30 or less vessels. The results in Table 3 prove the ability of SEDA + ERH of solving DBAP much faster than SEDA:

for the approximately same amount of time, SEDA + ERH can solve problems with twice as many vessels.

Table 5 shows the computational results for the Class II test instances of HBAP. Only in the trivial cases of 5 vessels,

both algorithms perform equally well. In the cases of 10 or more vessels, SEDA + ERH solves problems faster than SEDA. In

the case of 10 vessels it is 77.33 times faster and in the case of 15 vessels it is 27.06 times faster. In the case of 20 vessels

it is at least 286.916 times faster, since the percentage of problems solved in a half-an-hour period by SEDA is 97.2% and

percentage of problems solved by SEDA + ERH is 100%. The results of the SEDA execution for the cases with the number of
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

18 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Table 5

Computational results for the Class II test instances of HBAP.

l Number of vessels Class II: 8 ×112 | 500 samples | HBAP

Sedimentation Algorithm Sedimentation Algorithm with Estimation &

Rearrangement Heuristic

t ≤ ½h min avg max ½h < t t ≤ ½h min avg max ½h < t

5 100 .0% 0 .015 0 .018 0 .032 0 .00% 100 .0% 0 .015 0 .018 0 .032 0 .0%

10 100 .0% 0 .015 2 .088 743 .645 0 .00% 100 .0% 0 .015 0 .027 0 .157 0 .0%

15 100 .0% 0 .014 1 .461 227 .430 0 .00% 100 .0% 0 .015 0 .054 0 .469 0 .0%

20 97 .2% 0 .015 37 .586 1761 .454 2 .80% 100 .0% 0 .015 0 .131 0 .953 0 .0%

25 – – – – – 99 .8% 0 .027 0 .257 2 .174 0 .2%

30 – – – – – 99 .8% 0 .031 0 .707 32 .563 0 .2%

35 – – – – – 99 .6% 0 .037 9 .257 1312 .607 0 .4%

40 – – – – – 97 .0% 0 .063 24 .939 1462 .369 3 .0%

Table 6

Computational results for the Class III test instances of HBAP.

l Number of vessels Class III: 13 ×112 | 500 samples | HBAP

Sedimentation Algorithm Sedimentation Algorithm with Estimation &

Rearrangement Heuristic

t ≤ ½h min avg max ½h < t t ≤ ½h min avg max ½h < t

5 100 .0% 0 .004 0 .019 0 .062 0 .0% 100 .0% 0 .0 0 0 0 .018 0 .078 0 .0%

10 100 .0% 0 .014 0 .030 1 .563 0 .0% 100 .0% 0 .014 0 .025 0 .125 0 .0%

15 100 .0% 0 .015 0 .405 131 .856 0 .0% 100 .0% 0 .015 0 .052 0 .625 0 .0%

20 98 .6% 0 .015 14 .655 1756 .791 1 .4% 100 .0% 0 .020 0 .126 1 .188 0 .0%

25 – – – – – 100 .0% 0 .031 0 .268 1 .955 0 .0%

30 – – – – – 100 .0% 0 .033 0 .521 2 .782 0 .0%

35 – – – – – 100 .0% 0 .047 0 .947 4 .125 0 .0%

40 – – – – – 100 .0% 0 .109 2 .243 66 .046 0 .0%

45 – – – – – 99 .8% 0 .114 14 .778 1434 .768 0 .2%

50 – – – – – 98 .2% 0 .187 24 .883 1338 .496 1 .8%

vessels greater than or equal to 25 are not presented in Table 5 because the time needed for solving 500 examples was

too long. Note that the average runtime of SEDA + ERH for 40 vessels is still lower than the average runtime of SEDA for

20 vessels. The percent of problems solved in a half-an-hour period is almost the same if we compare SEDA for 20 vessels

(97.2%) and SEDA + ERH for 40 vessels (97.0%). SEDA + ERH was not able to solve all 500 problems in a half-an-hour period for

the cases of 25 and more vessels, but the number of unsolved problems is small. Out of 500 problems for 25 and 30 vessels

only one problem (0.2%) was unsolved, for 35 vessels 2 problems (0.4%) were unsolved and for 40 vessels 15 problems (3.0%)

were unsolved. Table 5 also shows that, compared to SEDA, SEDA + ERH can solve problems with twice as many vessels for

the approximately same amount of time.

Table 6 shows the computational results for the Class III test instances for HBAP. Again, in the trivial case of 5 and 10

vessels, both algorithms perform equally well. In the case of 15 vessels, SEDA + ERH is 7.79 times faster than SEDA and in the

case of 20 vessels SEDA + ERH is at least 116.31 times faster than SEDA. The results of the SEDA execution for the cases with

the number of vessels greater than or equal to 25 are not presented in Table 6 because the time needed for solving 500

examples was too long. However, note that the average runtime of SEDA + ERH for 45 vessels almost equal to the average

runtime of SEDA for 20 vessels. The percent of problems solved in a half-an-hour period is very close if we compare SEDA for

20 vessels (98.6%) and SEDA + ERH for 50 vessels (98.2%). Similar to previous example, out of 500 problems only 1 problem

(0.2%) was unsolved in a half-a-hour time period by SEDA + ERH for 45 vessels and 9 problems (1.8%) were unsolved for 50

vessels.

From the above examples, it is clear that there is a significant difference between the minimum and maximum runtimes

of both algorithms in all examples. This tendency increases as the number of vessels increases. The existence of the “best-

case” and “worst-case” input data, which is typical for combinatorial algorithms, is also evident for SEDA and SEDA + ERH.

The “best-case” input data are when the vessels do not occupy the same berths at the same time. In all the classes of test

instances, it is possible to generate the “best-case” input data and make the minimum runtimes short. On the other hand,

the “worst-case” input data for both algorithms occur when vessels tend to occupy the same berth at the same time. As the

number of vessels increases, the probability of the “worst-case” input data also increases. As the results indicate, SEDA + ERH

is much better when treating the “worst-case” input data than SEDA. From the above examples, we can conclude that SEDA

is powerful enough to solve the problems that include up to 20 vessels. Depending on the number of berths and the length

of the time horizon, SEDA + ERH can solve problems that include 40 to 60 vessels in the acceptable solution time (less than
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 19

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Table 7

Distribution of below-average solution times.

Distribution of SEDA + ERH runtime for the most complex cases of test instances

Class of test instance L Number of vessels Average runtime t ≤ avg avg < t ≤ ½h ½h < t

Class I | DBAP 35 17.311 88.0% 8.6% 3.4%

Class II | DBAP 65 41.819 89.9% 9.6% 0.6%

Class II | HBAP 40 24.939 90.0% 7.0% 3.0%

Class III | HBAP 50 24.883 91.20% 7.0% 1.8%

Fig. 6. Optimal solution of the problem No. 76 with 65 vessels, 8 berths (vertical axis) and 112 time units (horizontal axis). Time horizon is split in two

parts. Vessels are represented as the rectangles in the bert ×time grid. Each vessel has its identifier in the top left corner and its unique color.

1800 s). The occurrences of the “worst-case” data for this range are rare because the average solution time is less than or

equal to 41 s. Table 7 contains the SEDA + ERH solution time distributions for the most complex test instances.

For the most complex cases, 88.0% to 91.20% of the tests were solved in a time less than the average. Approximately 7.0%

to 9.6% of the tests required times between the average solution time of the class and 1800 s but were solved within the

1800-s time limit. Finally, 0.6% to 3.4% of the tests required more than 1800 s to solve the problem. From the percentage

of the unsolved problems, within the time limit of 1800 s, we can easily conclude which class of test instances is the most

challenging for SEDA + ERH.

5.3. The analysis of one "worst-case" problem

Among the problems that were not solved within the 1800 s time limit we will discuss in more detail the test problem

No. 76 of DBAP with 65 vessels, 8 berths and 112 time units (Class II). The optimal solution of this problem is 122 (122 0 0 0

$).

During the attempt to solve the problem, ERH started with the solution having the cost of 206 and provided initial

suboptimal solution for SEDA with the cost equal to 122, which is also the optimal solution the problem. ERH took 2.593

seconds to reach upper bound 122. After that SEDA was not able to search whole solution space with the upper bound 122

within time limit of 1800 s. Without time limit this example was solved in 2698.728 s. The more sophisticated version of

SEDA and ERH proved in 247.586 s that 122 is the optimal solution of the problem No. 76 (Fig. 6).

What makes the problem No. 76 difficult to solve is 13 pairs of mutually conflicting vessels. In the optimal solution

one vessel, in conflicting pair, takes position with no penalty and the other with a penalty. This has as a consequence the

generation of the “bad” ω ordering in ERH, which is not good enough for SEDA to solve problem within time limit of 1800 s.

This example shows that despite the good upper bound, there are still cases which are hard to solve by SEDA.

5.4. Comparison between sedimentation algorithms and CPLEX

In this subsection, we selected first 10 DBAP test instances with 25 vessels, 5 berths and 56 time units (Class I) to

compare our approach with the CPLEX commercial solver. For the comparison of SEDA and SEDA + ERH with CPLEX, we used

the Version 11.2 of CPLEX, running on a computer with a 2.66-GHz Intel Core 2 Duo E6750 CPU , 8GB of RAM, and the Linux

Slackware 12 (kernel version 2.6.21.5) operating system. According to the PassMark (www.passmark.com) CPU Benchmark

single thread rating of the Intel Core 2 Duo E6750 processor is 1002, while for Intel Core i7-4500 U processor single thread

rating is 1578. From this fact we can conclude that Intel Core 2 Duo E6750 processor is approximately 0.63498 times slower

compared to Intel Core i7-4500 U processor. This fact we will include into our comparison of CPLEX, SEDA and SEDA + ERH,
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://www.passmark.com
http://dx.doi.org/10.1016/j.apm.2016.05.004

20 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Table 8

Computational results for first 10 Class I test instances of DBAP.

No. Class I: 5 ×56 | First 10 problems | DBAP

Optimum SEDA SEDA + ERH CPLEX CPLEX equ ×SEDA ×SEDA + ERH

1 68 2 .281 0 .218 15316 .500 9725 .686 4263 .782 44613 .240

2 24 0 .125 0 .035 6577 .400 4176 .524 33412 .192 119329 .256

3 54 0 .083 0 .203 6187 .890 3929 .193 47339 .669 19355 .628

4 25 0 .546 0 .047 4758 .500 3021 .557 5533 .987 64288 .448

5 52 0 .593 0 .219 11063 .300 7024 .985 11846 .518 32077 .558

6 21 0 .047 0 .047 2440 .720 1549 .811 32974 .698 32974 .698

7 60 8 .076 0 .218 16385 .400 10404 .417 1288 .313 47726 .686

8 16 0 .096 0 .096 4678 .640 2970 .847 30946 .328 30946 .328

9 27 0 .203 0 .039 134 .279 85 .265 420 .023 2186 .272

10 29 0 .047 0 .187 2764 .770 1755 .576 37352 .689 9388 .109

	 12 .097 1 .309 70307 .399 44643 .862 3690 .490 34105 .318

by multiplying runtimes of CPLEX with calculated factor to get approximately equivalent times as if CPLEX was running on

the Intel Core i7-4500 U.

Table 8 shows the number of problem, the value of the optimal solution, runtimes for SEDA, SEDA + ERH and CPLEX. Ad-

justed CPLEX runtimes by coefficient 0.63498 are given in the sixth column of Table 8 . All runtimes are expressed in seconds.

In the last two columns, we present the ratios between the runtimes required by adjusted CPLEX and SEDA (SEDA + ERH).

Both SEDA and SEDA + ERH outperform CPLEX significantly. SEDA is between 420.023 and 47339.669 times faster, while

SEDA + ERH is 2186.272 to 119329.256 times faster than CPLEX. Overall times for solving all 10 problems are given in the

row below Table 8 . SEDA solved all 10 problems in 12.097 s, SEDA + ERH solved them in 1.309 s and adjusted CPLEX in

44643.862 s, which makes SEDA 3690.490 times faster and SEDA + ERH 34105.318 times faster than CPLEX.

The most recent version of the CPLEX is 12.6.1. According to the IBM ILOG CPLEX Optimizer page (http://www-01.

ibm.com/software/commerce/optimization/cplex-performance/#improvements), and performance benchmarks for MIP CPLEX

12.6.1. it is approximately up to 40 times faster than CPLEX version 11.2. used for our comparison with SEDA and SED + ERH.

This approximation is calculated by multiplying version-to-version improvements factor from version 11 to version 12.6.1. If

we adopt 40 as the maximal speed up factor from CPLEX version 11.2. to version 12.6.1, then SEDA is at least 92.250 times

faster and SEDA + ERH is at least 852.625 times faster. This proves the superiority of both dedicated combinatorial algorithms

compared to a general MIP solver such as CPLEX. Computational experiments including a larger number of vessels were not

conducted because even for some instances with 25 vessels runtimes required by CPLEX were already very long (almost

5 h). The MILP model, used for this test, suggested by Davidovi ́c et al . [37] is too complex and obviously does not provide

adequate results for the examples with more than 25 vessels, both with the framework of CPLEX commercial software and

the application of MIP-based meta-heuristics.

5.5. Note on the sedimentation algorithms and other exact BAP solvers

The most prominent recent approach for exact solving of BAP can be found in Vacca et al . [5] . The authors consider

Tactical Berth Allocation Problem (TBAP), variant of BAP defined by Giallombardo et al . [6] which integrate planning of berth

allocation and crane assignment (BACAP). Instead of exploring all feasible crane assignments for a vessel, only some sub-

sets, called profiles, are considered in TBAP. Objective function maximize the total value of selected profile and the total

housekeeping cost generated by the berth allocation plan. On the other hand, SEDA and SEDA + ERH are purely BAP solv-

ing algorithms and their objective function minimize the cost of vessels waiting time, speed up time, tardiness and berth

position. These two facts:

1. difference of the problem (model) formulation: BAP vs BACAP and

2. difference of the objective functions;

makes direct comparison of these two approaches impossible. Simply, they are designed to solve different type of the BAP.

Therefore, their comparison is omitted. Our impression is that TBAP can be modeled for SEDA and SEDA + ERH, and then

direct comparison with the approach of Vacca et al . [5] will be possible.

However, it is worth noticing that SEDA + ERH is capable of solving very efficiently test instances having the same num-

ber of berths, time horizon and number of vessels as the test instances used in Giallombardo et al . [6] . As we previously

explained runtimes for solving are not directly comparable. In the Table 9 average runtimes of SEDA + ERH are given for

Giallombardo et al. [6] tests instances sizes. Times are given only for DBAP, since in Giallombardo et al. [6] only DBAP is

considered. These times illustrate capability of SEDA + ERH to efficiently solve problems of the Giallombardo et al. [6] tests

instances sizes.

Other recent exact solver for BAP, like Umang et al. [7] and Robenek et al . [8] address BAP in bulk ports. That is similar,

but yet different problem then BAP in container port which is addressed in our work. Therefore, their comparison is omitted.
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://www-01.ibm.com/software/commerce/optimization/cplex-performance/#improvements
http://dx.doi.org/10.1016/j.apm.2016.05.004

S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22 21

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

Table 9

Average runtimes of SEDA + ERH for Giallombardo tests instances sizes.

Average runtimes of SEDA + ERH for some size instances as in Giallombardo

Class of test instance Number of berths Time horizon in

weeks (time units)

Number of vessels Average runtime of

SEDA + ERH in seconds

Class I | DBAP 5 1 (56) 30 1.328

Class II | DBAP 8 2 (112) 40 0.606

Class II | DBAP 8 2 (112) 50 1.518

6. Conclusion

We considered the Discrete (minimum-cost) Berth Allocation Problem (DBAP) and Hybrid (minimum-cost) Berth Allo-

cation Problem (HBAP) with the static arrival of vessels and fixed vessel handling times. The computational experiments

performed fully justify the design and further development of Sedimentation Algorithm, the exact combinatorial approach for

solving DBAP and HBAP. When combined with a simple heuristic like Estimation & Rearrange Heuristic, the algorithm can be

used for instances with large number of vessels as a standalone method or as a part of some more complex heuristic or

meta-heuristic approach to solving DBAP or HBAP. The most difficult problems of our test instances can be solved within

the time limit of 1800 s. Actually, majority of them are solved in less than 6.65 s on average, including the cases with 30 up

to 60 vessels. These results indicate that this method can be used for solving real-life medium and big size instances of BAP,

depending on container port layout.

The differences between the minimum and maximum solving times for a large number of vessels in the test instances

indicate that Sedimentation Algorithm is worth further development . We find it especially worthwhile to investigate the pos-

sibility of solving sub-problems of DBAP or HBAP that contain conflicting vessels and then combining these partial solutions

to obtain the optimal solution of the entire problem. Moreover, the generalization of the algorithm to the continuous BAP

and the inclusion of crane assignment to Sedimentation Algorithm are natural avenues for further development of the algo-

rithms presented here.

References

[1] A. Lim , The berthing planning problem, Oper. Res. Lett. 22 (2) (1998) 105–110 .
[2] C. Bierwirth , F. Meisel , A survey of berth allocation and quay crane scheduling problems in container terminals, Eur. J. Oper. Res. 202 (3) (2010)

615–627 .
[3] F. Meisel , Seaside Operations Planning in Container Terminals, Physica Verlag, Berlin, 2009 .

[4] C. Bierwirth , F. Meisel , A follow-up survey of berth allocation and quay crane scheduling problems in container terminals, Eur. J. Oper. Res. 244 (3)

(2015) 675–689 .
[5] I. Vacca, M. Salani, M. Bierlaire, An exact algorithm for integrated planning of berth allocation and quay crane assignment, Rep. TRANSP-OR 110323

(2011).
[6] G. Giallombardo , L. Moccia , M. Salani , I. Vacca , Modeling and solving the tactical berth allocation problem, Transp. Res. B 44 (3) (2010) 400–415 (2010) .

[7] N. Umang , M. Bierlaire , I. Vacca , Exact and heuristic methods to solve berth allocation problems in bulk ports, Transp. Res. E 54 (2013) 14–31 .
[8] T. Robenek , N. Umang , M. Bierlaire , S. Ropke , A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in

bulk ports, Eur. J. Oper. Res. 235 (2014) 399–411 .

[9] A. Imai , E. Nishimura , S. Papadimitriou , The dynamic berth allocation problem for container port, Transp. Res. B 35 (4) (2001) 401–417 .
[10] F.M. Monaco , M. Samara , The berth allocation problem: a strong formulation solved by a lagrangian approach, Transp. Sci. 41 (2) (2007) 256–280 .

[11] J.F. Cordeau , G. Laporte , P. Legato , L. Moccia , Models and tabu search heuristics for the berth-allocation problem, Transp. Sci. 39 (4) (2005) 526–538 .
[12] G.R. Mauri , A.C.M. Oliveira , A.N. Lorena , A hybrid column generation approach for the berth allocation problem, in: EvoCOP, 4972, 2008, p. 110–122 .

[13] C.G. Cristensen , C.T. Holst , Berth allocation in container terminals, Master’s thesis, Department of Informatics and Mathematical Modelling, Technical
University of Denmark, Lyngby, 2008 .

[14] L. Zhen , L.H. Lee , E.P. Chew , A decision model for berth allocation under uncertainty, Eur. J. Oper. Res. 212 (1) (2011) 54–68 .

[15] R.M. de Oliveira , G.R. Mauri , L.A.N. Lorena , Clustering search for the berth allocation problem, Expert Syst. Appl. 39 (2012) 5499–5505 .
[16] Y. Lee , C.Y. Chen , An optimization heuristic for the berth scheduling problem, Eur. J. Oper. Res. 196 (2) (2009) 500–508 .

[17] P. Hansen , C. O ̆guz , N. Mladenovi ́c , Variable neighbourhood search for minimum cost berth allocation, Eur. J. Oper. Res. 191 (3) (2008) 636–649 .
[18] A. Imai , E. Nishimura , S. Papadimitriou , Berthing ships at a multi-user container terminal with a limited quay capacity, Transp. Res. E 44 (1) (2008)

136–151 .
[19] M. Han , P. Li , J. Sun , The algorithm for berth scheduling problem by the hybrid optimization strategy GASEDA, in: Proceedings of the 9th International

Conference of Control, Automation, Robotics and Vision, ICARCV ’06 Washington, IEEE Computer Society, Washington, 2006, p. 1–4 .

[20] P. Zhou , H. Kang , L. Lin , A dynamic berth allocation model based on stochastic consideration, in: Proceedings of the 6th World Congress on Intelligent
Control and Automation, Vol 2, Washington DC: IEEE Computer Society, Washington, 2006, p. 7297–7301 .

[21] E. Nishimura , A. Imai , S. Papadimitriou , Berth allocation planning in the public berth system by genetic algorithms, Eur. J. Oper. Res. 131 (2) (2001)
282–292 .

[22] S.W. Lin, K.C. Ying, S.Y. Wan, Minimizing the total service time of discrete dynamic berth allocation problem by an iterated greedy heuristic, Sci. World
J. 2014. http://dx.doi.org/10.1155/2014/218925

[23] E. Lalla-Ruiz, S. Voß, POPMUSIC as a metaheuristic for the berth allocation problem, Ann. Math. Artif. Intell. 76 (1) (2014) 173–189 http://dx.doi.org/

10.1007/s10472- 014- 94 4 4-4 .
[24] C.Y. Chen , T.W. Hsieh , A time-space network model for the berth allocation problem, in: 19th IFIP TC7 Conference on System Modelling and Optimiza-

tion, Cambridge, 1998 .
[25] R. Moorthy , C.P. Teo , Berth management in container terminal: the template design problem, OR Spectr. 28 (4) (2006) 495–427 .

[26] J. Dai , W. Lin , R. Moorthy , C.P. Teo , Berth allocation planning optimization in container terminals, in: Supply chain analysis: a handbook on the
interaction of information, system and optimization, Springer, New York, 2008, p. 69–105 .
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0001
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0001
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0003
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0003
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0012
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0012
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0012
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0020
http://dx.doi.org/10.1155/2014/218925
http://dx.doi.org/10.1007/s10472-014-9444-4
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0024
http://dx.doi.org/10.1016/j.apm.2016.05.004

22 S. Kordi ́c et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: APM [m3Gsc; June 7, 2016;9:27]

[27] N. Kova ̌c , Bee Colony Optimization Algorithm for the Minimum Cost Berth Allocation Problem, in: Proceedings of the XI Balkan Conference on Opera-
tional Research, Belgrade-Zlatibor, 2013, p. 245–254 .

[28] A. Imai , E. Nishimura , M. Hattori , S. Papadimitriou, S , Berth allocation at indented berths for mega-containerships, Eur. J. Oper. Res. 179 (2) (2007)
579–593 (2007) .

[29] A. Imai , E. Nishimura , S. Papadimitriou , Marine container terminal configurations for efficient handling of mega-containerships, Transp. Res. E 49
(2013) 141–158 .

[30] C.Y. Cheong , C.J. Lin , K.C. Tan , D.K. Liu , A multi-objective evolutionary algorithm for berth allocation in the container port, in: IEEE Congress on

Evolutionary Computation, IEEE Computer Society, Washington DC, 2007, p. 927–934 .
[31] L. Hoffarth , S. Voß, Berth allocation in container terminal – development of decision support system (in German), in: Operations Research Proceedings

1993, Berlin, Springer, 1994, p. 89–95 .
[32] H. Rashidi , E.P.K. Tsang , Novel constrains satisfaction models for optimization problems in container terminals, Appl. Math. Model. 37 (2013)

3601–3634 .
[33] S. Kordi ́c , B. Dragovi ́c , T. Davidovi ́c , N. Kova ̌c, N. , A Combinatorial Algorithm for Berth Allocation Problem in Container Port, in: Proceedings of Inter-

national Association of Maritime Economists Conference, Taipei, IAME, 2012 2012, pp. 1–15 (MD-065) .
[34] Y.M. Fu , A. Diabat , A Lagrangian relaxation approach for solving the integrated quay crane assignment and scheduling problem, Appl. Math. Model. 39

(2015) 1194–1201 .

[35] F. Meisel, C. Bierwirth, A framework for integrated berth allocation and crane operations planning in seaport container terminals, Transp. Sci. 47 (2)
(2013) 131–147 http://dx.doi.org/10.1287/trsc.1120.0419 .

[36] B. Dragovi ́c , N.K. Park , Z. Radmilovi ́c , Ship-berth link performance evaluation: simulation and analytical approaches, Marit. Policy Manag 33 (3) (2006)
281–299 .

[37] T. Davidovi ́c , J. Lazi ́c , N. Mladenovi ́c , S. Kordi ́c , N. Kova ̌c , B. Dragovi ́c , MIP-Heuristics for Minimum Cost Berth Allocation Problem, in: Proceedings of
International Conference on Traffic and Transport Engineering, ICTTE 2012, Belgrade, 2012, p. 21–28 .
Please cite this article as: S. Kordi ́c et al., Combinatorial approach to exactly solving discrete and hybrid berth allocation

problem, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.05.004

http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0032
http://dx.doi.org/10.1287/trsc.1120.0419
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30250-5/sbref0035
http://dx.doi.org/10.1016/j.apm.2016.05.004

	Combinatorial approach to exactly solving discrete and hybrid berth allocation problem
	1 Introduction
	2 The sedimentation algorithm
	2.1 SEDA input parameters
	2.2 Internal data structures used by SEDA
	2.3 Functions and procedures used by SEDA
	2.4 Implementation of the functions and procedures used by SEDA
	2.5 SEDA description
	2.6 Key SEDA properties
	2.6.1 Total correctness of SEDA
	2.6.2 General complexity of SEDA

	2.7 Sedimentation algorithm with estimation & rearrangement heuristic
	2.8 Advantages and disadvantages of SEDA and SEDA+ERH

	3 Berth allocation problem formulation
	3.1 Assumptions
	3.2 Input data
	3.3 Decision variables and domains
	3.4 Constraints
	3.5 Objective function
	3.6 Few notes on BAP modeling and Rashidi & Tsang's model in particular

	4 BAP modeling for SEDA
	4.1 Model of BAP for SEDA
	4.2 Complexity of SEDA for BAP

	5 Computational results
	5.1 Test instances
	5.2 Comparison between SEDA And SEDA+ERH
	5.3 The analysis of one "worst-case" problem
	5.4 Comparison between sedimentation algorithms and CPLEX
	5.5 Note on the sedimentation algorithms and other exact BAP solvers

	6 Conclusion
	 References

