
ARTICLE IN PRESS
JID: APM [m3Gsc; February 25, 2016;16:37 ]

Applied Mathematical Modelling 0 0 0 (2016) 1–10

Contents lists available at ScienceDirect 

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm 

Single-machine scheduling problems with machine aging

effect and an optional maintenance activity

Manzhan Gu 

a , e , Xiwen Lu 

b , Jinwei Gu 

c , f , ∗, Ying Zhang 

d

a School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China
b Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
c College of Economics and Management, Shanghai University of Electric Power, Shanghai 20 0 090, China
d School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
e School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, China
f School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China

a r t i c l e i n f o 

Article history:

Received 16 October 2014

Revised 23 December 2015

Accepted 12 January 2016

Available online xxx

Keywords:

Aging effect

Maintenance

Makespan

Total completion times

a b s t r a c t 

This paper considers two single-machine scheduling problems with a new type of aging

effect, which is dominated by the processing speed of the machine. During the whole

scheduling horizon, the machine is subject to an optional maintenance, and the duration of

the maintenance depends on the length of the uptime before it. The objective is to sched- 

ule all jobs and find the location of the maintenance so as to minimize the makespan or

the total completion times. The two problems are proved to be NP-complete, and two dy- 

namic programming algorithms are proposed to solve the problems. We analyze the com- 

putation complexity of the algorithms, and show that the problems under study are solv- 

able in polynomial time if the processing loads of all jobs are uniformly bounded.
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1. Introduction

In the traditional single-machine scheduling problems, it is assumed that the machine is available from time zero to

the completion time of the last job. However, in many practical settings the machine may not be available because of the

need of repair, cooling or other maintenance operations. Therefore, it is more reasonable to consider the downtimes (i.e.,

maintenance activities) in the scheduling problems. Scheduling under such machine environment is called as the model with

availability constraints [1] . In this model, the machine is unavailable to process jobs during the period of maintenance. After

the maintenance, the machine will recover to its initial state and start anew. In the past decade, the scheduling problems

with maintenance activities has received more and more attention. Schmidt [2] proposed a survey on different models and

problems with available constrains, and an updated survey was presented by Ma et al. [3] . 

In addition, In the majority of the literature, it is assumed that the processing times of jobs are known constants. How-

ever, there are many settings in which the actual processing time of each job may be affected by its position or start time

in the schedule. The phenomenon is defined as the time-dependent or position-dependent aging effect in the scheduling

problems. In the model with the aging effect, in a common uptime, the later a job is processed in the schedule, the longer

its actual processing time is. 
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Gupta and Gupta [4] firstly studied the problem with aging effect. Since then, scheduling problems with aging effect

have received the attention of many researchers, including Bachman and Janiak [5] , Mosheiov [6] , and Yang and Wang

[7] , among others. For a comprehensive review of the results in this field, the reader may refer to the recent surveys

[3,5,6,8–12] . 

This paper considers the single-machine scheduling with aging effect and available constrains. Browne and Yechiali [13]

studied the scheduling problem with time-dependent aging effect, i.e., the actual processing time of job j is αj s j , where αj ,

s j respectively denote the aging factor and the start time of job j . For the time-dependent model, Wu and Lee [14] studied

the problem with a known maintenance period to minimize the makespan, and the problem was solved by the 0–1 integer

programming method. With the assumption given by Wu and Lee [14] , Ji et al. [15] considered the non-resumable model

with the objective to minimize the makespan and total completion times. Both problems are proved to be NP-hard, and two

pseudo-polynomial time algorithms were proposed to solve the problems. Furthermore, Lee and Wu [16] considered the

multi-machine makespan minimization problem. For the resumable and non-resumable models, they proposed a heuristic 

algorithm for each model. Lee et al. [17] studied the multi-machine scheduling problem with the objective to minimize the

total tardiness and earliness. 

Zhan and Tang [18] considered another model of time-dependent aging effect, i.e., the actual processing time of job j

is p j + αs j , where p j and α denote the processing load of job j and the common aging factor, respectively. The authors

proposed polynomial time algorithms for the problems of minimizing the makespan and the total completion times. Yang

and Yang [19] studied the scheduling models with multi-maintenance, and showed the problems are polynomially solvable.

In addition, Yang [20] investigated the unrelated parallel-machine scheduling problem, and proposed a polynomial time

algorithm for the special case in which the number of machines is known in advance. Lee et al. [21] studied the flowshop

scheduling problem of minimizing the total tardiness cost. Yang et al. [22] considered the problems with slack due-date

assignment. 

Besides the type of time-dependent aging effect, Kuo and Yang [23] studied the position-dependent aging effect, i.e., if

job j is processed in the r th position, then its actual processing time is p j r 
α j . For the model with at most one maintenance in

the whole scheduling horizon, Yang et al. [24] proposed a polynomial time algorithm to solve the due-window assignment

problem on a single machine. Zhao and Tang [25] studied the makespan minimization problem with multi-maintenance.

Based on the assignment method, the authors proposed a polynomial time algorithm. Yang and Yang [26,27] studied several

other problems with this type of aging effect, and derived a polynomial algorithm for each problem. Yin et al. [28] consid-

ered scheduling problems with due date determination. In addition, Yang and Yang [19] studied the problem to minimize

the total completion times, where the actual processing of job j is p j + α j r. Yang et al. [29] and Hsu et al. [30] further

extended some results on position-dependent aging effect to mutli-machine scheduling problems. 

The model with the time-dependent and position-dependent effects simultaneously was firstly studied by Yang [31] . In

this model, the actual processing time of job j is defined as (p j − βs r ) r α, where β is a common decreasing rate. For the

scheduling with an optional maintenance, by the weight-matching technique [32] , the author proposed a polynomial time

algorithm for the problem to minimize the makespan, and the result was further extended to the total completion times

minimization model. 

This paper introduces a new type of aging effect, namely the machine aging effect, which is dominated by the processing

speed of the machine. We assume the processing speed of the machine is a decreasing function of its continuously running

time in the current uptime. Hence, in a common uptime, the later a job is scheduled, the more time is needed to process the

job. The motivation for this type of aging effect stems from the requests serving process in the wireless sensor network. In

a normal network, the time required for serving a request depends on the remaining energy of the sensor, and the available

energy is decreasing during the serving process. Therefore, the actual serving time of a request increases with the continuous

working time of the sensor in the current uptime. To counteract the decline of the serving ability, the maintenance activity

(battery charging) may be performed on the sensor to maintain its serving ability, and the length of the downtime (i.e., the

duration of a maintenance) depends on the length of the previous uptime. 

Consequently, this paper firstly considers the single-machine scheduling problem with the combination of the machine

aging effect and an optional maintenance operation. During the whole scheduling horizon, at most one maintenance activity

is performed, and the duration of the optional maintenance depends on the length of the uptime before it. The objective

is to find the position of the maintenance and the sequence of all jobs to minimize the makespan or the total completion

times. We prove the two problems are NP-complete, and show that each of the two problems has an optimal processing

sequence such that the process order of jobs before and after the maintenance are, respectively, subject to the Shortest

Processing Time first (SPT) rule. In the rest of the paper, such a sequence is defined to be subject to S-S rule. Two dynamic

programming (DP) algorithms are developed to solve the problem with an optimal sequence subject to S-S rule. Taking the

problem with the objective to minimize the total completion times as an example, we introduce the details of the two

DP algorithms. The analysis of the computational complexity of the algorithms indicates that the problem is polynomially

solvable if the processing loads of all jobs are uniformly bounded. 

The remainder of this paper is organized as follows. In Section 2 , the problems under study are formulated. In Section 3 ,

two problems with objective to minimize the makespan and the total completion times are proved to be NP-complete, and

two DP algorithms are proposed in Section 4 . Concluding remarks are given in Section 5 . 
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2. Problem formulation and notation 

The problems under study can be formulated as follows: There are n jobs, � = { 1 , 2 , . . . , n } , to be processed on a single

machine from time zero and job preemption is not allowed. The normal processing time of job j is p j . The processing

speed of the machine is defined as v ( t ), where t denotes the time that the machine has been continuously processing jobs.

Define v ( t ) is a deceasing function satisfying v (0) = 1 and v (t) → 0 ( t → + ∞ ) . Assume job j starts to be processed when the

machine has already been continuously working for t j time, then its actual processing time P j satisfies ∫ t j + P j 

t j 

v (t) dt = p j , (1)

i.e. given v ( t ), the value of P j depends on t j and p j . For notation convenience, we define a function int( x ) such that ∫ int (x ) 

0 

v (t) dt = x. 

Therefore, the actual processing time P j = int 
(
t j + p j 

)
− int 

(
t j 
)
. 

Due to the effect of machine aging, maintenance may be performed on the machine to improve its production efficiency.

We assume that at most one maintenance operation is allowed throughout the scheduling horizon. The start time of the

maintenance is not known in advance, and the maintenance operation can be carried out immediately after the completion

of any job. The maintenance duration, denoted by f ( t ), is a function of its start time t . After the maintenance, the machine

will revert to its initial condition and start anew. 

The objective is to find jointly the optimal maintenance position and the optimal job sequence to minimize the makespan

and the total completion times. For a given schedule, denote by C j the completion time of job j . Then the two objective

functions can be presented as max 1 ≤ j≤n C j and 

∑ n 
j=1 C j . 

3. Proof of NP-completeness 

3.1. minimization of the makespan 

In this subsection, we try to find the optimal maintenance position and the optimal job sequence so as to minimize

the makespan. Following the three fields notation of Graham et al. [33] , the problem is denoted by 1, v ( t )| ma | C max . Given a

processing sequence, let p [ j ] , P [ j] and C [ j ] , respectively, denote the normal processing time, actual processing time and the

completion time of the job processed in the j th position. 

Assuming the maintenance operation is scheduled immediately after the job in the i th (1 ≤ i ≤ n ) position, the comple-

tion times of jobs scheduled before the maintenance can be presented as follows. 

C [ j ] = int 
(
S [ 1 , j ] 

)
, 1 ≤ j ≤ i, (2)

where S [ k,l ] = 

∑ l 
m = k p [ m ] (k ≤ l) , and the actual processing time 

P [ j ] = int 
(
S [ 1 , j ] 

)
− int 

(
S [ 1 , j−1 ] 

)
, 

where S [ 1 , 0 ] = 0 . Based on (2) , it is easy to find the problem 1, v ( t )|| C max is trivial. 

After the maintenance, the machine restores its initial condition and starts anew. Therefore, the actual processing time

of jobs scheduled after the maintenance can be formulated as follows. 

P [ j ] = int 
(
S [ i +1 , j ] 

)
− int 

(
S [ i +1 , j−1 ] 

)
, i + 1 ≤ j ≤ n, 

where S [ i +1 ,i ] = 0 , and the completion time is given by 

C [ j ] = C [ i ] + f 
(
C [ i ] 

)
+ 

j ∑ 

k = i +1 

P [ k ] (3)

= int 
(
S [ 1 ,i ] 

)
+ f 

(
int 

(
S [ 1 ,i ] 

))
+ int 

(
S [ i +1 , j ] 

)
. (4)

The following part focuses on the computational complexity of the problem. In complexity theory, the principal way of

proving a problem is NP-complete is to reduce a known NP-complete problem to the problem considered. The 2- Partition

problem is known to be NP-complete [34] and in what follows we will describe a way of reducing (in polynomial time)

instances of 2- Partition problem to instances of our problem, such that an instance of 2- Partition has a solution if and

only if the corresponding instance of our scheduling problem has a solution. 

2 - PARTITION problem: Given a set of n position integers x 1 , x 2 , . . . , x n , is there a subset H of { 1 , 2 , . . . , n } such that∑ 

j∈ H x j = b, where b = 

1 
2 

∑ n 
j=1 x j ? 

The computational complexity of the problem is stated in Theorem 2 , before which we firstly introduce the following

lemma. 
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Lemma 1. Assuming v ( t ) is a continuous and strictly decreasing function, then for any positive constant c, the function int ( x ) +
int ( 2 c − x ) is strictly increasing in the interval [ c , 2 c ] . 

Proof. Given x 1 , x 2 satisfying c ≤ x 1 < x 2 ≤ 2 c , we have ∫ int ( x 2 ) 

int ( x 1 ) 

v ( t ) dt = 

∫ int ( x 2 ) 

0 

v (t) dt −
∫ int ( x 1 ) 

0 

v (t) dt = x 2 − x 1 . 

By the Mean Value Theorem for Integrals, there exists a constant ξ such that ∫ int ( x 2 ) 

int ( x 1 ) 

v ( t ) dt = v ( ξ ) 

[ 
int ( x 2 ) − int ( x 1 ) 

] 
, int ( x 1 ) < ξ < int ( x 2 ) . 

Hence, 

x 2 − x 1 = v ( ξ ) 

[ 
int ( x 2 ) − int ( x 1 ) 

] 
, 

i.e. 

int ( x 2 ) − int ( x 1 ) = 

x 2 − x 1 
v ( ξ ) 

. (5) 

With the same method, there exists a constant η such that 

int ( 2 c − x 1 ) − int ( 2 c − x 2 ) = 

( 2 c − x 1 ) − ( 2 c − x 2 ) 

v ( η) 
, int ( 2 c − x 2 ) < η < int ( 2 c − x 1 ) , 

i.e. 

int ( 2 c − x 1 ) − int ( 2 c − x 2 ) = 

x 2 − x 1 
v ( η) 

. (6) 

Based on (5) and (6) , we have [ 
int ( x 2 ) + int ( 2 c − x 2 ) 

] 
−

[ 
int ( x 1 ) + int ( 2 c − x 1 ) 

] 
= 

[ 
int ( x 2 ) − int ( x 1 ) 

] 
−

[ 
int ( 2 c − x 1 ) − int ( 2 c − x 2 ) 

] 
= 

x 2 − x 1 
v ( ξ ) 

− x 2 − x 1 
v ( η) 

= 

x 2 − x 1 
v ( ξ ) v ( η) 

[ v ( η) − v ( ξ ) ] > 0 , 

where the inequality holds because v ( t ) is strictly decreasing and η < int( c ) < ξ . Therefore, the function int ( x ) + int ( 2 c − x )
is strictly increasing in the interval [ c , 2 c ]. �

Theorem 2. The problem 1, v ( t )| ma | C max is NP-complete. 

Proof. The proof is based on the following transformation by reduction from 2- Partition problem. Given an instance of

2- Partition problem, we construct the following instance of our scheduling problem. 

Jobs: 1 , 2 , . . . , n ; 

Normal processing times: p j = x j , 1 ≤ j ≤ n ; 

v ( t ) is a continuous and strictly decreasing function; 

f (t) = 0 ; 

Makespan threshold value: y = 2 · int ( b ) . 

Now we prove that the instance has a minimum objective value of y if and only if 2- Partition has a solution, which will

then imply that our problem is NP-complete. 

⇒ If there is a solution to 2- Partition instance, we show that there is a schedule to our problem with a makespan of

no more than y . Given a solution to 2- Partition , i.e. there exists a subset H of { 1 , 2 , . . . , n } such that 
∑ 

j∈ H x j = b. 

We construct a schedule for our problem, where jobs in H and �\ H are, respectively, processed before and after the

maintenance. In this schedule, the times needed to finish the jobs in H and �\ H are both int ( b ) . Since f (t) = 0 , it is easy

to see that the obtained makespan of our problem is 2 · int ( b ) (= y ). 

⇐ Conversely, assume there exists a schedule for the constructed instance of our problem with a makespan of no more

than y . Let H 1 , H 2 denote the jobs processed before and after the maintenance, respectively. Without lost of generality,

assume 
∑ 

j∈ H 1 p j ≥
∑ 

j∈ H 2 p j . Let δ = 

∑ 

j∈ H 1 p j , then b ≤ δ ≤ 2 b . The makespan can be formulated as int ( δ) + int ( 2 b − δ) ,

and 

int ( δ) + int ( 2 b − δ) ≤ y = 2 · int ( b ) . (7) 

On the other side, known from Lemma 1 , int ( x ) + int ( 2 b − x ) is strictly increasing in the interval [ b , 2 b ], then 

int ( δ) + int ( 2 b − δ) ≥ 2 · int ( b ) , (8) 
Please cite this article as: M. Gu et al., Single-machine scheduling problems with machine aging effect and an optional 

maintenance activity, Applied Mathematical Modelling (2016), http://dx.doi.org/10.1016/j.apm.2016.01.038 

http://dx.doi.org/10.1016/j.apm.2016.01.038


M. Gu et al. / Applied Mathematical Modelling 0 0 0 (2016) 1–10 5 

ARTICLE IN PRESS 

JID: APM [m3Gsc; February 25, 2016;16:37 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the equality holds when x = b. Based on (7) and (8) , we obtain 

int ( δ) + int ( 2 b − δ) = 2 · int ( b ) . (9)

Hence δ = b, i.e. 
∑ 

j∈ H 1 p j = b. Let H = H 1 , then a solution to 2- Partition problem is obtained. 

Combining the if part and only if part, we have proved the theorem. �

The expression (4) shows that the processing order of jobs before the maintenance has no effect on the makespan, nor

does that of the jobs after the maintenance. Therefore, the following lemma holds trivially. 

Lemma 3. For the problem 1, v ( t )| ma | C max , there exits an optimal sequence subject to S-S rule. 

3.2. Minimization of total completion times 

In this subsection, we try to find the optimal maintenance position and the optimal job sequence to minimize the total

completion times. Following the three fields notation of Graham et al. [33] , we denote the problem by 1, v ( t )| am | �C j . Given

a processing sequence λ, assume the maintenance operation is carried out immediately after the job in the i th position.

Following (2) and (4) , the total completion times is given by: 

π( λ) = 

i ∑ 

j=1 

C [ j ] + 

n ∑ 

j= i +1 

C [ j ] (10)

= 

i ∑ 

j=1 

int 
(
S [ 1 , j ] 

)
+ 

n ∑ 

j= i +1 

[ 
int 

(
S [ 1 ,i ] 

)
+ f 

(
int 

(
S [ 1 ,i ] 

))
+ int 

(
S [ i +1 , j ] 

)] 
(11)

= 

i ∑ 

j=1 

int 
(
S [ 1 , j ] 

)
+ ( n − i ) 

[ 
int 

(
S [ 1 ,i ] 

)
+ f 

(
int 

(
S [ 1 ,i ] 

))] 
+ 

n ∑ 

j= i +1 

int 
(
S [ i +1 , j ] 

)
. (12)

The following theorem states the computational complexity of our problem, and proves the NP-completeness by reducing

the 2- Partition problem into our problem in polynomial time. 

Theorem 4. The scheduling problem 1, v ( t )| ma | �C j is NP-complete. 

Proof. Given an instance of 2- Partition problem, the corresponding single-machine problem can be constructed as follows:

Jobs: 1 , 2 , . . . , n ; 

Processing times: p j = 2 n · x j , j = 1 , 2 , . . . , n ; 

v (t) = 

1 
1+ t , f (t) = 0 ; 

Threshold value of total completion times: y = 2 n · exp ( 2 nb ) , where exp ( x ) denotes the exponential function e x . Next we

will prove that the problem has a minimum objective value of no more than y if and only if 2- Partition problem has a

solution, which then shows that our problem is NP-complete. 

⇒ If there is a solution to 2- Partition instance, then there exists a solution to our problem with an objective value of

no more than y . Denote by H the subset of { 1 , 2 , . . . , n } such that 
∑ 

j∈ H x j = b. Arrange jobs in H and �\ H to be processed,

respectively, before and after the maintenance. Denote the sequence by λ. Let i be the cardinality of H , i.e. i = | H| , then

p [ 1 ] + . . . + p [ i ] = p [ i +1 ] + . . . + p [ n ] = 2 nb, and 

int 
(
S [1 ,i ] 

)
= exp ( 2 nb ) − 1 , 

int 
(
S [1 , j] 

)
≤ int 

(
S [1 ,i ] 

)
, 1 ≤ j ≤ i, 

int 
(
S [ i +1 ,n ] 

)
= int 

(
S [1 ,i ] 

)
= exp ( 2 nb ) − 1 , 

int 
(
S [ i +1 , j] 

)
≤ int 

(
S [ i +1 ,n ] 

)
, i + 1 ≤ j ≤ n. 

Noting f (t) = 0 , by (12) , the total completion times is given by 

π( λ) = 

i ∑ 

j=1 

int 
(
S [ 1 , j ] 

)
+ ( n − i ) int 

(
S [ 1 ,i ] 

)
+ 

n ∑ 

j= i +1 

int 
(
S [ i +1 , j ] 

)
≤ i · int 

(
S [ 1 ,i ] 

)
+ ( n − i ) int 

(
S [ 1 ,i ] 

)
+ ( n − i ) int 

(
S [ i +1 ,n ] 

)
= ( 2 n − i ) int 

(
S [ 1 ,i ] 

)
= ( 2 n − i ) 

[ 
exp ( 2 nb ) − 1 

] 
≤ 2 n · exp ( 2 nb ) = y, 

i.e. we obtain a solution with an objective value of no more than y to our problem. 
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⇐ Assume there exists a solution for the constructed instance of our problem with an objective value of no more than

y . We will prove that there is a solution to the 2- Partition problem. Let H 1 and H 2 be the two sets of jobs, respectively,

processed before and after the maintenance, then 

∑ 

j∈ H 1 x j = b. We give the proof for the conclusion by contradiction. 

If 
∑ 

j∈ H 1 x j 
 = b, then 

∑ 

j∈ H 1 x j ≥ b + 1 or 
∑ 

j∈ H 2 x j ≥ b + 1 . Letting i = | H 1 | , we have int 
(
S [1 ,i ] 

)
≥ exp ( 2 n ( b + 1 ) ) − 1 or

int 
(
S [ i +1 ,n ] 

)
≥ exp ( 2 n ( b + 1 ) ) − 1 . Therefore, the total completion times 

π( λ) = 

i ∑ 

j=1 

int 
(
S [ 1 , j ] 

)
+ ( n − i ) int 

(
S [ 1 ,i ] 

)
+ 

n ∑ 

j= i +1 

int 
(
S [ i +1 , j ] 

)
≥ int 

(
S [ 1 ,i ] 

)
+ int 

(
S [ i +1 ,n ] 

)
≥ exp ( 2 n ( b + 1 ) ) − 1 

= exp ( 2 n ) · exp ( 2 nb ) − 1 

> ( 2 n + 1 ) · exp ( 2 nb ) − 1 

= 2 n · exp ( 2 nb ) + exp ( 2 nb ) − 1 

> 2 n · exp ( 2 nb ) , 

i.e. π( λ) > 2 n · exp ( 2 nb ) = y, which contradicts the assumption. Therefore, 
∑ 

j∈ H 1 x j = b. 

Based on the if part and only if part, we have proved the theorem. 

�

Lemma 5. For the problem 1, v ( t )| ma | �C j , the optimal sequence is subject to S-S rule. 

Proof. Given a sequence λ, assume the maintenance activity is performed immediately after the job in the i th position. 

Firstly, consider the jobs processed before the maintenance. Denote by p λ
[ j ] 

, p λ
[ j+1 ] 

(1 ≤ j ≤ i − 1) the normal processing

times of the two jobs in the j th and ( j + 1) th positions in sequence λ. Let λ′ be the new sequence by exchanging the

processing order of the two jobs. 

Without loss of generality, assuming p λ
[ j ] 

> p λ
[ j+1 ] 

, then S λ
[ 1 , j ] 

> S λ
′ 

[ 1 , j ] 
, and int 

(
S λ

[ 1 , j ] 

)
> int 

(
S λ

′ 
[ 1 , j ] 

)
. The completion times

of jobs in the same position in λ and λ′ satisfies: 

C λ[ j ] > C λ
′ 

[ j ] and C λ
[ k ] 

= C λ
′ 

[ k ] 
, k 
 = j. 

Therefore, 

π( λ) − π
(
λ′ ) = C λ[ j ] − C λ

′ 
[ j ] > 0 . 

i.e. exchanging the processing order of jobs in the j th and ( j + 1) th positions in λ will decrease the total completion times.

Hence, the processing order of the jobs before the maintenance is subject to SPT rule. 

With the same method, it can be proved that the processing of the jobs after the maintenance also follows SPT rule.

Therefore, for the problem 1, v ( t )| ma | �C j , the optimal sequence is subject to S-S rule. �

Based on Lemma 5 , the following corollary holds immediately. 

Corollary 6. For the problem 1, v ( t )|| �C j , the optimal sequence is subject to SPT rule. 

In the next section, DP algorithms will be introduced to solve the problem with an optimal sequence subject to S-S rule.

4. Dynamic programming algorithms 

For a NP-complete problem, although the mixed integer programming model can be used to obtain an optimal solution,

constrains and variables increase drastically as the number of jobs increases. The theorems above indicate that there is no

polynomial-time algorithm to solve the scheduling problems under study. Therefore, designing effective DP algorithms to

achieve the optimal solution is of great interest. 

Two DP algorithms will be proposed to solve the problem with an optimal sequence subject to S-S rule. For concision,

we just focus on the problem with the objective to minimize the total completion times, and the makespan minimization

problem can also be solved by developing similar DP algorithms. 

Assume all jobs are indexed following the inequalities below: 

p 1 ≥ p 2 ≥ · · · ≥ p n . 

Let S i = { 1 , 2 , . . . , i } , and S i = �\ S i . Among the jobs in S i , define B i be the set of jobs scheduled before the maintenance.

Assume λ∗ is the optimal sequence subject to S-S rule. Known from Lemma 5 , all jobs in B i are sequenced before S i in

sequence λ∗. On the other side, let A i = S i \ B i , i.e. among the jobs in S i , A i denotes the set of jobs processed after the

maintenance. 
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Fig. 1. Main procedure of Algorithm 1 on the Example 1 . 

 

 

 

 

 

 

 

 

 

 

 

Given i and B i , define D i ( B i ) as the contribution of all jobs in S i to the objective function. In the optimal sequence λ∗, it

is clear that if job i is sequenced before the maintenance, then i will be processed immediately after jobs in B i , and 

D i ( B i ) = D 

b 
i ( B i ) = D i −1 ( B i ∪ { i } ) 

+ int 

( ∑ 

j∈ B i ∪ { i } 
p j 

) 

(13)

+ | A i | ·
[ 

f 

( 

int 

( ∑ 

j∈ B i ∪ { i } 
p j 

) ) 

− f 

( 

int 

( ∑ 

j∈ B i 
p j 

) ) ] 

(14)

+ | A i | ·
[ 

int 

( ∑ 

j∈ B i ∪ { i } 
p j 

) 

− int 

( ∑ 

j∈ B i 
p j 

) ] 

, (15)

where (13) denotes the completion time of job i , and the sum of (14) and (15) equals the total increased value of completion

times of jobs in A i . If job i is sequenced after the maintenance, then i will be processed immediately after jobs in A i , and 

D i ( B i ) = D 

a 
i ( B i ) = D i −1 ( B i ) 

+ int 

( ∑ 

j∈ B i 
p j 

) 

+ f 

( 

int 

( ∑ 

j∈ B i 
p j 

) ) 

+ int 

( ∑ 

j∈ A i ∪ { i } 
p j 

) 

, (16)

where (16) denotes the completion time of job i . According to the definition of sequence λ∗, it is clear that in the optimal

sequence λ∗, the job i must be scheduled such that 

D i ( B i ) = min 

{
D 

b 
i ( B i ) , D 

a 
i ( B i ) 

}
. (17)

The boundary conditions are 

D 0 ( B 0 ) = 0 , forall B 0 ∈ P ( �) , (18)

where P ( �) denotes the power set of �. The algorithm proposed for the problem of minimizing the total completion times

can be summarized as follows. 

Algorithm 1. 

Step 1. For i = 1 , 2 , . . . , n, compute D 

b 
i ( B i ) and D 

a 
i ( B i ) for all B i ∈ P ( �\ S i ). 

Step 2. Compute the minimal objective value π( λ∗) = D n ( φ) , where φ denotes the empty set. 

Step 3. By backtracking, construct the optimal sequence λ∗ . 

Next, a simple example is presented to illustrate the procedures of Algorithm 1 . 

Example 1. There are three jobs, i.e. n = 3 , and p 1 = 3 , p 2 = 2 , p 3 = 1 . The processing speed of the machine v (t) = 

1 
1+0 . 5 t ,

and the duration of the maintenance f (t) = 1 + t . 

The main process of Algorithm 1 is described in Fig. 1 , and the details of computation are given below. 

Step 1: i = 1 , S i = { 1 } , �\ S i = { 2 , 3 } , B i ∈ { φ, { 2 } , { 3 } , { 2 , 3 } } . 
D 

b 
1 ( { 2 , 3 } ) = D 0 ( { 1 , 2 , 3 } ) + 

1 

[
e 0 . 5 ×( 3+2+1 ) − 1 

]
= 2 

(
e 3 − 1 

)
≈ 38 . 1711 . 
0 . 5 
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Similarly, 

D 

a 
1 ( { 2 , 3 } ) ≈ 21 . 8901 , D 

b 
1 ( { 3 } ) ≈ 26 . 7049 , D 

a 
1 ( { 3 } ) ≈ 25 . 9599 , 

D 

b 
1 ( { 2 } ) ≈ 36 . 2917 , D 

a 
1 ( { 2 } ) ≈ 20 . 6512 , D 

b 
1 ( φ) ≈ 34 . 8169 , D 

a 
1 ( φ) ≈ 39 . 1711 . 

i = 2 , S i = { 1 , 2 } , �\ S i = { 3 } , B i ∈ { φ, { 3 } } . 
D 

b 
2 ( { 3 } ) ≈ 28 . 8535 , D 

a 
2 ( { 3 } ) ≈ 32 . 9913 , D 

b 
2 ( φ) ≈ 30 . 9609 , D 

a 
2 ( φ) ≈ 42 . 7803 . 

i = 3 , S i = { 1 , 2 , 3 } , �\ S i = φ, B i ∈ { φ} . 
D 

b 
3 ( φ) ≈ 30 . 1510 , D 

a 
3 ( φ) ≈ 33 . 2584 . 

Finally, we obtain 

D 3 ( φ) = min 

{
D 

b 
3 ( φ) , D 

a 
3 ( φ) 

}
≈ 30 . 1510 . 

Step 2. π( λ∗) = D 3 ( φ) ≈ 30 . 1510 . 

Step 3. By back tracking method, we obtain the optimal schedule (3, 2, ma , 1). 

Known from the process description in Fig. 1 , the Algorithm 1 needs 2 n +1 − 1 steps to compute all D n ( φ). Therefore, we

have the following lemma. 

Lemma 7. For the problem 1, v ( t )| ma | �C j , Algorithm 1 can find the optimal sequence λ∗ in O 

(
2 n +1 

)
time. 

Based on (13) –(16) , we introduce another DP algorithm with computation time being polynomial if the normal processing

times of all jobs are uniformly bounded. 

Let B i = 

∑ 

j∈ B i 
p j , b i = | B i | . Given i , B i , and b i , define G i ( B i , b i ) as the contribution of all jobs in S i to the objective value. If

job i is sequenced before the maintenance, then 

G i ( B i , b i ) = G 

b 
i ( B i , b i ) = G i −1 ( B i + p i , b i + 1 ) 

+ int ( B i + p i ) (19) 

+ ( n − i − b i ) 

[ 
f ( int ( B i + p i ) ) − f ( int ( B i ) ) 

] 
(20) 

+ ( n − i − b i ) 

[ 
int ( B i + p i ) − int ( B i ) 

] 
. (21) 

Similarly, if job i is sequenced after the maintenance, then 

G i ( B i , b i ) = G 

a 
i ( B i , b i ) = G i −1 ( B i , b i ) 

+ int ( B i ) + f ( int ( B i ) ) + int 

( ∑ 

j∈ S i 

p j − B i + p i 

) 

. (22) 

According to the principle of optimality of dynamic programming, there are two positions for job i in the optimal se-

quence λ∗, and the job i must be scheduled such that 

G i ( B i , b i ) = min 

{
G 

b 
i ( B i , b i ) , G 

a 
i ( B i , b i ) 

}
. (23) 

The boundary conditions are 

G 0 ( B 0 , b 0 ) = 0 , for B 0 = 0 , 1 , . . . , 

n ∑ 

j=1 

p j , and b 0 = 0 , 1 , . . . , n. (24) 

The algorithm introduced above can be summarized as follows. 

Algorithm 2. 

Step 1. Based on (19) –(24) , for i = 1 , 2 , . . . , n, compute G i ( B i , b i ) for all B i = 0 , 1 , . . . , 
∑ 

j∈ S i p j and b i = 0 , 1 , . . . , n − i . 

Step 2. Compute the minimal objective value π( λ∗) = G n ( 0 , 0 ) . 

Step 3. By backward tracking, construct the optimal sequence λ∗ . 

The main process of Algorithm 2 applying to Example 1 is described in Fig. 2 , and the details of computation are given

below. 
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Fig. 2. Main procedure of Algorithm 1 on the Example 1 . 

 

 

 

 

 

 

 

 

 

 

 

Step 1: i = 1 , B i = 0 , 1 , 2 , . . . , 
∑ 

j∈ { 2 , 3 } p j , b i = 0 , 1 , 2 , 

G 

b 
1 ( 0 , 0 ) = G 0 ( 3 , 1 ) + int ( 3 ) + 2 

[ 
f ( int ( 3 ) ) − f ( int ( 0 ) ) 

] 
+ 2 

[ 
int ( 3 ) − int ( 0 ) 

] 
= 

1 

0 . 5 

(
e 0 . 5 ×3 − 1 

)
+ 2 

[ (
1 + 

1 

0 . 5 

(
e 0 . 5 ×3 − 1 

))
− ( 1 + 0 ) 

] 
+ 2 

[ 
1 

0 . 5 

(
e 0 . 5 ×3 − 1 

)
− 0 

] 
= 10 

(
e 1 . 5 − 1 

)
≈ 34 . 8169 , 

G 

a 
1 ( 0 , 0 ) = G 0 ( 0 , 0 ) + int (0) + f ( int ( 0 ) ) + int ( 6 ) 

= 1 + 

1 

0 . 5 

(
e 0 . 5 ×6 − 1 

)
= 1 + 2 

(
e 3 − 1 

)
≈ 39 . 1711 . 

Therefore, we have 

G 1 ( 0 , 0 ) = min 

{
G 

b 
1 ( 0 , 0 ) , G 

a 
1 ( 0 , 0 ) 

}
≈ 34 . 8169 . 

Similarly, 

G 1 ( 1 , 0 ) ≈ 25 . 9599 , G 1 ( 2 , 0 ) ≈ 20 . 6512 , G 1 ( 3 , 0 ) ≈ 21 . 8901 , G 1 ( 0 , 1 ) ≈ 20 . 8901 , 

G 1 ( 1 , 1 ) ≈ 25 . 9599 , G 1 ( 2 , 1 ) ≈ 20 . 6512 , G 1 ( 3 , 1 ) ≈ 21 . 8901 , G 1 ( 0 , 2 ) ≈ 6 . 9634 , 

G 1 ( 1 , 2 ) ≈ 12 . 7781 , G 1 ( 2 , 2 ) ≈ 20 . 6512 , G 1 ( 3 , 2 ) ≈ 21 . 8901 . 

i = 2 , B i = 0 , 
∑ 

j∈ { 3 } p j , b i = 0 , 1 , 

G 2 ( 0 , 0 ) ≈ 30 . 9609 , G 2 ( 1 , 0 ) ≈ 32 . 9913 , G 2 ( 0 , 1 ) ≈ 24 . 0878 , G 2 ( 1 , 1 ) ≈ 28 . 8535 . 

i = 3 , B i = 0 , b i = 0 . 

G 3 ( 0 , 0 ) ≈ 30 . 1510 . 

Step 2. π( λ∗) = G 3 ( 0 , 0 ) ≈ 30 . 1510 . 

Step 3. By backtracking, we obtain the optimal schedule (3, 2, ma , 1). 

Note that, for each i , the Algorithm 2 needs at most n · ∑ n 
j=1 p j steps to compute all G i ( B i , b i ) . Therefore, we have the

following lemma. 

Lemma 8. For the problem 1, v ( t )| ma | �C j , Algorithm 2 can find the optimal sequence λ∗ in O ( n 2 �) time, where � = 

∑ n 
j=1 p j . 

Based on Lemma 8 , the following corollary holds immediately. 

Corollary 9. For the problem 1, v ( t )| ma | �C j , if the processing times of all jobs are uniformly bounded, then Algorithm 2 can find

the optimal sequence λ∗ in O ( n 3 ) time. 

5. Conclusions 

This paper investigates single-machine scheduling problems with both aging effect, which is dominated by the processing

speed of the machine, and deteriorating maintenance activities. We consider the model where the processing speed of the

machine is a decreasing function of its uninterrupted running time. In addition, we assume the machine is subject to at

most one maintenance activity during the scheduling horizon, and the maintenance duration is a general function of its

start time. The objective is to find jointly the optimal location of the maintenance operation and the optimal job sequence

to minimize the makespan and the total completion times. We prove the two problems under study are both NP-complete,

and each of them has an optimal sequence subject to S-S rule. Taking the total completion times minimization problem as

an example, we devise two DP algorithms to solve the problem with an optimal sequence subject to S-S rule. Furthermore,

we analyze the computation complexity of the two algorithms, and show that the problem can be solved in polynomial

time if the normal processing times of all jobs are uniformly bounded. 
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Further research may investigate the problem with model of multiple maintenance activities, in multi-machine settings,

and different objective functions. 
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