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Buildings are the major source of energy consumption in urban areas. Accurate modeling and forecasting
of the building energy use intensity (EUI) in the urban scale have many important applications, such as
energy benchmarking and urban energy infrastructure planning. The use of Big Data technology is
expected to have the capability of integrating a large number of predictors and giving an accurate predic-
tion of the energy use intensity of buildings in the urban scale. However, past research has often used Big
Data technology in estimating energy consumption of a single building rather than the urban scale, due to
several challenges such as data collection and feature engineering. This paper therefore proposes a geo-
graphic information system integrated data mining methodology framework for estimating the building
EUI in the urban scale, including preprocessing, feature selection, and algorithm optimization. Based on
216 prepared features, a case study on estimating the site EUI of 3640 multi-family residential buildings
in New York City, was tested and validated using the proposed methodology framework. A comparative
study on the feature selection strategies and the commonly used regression algorithms was also included
in the case study. The results show that the framework was able to help produce lower estimation errors
than previous research, and the model built by the Support Vector Regression algorithm on the features
selected by Elastic Net has the least cross-validation mean squared error.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The global contribution from buildings in regard to energy con-
sumption has steadily increased to 20%–40% in developed coun-
tries, and has exceeded the other major sectors including
industrial and transportation [1]. Especially in some dense urban
areas like New York City, buildings account for a staggering 94%
of electricity usage and 75% of greenhouse gas (GHG) emissions
[2]. Therefore, studying the energy consumption of buildings is
crucial in order to better understand the patterns and characteris-
tics, and thus help reduce the overall energy consumption in the
urban scale. Accurate modeling and forecasting of building energy
consumption enables better energy management and efficient
applications, such as the propagation of early stage design deci-
sions [3], the estimation of improvements to building energy per-
formance [4], the optimization of building HVAC systems [5], and
the urban energy infrastructure planning [6].

Previous research on the energy consumption of buildings in
the urban scale usually focused on the influence of a single kind
of feature on the energy consumption. Examples include climate
[7–9], urban form [10–12], residential density [13–16], income of
the residents [17,18], etc. However, there is a lack of research that
integrates all the possibly related features, compares the feature
influence and estimates the urban scale energy consumption. To
narrow this gap, a large variety of related data must be collected
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and analyzed, and such kind of research is often referred to as the
so-called ‘‘Big Data” analytics [19].

‘‘Big Data” analytics or data mining often refers to the imple-
mentation of machine learning algorithms, statistical methods,
and artificial intelligence technologies to discover hidden knowl-
edge from large datasets [20]. Thanks to the growing availability
of various data sources, increasing amount of studies in the energy
related research fields have used data mining technology to solve
research problems. For example, Koo and Hong [21] used decision
tree and other data mining techniques to develop a dynamic oper-
ational rating system in energy performance certificates for exist-
ing buildings. Siami-Irdemoosa and Dindarloo [22] implemented
neural networks to predict the fuel consumption of mining dump
trucks. Jain et al. [2] used Support Vector Regression to forecast
the energy consumption of multi-family residential buildings. Long
et al. [23] used four commonly seen regression models to estimate
the daily solar power. However, most of the existing studies focus
on the building scale energy consumption, and limited research
has been conducted to estimate the building energy consumption
in the urban scale. Howard et al. [6] estimated the urban scale
building energy consumption by end use. However, some impor-
tant factors, such as building age, were not considered in their
study. Hsu [19] modeled the energy use intensity of buildings in
the city scale, but his work focused more on identifying important
variables in statistical models.

In addition, there are usually three major challenges for data
mining tasks in the urban scale [19,20]. First is the pre feature
engineering, including data collection, integration and transforma-
tion. This stage is always a time consuming part, because the study
may include thousands of observations and hundreds of features/
variables. In most cases, those datasets are collected from different
sources with different indexes, and may not be easy to join [20]. In
fact, some studies extracted the key data from commercial web-
sites and had to develop additional programs to add and join the
features [24,25]. For energy estimation problems in the urban
scale, it is very likely that the involved datasets or features are
indexed by geo ids, or presented in a shapefile. These kinds of data-
sets can be easily joined using geographic information systems
(GIS). A GIS is a system designed to capture, store, manipulate, ana-
lyze, manage, and present all types of spatial or geographical data
[26]. Many existing energy related literatures have implemented
GIS in their studies. However, the majority used it as a visualiza-
tion or problem engineering tool [27–29], and there is a lack of
studies that utilized its powerful capability in managing geograph-
ical data in Big Data analysis in the energy field. Hsu [19] used GIS
when joining his data, but he did not further explore its function-
ality in filling missing values and feature generation.

The second challenge of data mining in the urban scale is the
feature selection. Among the collected and preprocessed features,
not all of them are good for the regression model. In fact, there
are always a number of redundant or irrelevant features, which
may add noise to the model and thus reduce the performance. As
a result, proper selection of the key variables is usually one of
the most important steps in data mining studies [19,20,24,30].
The third challenge is the selection of regression/classification
algorithms. There are many regression algorithms that have been
implemented by previous research in energy related studies, such
as Artificial Neural Networks (ANN) [22,25,30], Support Vector
Regression (SVR) [2,31,32], and Generalized Linear Models (GLM)
[19,33]. The optimal choice of the regression algorithm for differ-
ent problems is very likely to be different. As a result, a compara-
tive study of those algorithms on data mining tasks in the urban
scale becomes an important step.

In summary, to address the gaps and challenges mentioned
above, this paper proposes a methodology framework to estimate
building energy consumption in the urban scale by implementing
GIS and Big Data technology. The objectives are not only to explore
an effective and efficient framework to study urban scale energy
related problems based on Big Data, but also to conduct a compar-
ative analysis on the commonly seen Big Data technology, includ-
ing feature selection techniques and regression algorithms. Details
of the proposed framework are introduced in Section 2. The case
study used to test the effectiveness of the proposed framework is
presented in Section 3. Discussion and conclusions follow.
2. Methodology framework

As is shown in Fig. 1, the proposed framework consists of five
major parts: (1) data collection, (2) preprocessing, (3) feature
selection, (4) validation and parameter identification, and (5)
regression. The data collection and preprocessing parts are inte-
grated with GIS. The geocode indexed datasets in GIS can make
processes like feature integration and feature generation much
easier. The feature selection process and regression models are
integrated with the cross validation and the grid search to produce
more objective and stable outcomes. Details of the methodology
and algorithms in the proposed framework are introduced below.

2.1. Data collection and preprocessing based on GIS

The proposed framework, as shown in Fig. 1, integrates GIS as a
hub of data collection and preprocessing. The benefits of this can
be summarized into three aspects. First is the data integration.
GIS can join unrelated information or datasets by using location
as the key index variable. For example, the demographical and
housing datasets in the American Community Survey 5-year esti-
mates can be easily joined to individual buildings in a city using
shapefiles and geocoding tools in GIS. Traditional ways may
require writing a program using Java or Python to geocode the
street address through the Google application program interface
[24].

Second is the missing values. There will always be features with
missing values in Big Data related studies. Commonly seen meth-
ods use mean, median or the mode number to fill the blanks
[20]. GIS offers another possible approach, which is to use the pre-
diction value from multiple linear regression based on geocodes
(latitude and longitude), and this way of filling missing values is
more reasonable to the majority of the geo indexed features. Exam-
ples are introduced in Section 3.1.

Last is the feature generation. In many cases, the collected raw
data may not directly contain the information required. Therefore,
further transformation or feature generation is required [20]. For
example, urban vegetation may affect the heat island effect and
thus influence the building energy consumption, and this is one
of the main purposes of having the central park in Manhattan,
New York City. Instead of the vegetation index of the place where
the building is exactly located, the average vegetation index of the
region where the building is located may have more impact on the
building energy use intensity. With the help of GIS and shapefiles
(map files in GIS), these kinds of features can be easily generated
and joined to the dataset. Details and examples are also covered
in Section 3.1.

2.2. Feature selection

Urban scale energy estimation using Big Data analytics may
contain hundreds of attributes, many of which may be irrelevant
or redundant [19,20,24]. In fact, those features may not only slow
down the calculation process but also mix the weight of important
features, and thus lower the model performance. As a result, a
proper feature selection process is a must. Commonly used feature



Fig. 1. The proposed methodology framework.
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selection approaches in computer science can be divided into three
aspects, namely (1) filter methods, (2) wrapper methods, and (3)
embedded methods [34]. This study will compared the perfor-
mance of the representative feature selection approaches in these
three aspects. Details are as follows.

2.2.1. Filter methods
Filter methods basically rank the features based on their rela-

tionship with the target variable. Different methods just vary in
the way of measuring the ‘‘relationship”. Traditional filter methods
are univariate, and only consider the ‘‘distance” between one fea-
ture to the target, using measurements such as information gain
and correlation coefficients [34]. Compared to the wrapper meth-
ods, they are computationally efficient but it is easy to get poor
subsets because the methods ignore the relationship between fea-
tures. To address this issue, this study uses the well-known Corre-
lation Feature Selection (CFS) as the filter method due to its high
computational efficiency and better performance over univariate
methods [24,30,35].

CFS filters features are based on the concept that good subsets
contain features highly correlated with the target, yet uncorrelated
to each other. The criteria is given in Eq. (1) [35].

S ¼ argmax
S

Pk
i¼1Cortiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 2
Pk

i–jCorij
q
2
64

3
75 ð1Þ

where S is the set of selected features with size k, Corij is the corre-
lation between feature i and feature j, and is given by the Pearson’s
correlation coefficient in this study. t refers to the target. By setting
membership indicator functions to the features, Eq. (1) can be
transformed into a combinatorial problem and can be solved using
branch-and-bound algorithms [35].

2.2.2. Wrapper methods
The wrapper methodology is a simple but powerful way to

select features. Unlike the filter methods, the basic idea is to test
the model performance of the subset candidates, and select the
best one. Since every candidate will run through the model, the
drawback of this method is the computation time [34]. In practice,
to conduct a wrapper method, one needs to define (1) which model
to use and how to assess the model performance, and (2) how to
search the space of all possible variable subsets. The first point is
simply based on the problem being studied and the algorithm
being tested, while in regard to the second point, several search
strategies can be used, such as the genetic algorithm, best-first
search, and the greedy algorithm [34]. Among these search algo-
rithms, the greedy algorithm is particularly computationally
advantageous and robust against overfitting [34], and it also comes
close to the optimal solution [20]. As a result, the greedy algorithm
is selected as the search algorithm in the wrapper method in this
study.

There are basically two types of greedy algorithms in feature
selection: greedy forward selection and greedy backward elimina-
tion [34]. The greedy forward selection starts with an empty ‘‘se-
lected” set, and the best of the original features are determined
by the model and added to the selected set. At each subsequent
iteration, the best of the remaining original features is added to
the set [20]. The greedy backward elimination is just the opposite.
It starts with all the original features as the ‘‘selected” set, and at
each iteration, it removes the worst feature remaining in the set
[20]. In this study, since the key features in estimating the building
energy use intensity are a small portion of all the prepared fea-
tures, starting from an empty set to select key features would be
more computationally advantageous, and therefore greedy forward
selection is used as the wrapper method in the case study in
Section 3.

2.2.3. Embedded methods
Embedded methods refer to the feature selection procedure

that has already been designed into the regression/classification
algorithm itself. For example, the Decision Tree algorithm uses
information theory to split and grow the decision tree based on
the selected features [36]. In many cases, the pruned Decision Tree
will only involve a subset of features, and thus the feature selection
is implicitly built into the algorithm. However, this algorithm usu-
ally works better for learning discrete valued functions [36].
Another example is the Elastic Net algorithm, which is also known
as the LASSO method when the parameter a equates 1. Because of
the fast calculation and good regression performance, this method
is widely used in different research fields such as computer science
[37], ecology [38], and energy [19,33]. Details of the algorithm is
covered in Section 2.4.1.

2.3. Validation and parameter identification

Several past studies on estimating the energy consumption
directly assess their prediction performance on the training data,
or just the test data [6,39]. This way of assessment has a high risk
of overfitting [20]. A more objective way of assessing the model
performance is cross-validation [20,25]. As shown in Fig. 2, a 10-
fold cross validation means the whole dataset is divided into 10
mutually exclusive subsets (or folds). The tested regression algo-
rithm will run 10 rounds on the dataset. In each run, one of the
10 subsets is selected as the testing dataset while the remaining



Fig. 2. 5-Fold cross validation.
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9 subsets form the training dataset. The average accuracy of the 10
rounds of testing is calculated as the eventual prediction accuracy.
In this case, each subset is selected as the testing dataset once,
which makes the bias smaller.

By applying cross-validation, we are able to do a more objective
comparative study on the feature selection strategies and the iden-
tification of regression algorithms. In addition, in order to reach the
full potential of the regression algorithms, the optimal parameters
of each algorithm should be identified. A common and efficient
way to do so is named the grid search [40], which is simply an
exhaustive searching through manually specified subsets of the
parameter space of the algorithm. In practice, as shown in Fig. 3,
usually two iterations of grid search helps to identify a pair of
parameters that is close to the optimal value [20].

2.4. Regression

The methodology using multiple features or predictors to deter-
mine the energy consumption is named regression. One of the
most typical regression algorithms is the multiple linear regression
(MLR), the coefficients of which are usually identified using least
squares [41]. In order to address the problem of overfitting,
researchers have developed many shrinkage methods for MLR.
Shrinkage methods are a general technique to improve a least-
squares estimator which consists in reducing the variance by add-
ing constraints on the value of coefficients [37]. Commonly seen
methods in statistics [37] include the ridge regression (Ridge)
[42], least absolute shrinkage and selection operator (LASSO)
Fig. 3. Example of two iteration grid search. The 2nd iteration is grid searching the
surrounding values of the best pair from the 1st iteration using smaller grids.
[43], and Elastic Net [44]. They have also been utilized by several
energy related studies [33,45], and yielded good performance
and fast computation.

In addition, many machine learning algorithms nowadays are
attracting increasing attention due to their powerful prediction
capability in non-linear problems [2,22,25,32]. According to the lit-
erature, the two most commonly used machine learning algo-
rithms in energy related fields are ANN [22,25,30] and SVR
[2,31,32]. Considering different problems may have different
choices of the optimal algorithm, this study will therefore compare
the performance of these representative algorithms under different
feature selection strategies.

2.4.1. Elastic Net
Elastic Net, which was firstly mentioned by Zou and Hastie [44],

is a penalized shrinkage method that integrates LASSO and Ridge
regression. It defines the Elastic Net criterion, the likelihood func-
tion, in Eq. (2).

Lðk1; k2;bÞ ¼ ky � Xbk2 þ k2kbk2 þ k1kbk1 ð2Þ
where y is dependent response, X is the vector of features or vari-
ables, b is the vector of the regression coefficients in the linear
regression, and k1; k2 are fixed non-negative parameters. The coeffi-
cients b is estimated by the minimizer of Eq. (2). The procedure can
be viewed as a penalized least squares method, and the solution is
equivalent to the optimization problem in Eq. (3) [44].

minbky � Xbk2
s:t: akbk2 þ ð1� aÞkbk1 6 t

ð3Þ

where a ¼ k2ðk1 þ k2Þ, t is a constant in the optimization process.

akbk2 þ ð1� aÞkbk1 is called as the Elastic Net penalty, which is a
convex combination of the LASSO and ridge penalty. When a ¼ 1
it becomes the simple ridge regression, and when a ¼ 0 it becomes
the LASSO penalty [19,44]. The R package, Glmnet, developed by
Hastie and Qian [46], reformulate the objective function of Elastic
Net for the Gaussian family distribution into Eq. (4).

b̂ ¼ argmin
b

1
2N

XN
i¼1

ðyi � xibÞ2 þ k½ð1� aÞkbk2=2þ akbk1� ð4Þ

where N is the number of training cases, k > 0 is the complexity
parameter. Coordinate descent can be applied to solve the problem
[47]. Features with non-zero coefficients b after the optimization
are viewed as selected features. According to Hastie and Qian
[46], when training Elastic Net models, the complexity parameter
k and the penalty factor a need to be tuned, and usually a more
stable optimal k is given by the largest value which makes the
cross-validation error within one standard error of the minimum
error.

2.4.2. Artificial Neural Network
ANNs are computational models inspired by the behavior of

neurons and the electrical signals they convey between input, pro-
cessing, and output in a brain [48]. The differences in how neurons
semantically communicate in a model results in different types of
ANN. Examples include the feed-forward neural network, the
radial basis function network, and neural networks in deep learn-
ing [48,49]. The feed-forward neural network is the most typical
ANN, and with proper training, it is flexible enough to approximate
any smooth function [38]. In addition, it has been implemented by
many energy related studies and yielded good performance
[22,25,30,50], so it is selected in the comparative study in this
paper.

A generic feed-forward neural network is shown in Fig. 4. The
output unit is calculated using Eq. (5).



Fig. 4. A generic feed-forward neural network.

Fig. 5. Illustration of n and n� in the hyper-plane.
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where y is the output of the model, u is the activation function, a is
the constant bias, x is the weight of each unit, and O, H, I refers to
the output layer, hidden layer and input layer, respectively. The
activation function uH

h in the hidden layer is almost always taken
to be the logistic function, while the output function uO is a linear
function in regression [38].

Identification of the weights and biases is solved by minimizing
the loss function (e.g., least squares) with the regularization shown
in Eq. (6) using gradient descent [38].

LðyÞ ¼
X
k

jyOk � ykj2 þ kdx
2 ð6Þ

where k refers to the training cases, yk is the true value of case k,x2

is the sum of squares of the weights, and kd is the weight decay, the
use of which seems both to help the optimization process and to
avoid over-fitting [38,51]. According to Venables and Ripley [38],
the size of the hidden layer h and the weight decay kd are sensitive
to the model performance and need to be tuned in practice.

2.4.3. Support Vector Regression
SVR is the version of Support Vector Machine (SVM) for regres-

sion. The goal of SVR [52] is to find a function fðxÞ that has at most
e deviation from the actually obtained targets yi for all the training
data, and at the same time is as flat as possible. In other words, we
do not care about errors as long as they are less than e, but would
not like to accept any deviation larger than this. Such a concept of
learning yielded good performance in many energy related studies
[2,31,32]. The algorithm tries to solve the convex optimization
problem shown in Eq. (7).

min 1
2 kxk2 þ C

Xl

i¼1

ðni þ n�i Þ

s:t:

yi �xx� b 6 eþ ni
yi �xx� b P �e� n�i

ni; n
�
i P 0

8><
>:

ð7Þ

where x is the vector of the regression coefficients, b is the regres-
sion intercept, e is the deviation margin, C is a regularization term
that determines the degree of the linear penalty applied to the
residual excess. ni and n�i , which are illustrated in Fig. 5, are the slack
variables in the ‘‘soft margin” loss function [52].

The optimization problem in Eq. (7) can be solved using a stan-
dard dualization method utilizing Lagrange multipliers [52], and
the solution is given by Eq. (8).

yO ¼
Xnsv
i¼1

ðai � a�
i ÞKðx0; xÞ ð8Þ

where nsv is the number of support vectors, ai and a�
i are Lagrange

multipliers, and Kðx0; xÞ is the kernel function. The Gaussian radial
basis function (RBF) shown in Eq. (9) is used as the kernel in this
study due to its ability in generalizing non-linear functions and its
efficiency in large datasets [2].

Kðx0; xÞ ¼ expð�cjx� x0j2Þ ð9Þ
where c is the kernel parameter that defines the radius of influence
for each data point. According to Jain et al. [2], the kernel parameter
c, the training tolerance e and the regularization term C are sensi-
tive to the model performance and need to be tuned in practice.

3. Estimation of the energy use intensity of residential buildings
in New York City

To test the effectiveness of the proposed methodology frame-
work and compare the different feature selection strategies and
regression algorithms, we conducted a case study in New York City
(NYC) by estimating the site energy use intensity (EUI) of multi-
family residential buildings. The reasons to choose NYC include,
firstly, there is existing literature [6,19] estimating the building
energy consumption in NYC, which allows a comparison with our
results. Second, the government of NYC has publicized more than
1000 datasets [53] regarding various aspects of city performance
such as education, housing and transportation. This allows the
application of our methodology framework.

3.1. Data collection and preprocessing based on GIS

Due to the Local Law 84 of the NYC government [54], the gen-
eral public is able to get both of the site EUI and source EUI data
of buildings in NYC. In order to make the results comparable, the
site EUI was selected as the target in the regression model follow-
ing Hsu’s work [19]. The latest available data is for the year of 2013
[53]. The parcel number system, Borough Block and Lot (BBL), is
provided to identify the buildings. By connect the BBL to the build-
ing data in the primary land use tax lot output (PLUTO) database
provided by the Department of City Planning (DCP), we were able
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to get the data on detailed areas for different building usage. To
avoid the influence from mixed residential/commercial buildings,
only buildings with 100% residential areas were selected in the
study. This resulted in 3854 multi-family residential buildings.
After removing the outliers using boxplot statistics, there remained
3640 buildings, comprised of 1097 buildings in Brooklyn, 933 in
Manhattan, 853 in The Bronx, 725 in Queens, and 32 in Staten
Island.

The raw data of the features were mainly collected from three
data sources: (1) the PLUTO database provided by DCP, (2) the
2013 American Community Survey (ACS) 5-year estimates from
the U.S. Census Bureau, and (3) the NYC Open Data [53]. After
the GIS integrated preprocessing, there were 216 continuous fea-
tures prepared for the regression. Table 1 summarizes the source
of these features with different categories.

The GIS tool used in this study was ArcGIS 10.2, and it played an
important role during the preprocessing. First is the data integra-
tion, which was done with the help of the geocoding toolbox in
ArcGIS, and the shapefiles from NYC department of city planning
and the government website of NY state. Second is the missing
data. By using the geostatistical analyst tool in ArcGIS, some miss-
ing values in the ACS database were filled with the multiple linear
regression value based on the geolocations. An example is shown
in Fig. 6. Last is feature generation. As shown in Table 1, there
are 64 features in total generated in ArcGIS. The majority of the
64 features are generated using the shapefiles or shape areas calcu-
lated in ArcGIS to get the density value, such as population density
and traffic density; or using the spatial analyst tool to calculate the
distance to the nearest place of interest, such as the distance to the
coast line, and distance to the nearest subway entrance. One spe-
cial example is the generation of the vegetation feature. The reason
why this feature is worthy of studying is explained in Section 2.1.
The feature was added based on the Normalized Difference Vegeta-
tion Index (NDVI), which is an index of plant ‘‘greenness” or photo-
synthetic activity, and is one of the most commonly used
vegetation indices [45]. As shown in Fig. 7, by downloading the
remote satellite sensing figures captured by the Landsat 8 satellite
from the U.S. Geological Survey, ArcGIS is able to calculate the
NDVI [55,56]. The scene shown in Fig. 7 was captured at
15:33 pm July 31th, 2014, with 2% cloud coverage.
3.2. Results and discussion

The programs are coded in R x64 3.2.2 using a PC with an i7-
3770 CPU at 3.40 GHz and Windows 7 Enterprise 64-bit OS
installed. In order to make the results comparable, the features
and the target were standardized and transformed following Hsu’s
work [19]. The calculation results, which are measured by the
mean squared error (MSE), are shown in Table 2. Due to the GIS
integrated feature engineering process, the optimal MSE (0.838)
of the Elastic Net in this study is lower than the MSE in Hsu’s work
[19].
Table 1
Summary of the prepared features in different categories.

Category ACS ArcGIS

Building 10 4
Demography 14 7
Economy 24 14
Education 12 5
Environment 4
Households 48 18
Surrounding 12
Transportation 4
Total 112 64
The last column of Table 2 shows the average MSE of the algo-
rithms using different feature selection strategies. It can be seen
that Elastic Net has the highest MSE with 0.838 compared to
ANN and SVR. This is because although Elastic Net uses shrinkage
methods to regularize the estimators, the algorithm is still based
on linear models, while ANN and SVR were designed to model
non-linear regressions. On the other hand, compared to the other
two algorithms, Elastic Net only took 0.9 s to model the regression,
and the MSE is only 0.013 higher than ANN using the full set of fea-
tures. Such an efficient performance is the reason why this algo-
rithm is widely used in computer engineering [38]. SVR, with an
average MSE of 0.750, outperforms the ANN (0.802), and the com-
putation time is significantly less than ANN, regardless of the fea-
ture selection methods. This shows that, to the regression problem
in this study, SVR is a better choice.

The characteristics of different feature selection methods can
also be reflected in Table 2. First is the filter method. By comparing
the results calculated using the full set of features (Null) and the
CFS filter method, it can be seen that CFS helped to significantly
reduce the feature size and the computation time, while did not
lose much MSE. Second is the wrapper method. Greedy forward
selection helped produce a lower MSE than either CFS or Null,
and the number of selected features is even smaller than in the
CFS method. However, the drawback of this method is quite obvi-
ous. Its computation time is dramatically longer than the other
methods. Last is the embedded method. The performance of Elastic
Net is limited by the linear model as mentioned previously, but the
features selected by Elastic Net may be useful. In fact, this study
tried building SVR and ANN models on the 45 features selected
by Elastic Net, and to our surprise, such a combination produced
good performances. For example, the model generated by SVR +
Elastic Net not only had the lowest MSE (0.728) but also a very
short computation time, which is only 1.7 s slower than SVR + CFS.

As a result, the best-performance model generated by SVR +
Elastic Net was used to estimate the site EUI of the rest of the
multi-family residential buildings in NYC. According to the PLUTO
database [57], there are totally 143,080 multi-family residential
buildings in NYC. By excluding the 3640 buildings used previously,
there were 139,440 left. The 216 features of these 139,440 build-
ings were extracted and prepared from the same data source using
the same GIS integrated process. Fig. 8 shows a map of the median
estimated site EUI of the multi-family residential buildings on a
Block Group basis, which is the minimum survey unit in American
census. It can be seen that the Bronx, southeastern Queens, and
northern Manhattan have relatively higher site EUI, while Staten
Island, southern Manhattan and southern Brooklyn have relatively
lower site EUI. Such a map can facilitate city planning during policy
making. For example, districts with higher median site EUI reveal
higher necessity for building retrofitting, and the government is
suggested to put out relative policies to improve the energy perfor-
mance of those districts.

Table 3 shows the 45 features selected and used in the SVR +
Elastic Net model. It can be seen that 19 out of the selected 45
PLUTO Open data Total

15 2 31
1 22

10 48
17

5 9
66

3 15
4 8

25 15 216



Fig. 6. An example of filling missing values using ArcGIS. For the presentation purpose, the map was cropped into Manhattan borough. (a) The plot of median monthly owner
cost as a percentage of household income from the ACS datasource based on Block Groups with missing values. (b) The estimated value distribution using the geostatistical
analyst toolbox in ArcGIS. (c) The plot with missing values filled.

Fig. 7. Calculation of NDVI from the Landsat 8 satellite figures using ArcGIS.

Table 2
Summary of the MSEs calculated by using different feature selection strategies and regression algorithms.

Algorithm Feature selection strategy Number of selected features Cross-validation MSE (10-fold) Computation time (s) Average MSE

SVR Null 216 0.759 43.4 0.750
CFS 25 0.773 14.0
Greedy forward 19 0.739 11.2 h
Elastic Net 45 0.728 15.7

ANN Null 216 0.825 815.6 0.802
CFS 25 0.832 39.4
Greedy forward 17 0.781 13.6 h
Elastic Net 45 0.770 61.8

Elastic Net Elastic Net 45 0.838 0.9 0.838
LASSO ða ¼ 1)a N/A 0.990 N/A 0.993
Ridge ða ¼ 0Þa N/A 1.000 N/A
Elastic Neta N/A 0.990 N/A

a The results from Hsu’s work [19], and N/A means not available.
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Fig. 8. The map of the median estimated site EUI of the multi-family residential buildings in NYC on a Block Group basis.

Table 3
Summary of the selected 45 features by Elastic Net.

Category Features

Building (11) Building age; total residential units; num. of floors;
mean residential unit size; lot frontage; nearby
complaints about residential buildingsb; floor area
ratio; building frontage; % households heat house
by gasa; % households heat house by fuela; median
building age of owner occupied householdsa,b

Demography (3) Population densitya,b; density of population over
60a,b; % white peoplea

Economy (10) Median gross rent as % of household incomea,b;
median gross rent of occupied units paying renta,b;
median households incomea,b; median monthly
owner costsa,b; median monthly owner costs as % of
household incomea,b; median monthly owner costs
of housing units with a mortgagea,b;
unemploymenta; exempt land value; % exempt land
value over total land value; % exempt total value
over total property value

Education (3) % 25 or over that has bachelor degree or highera; %
people without any educationa; num. of people
currently enrolled in college or graduated schoola

Environment (2) Avg. nearby NDVIb; nearby complaints about party
noiseb

Households (8) Avg. household sizea,b; % 1-person householdsa; %
family householdsa; % households living in
buildings built after 2000a; % households living in
buildings built before 1980a; % households that has
people over 60a; % people go to work in the
afternoona; % vacant housing unitsa

Surrounding (5) Num. of nearby senior centersb; num. of nearby
subway entrancesb; dist. to the nearest pedestrian
plazab; num. of nearby hospitals or clinicsb; dist. to
the nearest subway entranceb

Transportation (3) Mean travel time to worka,b; % people drive alone to
worka; % people using public transportation to
worka

a Features that were prepared from the ACS database, are based on the Block
Group where the building locates.

b Features that were either using GIS to fill the missing values or generated with
the help of GIS.
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are related to GIS, and this, from another aspect, supports the effec-
tiveness of integrating GIS in feature engineering. In addition, as
shown in Table 3, the categories of building, economy and house-
holds have more selected features, while the categories of demog-
raphy, education, environment and transportation have less
selected features. However, this study did not further rank and
evaluate the feature influence of each of these 45 features, because
of two reasons. Firstly, the exploration of feature influence should
be based on the SVR model, and since in SVR models the regression
is based on support vectors, the feature influence or coefficients of
the features cannot be directly examined. The related literatures in
machine learning are more about feature selection using the wrap-
per methods instead of evaluating the variable importance [58,59].
Secondly, 171 features are not selected by Elastic Net, but it does
not mean that they are all less important or irrelevant to the site
EUI of the buildings. For example, one feature is the year when
the latest major renovation of the building was conducted, and if
no renovation ever happened it will use the year when the building
was built. This feature has a high correlation with the building age,
and is expected to be related to the site EUI of the buildings. How-
ever, it was not selected by Elastic Net. On the other hand, it is hard
to explain the relationships between the site EUI and a few of the
selected features, such as the number of nearby hospitals in the
surrounding category. They were shortlisted either because they
might be the least influential features in the selected 45, or were
included due to the data noise. A further systematic methodology
should be designed to evaluate the feature influence of all these
216 features over the site EUI in a more objective way.

To further support the effectiveness of the proposed methodol-
ogy framework, the source EUI of the 3640 residential buildings is
also estimated to compare with the results in the study conducted
by Howard et al. [6]. In their work, floor areas and regional energy
consumption were used to estimate the source EUI of different
building types. The comparison of the average estimated source
EUI of residential buildings in each borough is shown in Table 4.
The results of this study were calculated through a 10-fold cross-
estimation process using SVR + Elastic Net. It can be seen that, if



Table 4
Comparison of the mean estimated source EUI in each borough in NYC with the past work.

Borough Average reported source EUI from the
government data in 2013 (kW h/m2)

Source EUI estimated by
Howard et al. [6]

Source EUI estimated in this
study

Average Error Average Error

Brooklyn 367.05 356.70 2.82% 371.92 1.33%
The Bronx 400.35 277.70 30.64% 406.00 1.41%
Manhattan 383.27 311.90 18.62% 385.74 0.64%
Queens 375.74 356.70 5.07% 382.99 1.93%
Staten Island 412.83 356.70 13.60% 429.85 4.12%
Average 387.85 331.94 14.15% 395.30 1.89%

Fig. 9. Estimated energy demand per Block Group area for space heating of multi-family residential buildings in NYC. (A) Total energy demand for space heating. (B) Fuel
demand for space heating. (C) Gas demand for space heating. (D) Electric demand for space heating.
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using the average self-reported source EUI from the government
data in 2013 [54] as the benchmark, the average error of our esti-
mations is 1.89%, which is lower than that estimated by Howard
et al. [6]. In addition, by utilizing the data on the annual energy
consumed for different end use of residential buildings in NY state
from the Residential Energy Consumption Survey [6,60], the total
energy demand for different end use of the multi-family residential
buildings can also be estimated. An example of the estimated total
energy demand for space heating is shown in Fig. 9. Since the
energy demand for space heating is quite seasonal, the distribution
shown in Fig. 9 can be useful reference when planning urban
energy infrastructures.
4. Conclusions

To conclude, this study proposes a methodology framework to
estimate the building energy use intensity on the urban scale by
integrating GIS and Big Data technology. The framework addressed
the major challenges of data mining in the urban scale, including
preprocessing, feature selection, and algorithm optimization. A
case study on estimating the energy use intensity of 3640 multi-
family residential buildings in NYC was conducted to test the effec-
tiveness of the proposed methodology framework. The results
showed that the framework was able to help produce lower esti-
mation error than in previous research.

The contributions of the work can be summarized into three
aspects. First is the methodology framework. Feature engineering
is known as the key in data mining [20]. The integration of GIS into
this most important data mining step has shown lots of benefits,
such as connecting high dimension geo based datasets conve-
niently, filling the missing values nicely, and helping generate
many useful features which may be easily overlooked using tradi-
tional feature management tools in urban scale energy related
problems. In addition, data mining is such a practical tool that by
changing the features, the target, and the algorithms, the frame-
work can be easily extended to solve other urban scale research
problems, such as estimating the urban scale air quality distribu-



J. Ma, J.C.P. Cheng / Applied Energy 183 (2016) 182–192 191
tion and the noise pollution. Second is the case study on the resi-
dential buildings in NYC. By using the extensive open data in
NYC, the study was able to estimate the energy use intensity of res-
idential buildings with less error than previous research, and the
estimated maps can be useful references for energy planning and
policy making. Last is the comparative study on feature selection
strategies and regression models. The case study shows that the fil-
ter methods can significantly reduce the feature size and the com-
putation time, and some even produce better performance (filter
features using Elastic Net). The wrapper methods generally have
better performance than using the full set of features but dramat-
ically increase the computation time. The comparison between dif-
ferent algorithms shows that SVR is an efficient and effective
regression algorithm for non-linear models. ANN, particularly the
feed-forward neural network, underperformed SVR and consumed
longer computation time according to the case study. However,
ANN is still believed to be a worth-trying regression tool for non-
linear problems considering its extensive possibilities for further
adjustment.

The limitation of this paper is that the data used in the case
study are not balanced. Only 32 out of the 3640 buildings are from
Staten Island, which makes the average prediction error for that
borough higher than the others in Table 4. Future work can be to
explore a systematic methodology to objectively evaluate how
the features influence the energy use intensity.
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