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Abstract Most of the existing studies in temporal data mining consider only lifespan of items to

find general temporal association rules. However, an infrequent item for the entire time may be fre-

quent within part of the time. We thus organize time into granules and consider temporal data min-

ing for different levels of granules. Besides, an item may not be ready at the beginning of a store. In

this paper, we use the first transaction including an item as the start point for the item. Before the

start point, the item may not be brought. A three-phase mining framework with consideration of

the item lifespan definition is designed. At last, experiments were made to demonstrate the perfor-

mance of the proposed framework.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data mining can help derive useful knowledge from databases.
Among its technology, association-rule mining [1,3,28] considers
frequency relationship among items and is commonly applied

to many applications. A transaction usually includes the items
bought and the time of its occurrence. Besides, the periods for
items to be exhibited are also important. Some researches

about temporal data mining were thus presented [27]. For
example, the time period for an item may be the entire time
interval of a database [5], the duration from the first occurring
time of the item to the end of a database [20], or the on-shelf

time periods of the item [8]. However, an infrequent item for
the entire time interval may be frequent within part of the time.
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Table 1 An example of a temporal database.

Period TID Items

p1 Trans1 D

Trans2 C, D

Trans3 C

Trans4 D

p2 Trans5 A, C, D

Trans6 A, B, C, D

Trans7 B, C, D

Trans8 A, D

p3 Trans9 B

Trans10 A, C

Trans11 A, B, C

Trans12 B, C

p4 Trans13 B, D

Trans14 B, C, D

Trans15 B

Trans16 B, C, D
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In this paper, we thus organize time into granules and con-
sider temporal data mining for different levels of granules. We
use the first transaction including an item as the start point for

the item. We propose a three-phase mining framework with
consideration of the above item lifespan definition to mine
temporal association rules with time granules from a temporal

database. According to the definition of item lifespan, in the
first phase, each elementary time interval is processed. The
temporal frequent itemsets within the above intervals are first

found, and then the itemsets are identified as candidate tempo-
ral frequent ones in all the time granules of the upper level of
the hierarchy. These candidates are then judged for being tem-
poral or not at each level of granules. Additional database

scans may be needed to find the actual supports of the candi-
dates. In the third phase, the possible candidate association
rules are derived from the temporal frequent itemsets at each

level. Their confidence values are then calculated and com-
pared with the minimum confidence value to get the final tem-
poral association rules.

The organization of the paper is stated below. Related
works are given in Section 2. The problem to be solved is
described in Section 3. The proposed algorithm with consider-

ation of the first transaction appearance period is presented in
Section 4. The performance of the proposed approach is
shown in Section 5. Conclusions and future works are finally
given in Section 6.

2. Review of related works

Temporal data mining is popular in recent years. It analyzes

temporal data to get patterns or regularities. There are many
techniques included in temporal data mining. Sequential asso-
ciation mining [2], cyclic association mining [22], stock trading

rule mining [11], patent mining [12], clinical mining [25], image
time series mining [15], software adoption and penetration
mining [23], temporal utility mining [9,29], fuzzy temporal

mining [6,16,17], and calendar association mining [21] all
belong to it. There are also a variety of applications for tempo-
ral data mining. For example, Patnaik et al. used temporal

data mining to efficiently manage the cooling system in data
centers [24], and Rashid et al. adopted it for finding the corre-
lation among sensor data [26].

Chang et al. considered the temporal mining problem of

products exhibited in a store [5]. They proposed the concept
of common exhibition to find patterns. In a common exhibi-
tion period, all the items in an itemset need to be on the shelf

at the same time. Lee et al. then used it to discover general tem-
poral association rules for publication databases [20]. Ale and
Rossi then considered the transaction periods of products [4],

instead of their exhibition periods, for finding temporal associ-
ation rules. Besides, different products may have different on-
shelf properties. For example, a popular product may be sold
out quickly, and then be supplied and on shelf soon. It is thus

intermittently on-shelf and off-shelf in the entire time [18].
As to hierarchical temporal mining, Li et al. proposed an

approach to discover calendar-based temporal association

rules [21]. That approach could mine rules according to differ-
ent calendar constraints including years, months and days.
Chen et al. proposed a hierarchical strategy for video event

detection from video databases [7]. They divided the frequent
actions into two types, namely pre-actions and post-actions
by pre- and post-temporal windows. Fang and Wu used
Please cite this article in press as: T.-P. Hong et al., Discovery of temporal associati
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granules of features to speed up the mining process of associ-
ation rules [10].

In this paper, we consider the phenomenon that an itemset

may not be frequent in the entire time interval, but may be fre-
quent in a partial time interval. We thus organize the time into
different levels of granules and find the temporal association

rules at each level. This paper is extended from our previous
work [19] with different consideration of effective time inter-
vals. Here we use the first occurring transaction of an item

as the start point for the item. Before the start point, the item
may not be brought since it is not ready. This definition is of
the benefit that it is not necessary to require the exact on-
shelf time of each item in advance.

3. Problem statement and definitions

To describe the problem of hierarchical temporal association
rule mining clearly, assume a temporal database (abbreviated
as TDB) in Table 1 is given. Four items are included in the
transactions, denoted A to D.

In addition, there is a pre-defined hierarchy with time gran-
ules in three levels, in which there are four basic time periods,
denoted as p1 to p4, and the time granules are in three levels in

the hierarchy, as shown in Fig. 1. Based on Fig. 1 and Table 1,
{C} ? {D} is one of hierarchical temporal association rules
occurring in the time granule p12. The goal of this paper was

to mine such temporal association rules, and the detailed def-
initions and examples will be described as follows.

The terms related to the hierarchical temporal mining under
the first occurring transaction periods of items are explained below.

Definition 1. P= {p1, p2, . . ., pj, . . ., pn} is a set of mutually
disjoint time periods, where pj denotes the j-th time period in
the whole set of periods, P.

Definition 2. Let I = {i1, i2, . . ., im} be a set of items appearing

in a database. If X # I, then X is called an itemset.

Definition 3. Let X be an itemset and t be a time stamp. A
transaction T is a pair (X, t).
on rules with hierarchical granular framework, Applied Computing and Infor-
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Figure 1 An example of time granules.
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Definition 4. A temporal transaction database TDB =
{Trans1, Trans2, . . ., Transy, . . ., Transz}, where Transy is the
y-th transaction in TDB.

Definition 5. The maximal time period of an item i, MTP(i), is
from the time period of the first occurring transaction of the
item to the last time period of the temporal database.

Definition 6. The maximal time period of an itemset X, MTP

(X), represents the common time period of the maximal time
periods of all items in X in a temporal database TDB.

Definition 7. A hierarchy of time granules, HTG, is composed

of a set of basic time periods. In addition, a time granule pgl.g
represents the g-th time granule in the l-th level of the hierar-
chy, and it consists of the basic time periods contained by the
time granule pgl.g.

Definition 8. The count c(i, p) of item i in a basic time period p
is the number of transactions with i in p.

Definition 9. The relative support rsup(i, pg) of item i in a hier-
archical time granule pg is the number of transactions with i in

its maximal time period of pg over the number of all transac-
tions within its maximal time period of pg.

Definition 10. The relative support rsup(X, pg) of itemset X in

a hierarchical time granule pg is the number of transactions
including the itemset X in its maximal time period of pg over
the number of all transactions in its maximal time period of pg.

Definition 11. Let min_rsup be a given minimum relative sup-

port threshold. If rsuppg(X) = min_rsup, X is called a hierarchi-
cal temporal frequent itemset (abbreviated as HTFI).

Definition 12. Assume X is a hierarchical temporal frequent q-
itemset with items (x1, x2, . . ., xq), qP 2. The relative confi-

dence rconf(R, pg) of a hierarchical temporal association rule
within a time granules pg, which is denoted as {x1^. . .^xk-
�1^xk+1^. . .^xq} ? {xk}, is shown below:

rconfð x1 ^ . . . ^ xk�1 ^ xkþ1 ^ . . . ^ xq

� �
; fxkg; pgÞ

¼ rsupðXÞ
rsupðfx1; x2; . . . ; xk�1; xkþ1; . . . ; xqgÞ

Definition 13. Let min_rconf be a given minimum relative con-
fidence threshold. For a rule R, if rconf(R, pg) = min_rconf, R
is called a hierarchical temporal association rule (abbreviated

as HTAR).
Please cite this article in press as: T.-P. Hong et al., Discovery of temporal associati
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Table 1 is a simple example showing that, the fifth transac-
tion {A, C, D} contains three items, A, C, and D, and the time
stamp of the transaction is p2. In Table 1, the first time period

is represented as p1, and P includes four time periods, p1, p2, p3,
and p4. In this example, the itemset {AB} containing two items
is called a 2-itemset. Since the first transaction including the 1-

itemset {B} is the sixth transaction in TDB, and the first time
period of the transaction and the last time period of the data-
base are p2 and p4, respectively, the maximal time period MTP

({B}) of the item B is p2 to p4. Also, the maximal time period of
{BCD}, MTP({BCD}), is from p2 to p4 based on the maximal
time periods of the three items, B, C and D. By considering
Fig. 1, the hierarchy is composed of four basic time periods

in the temporal database, p1, p2, p3, and p4, and the second
time granule pg2.2 in the second level of the hierarchy is com-
posed of p3 and p4. Since item B appears in Trans6 and Trans7,

within the first basic time period p2, the count value c({B}, p2)
of the item in p2 is the value of 2. Accordingly, the rsup({B},
pg2.1) = 2/4 = 50%. In this example, the maximal time period

of the item B is set as pg2.1 and only p2 contains the item B.
That is, the number of transactions containing B and all the
transactions in p2 are 2 and 4, respectively. Also, the rsup

({AB}, pg2.1) = 1/4 = 25% since the maximal time period of
the itemset {AB} in pg2.1 only includes p2, and the number of
transactions including {AB} and all the transactions in p2 are
1 and 4, respectively. Further, the rsup({CD}, pg2.1) = 50%.

If the min_rsup= 30%, then the itemset {CD} is a hierarchical
temporal frequent itemset within the time granule pg2.1. Since
the rsup({C}, pg2.1) = 62.5%, the rconf({C} ? {D}, pg2.1) =

50%/62.5%= 80%. It is then compared with min_rconf.
Based on the above definitions, the problem to be solved is

to find the hierarchical temporal association rules with their

actual relative support and confidence values within the max-
imal time period of the itemset of a time granule being larger
than or equal to a predefined minimum relative support

threshold min_rsup and a predefined minimum relative confi-
dence threshold min_rconf, respectively.
4. The proposed algorithm

The proposed approach considers the first occurring transac-
tion period information of products and is processed in three
phases. It also adopts a predicting strategy which can reduce

the number of data scan by the upper-bound support. Basi-
cally, the proposed method is a level-wise algorithm which
mines the frequent itemsets level by level and period by period.

The main contribution of the proposed method is to reduce the
number of data scanning, which can be approved by the exper-
imental results later. The mining procedures of the proposed

algorithm are stated as follows.
The TPPF algorithm (three-phase algorithm with predict-

ing strategy considering the first occurring transactions of
items) is as follows:

INPUT: A temporal database TDB with n transactions,
each of which consists of transaction identification, transac-

tion occurring time and items purchased, m items in TDB, a
hierarchy with time granules HTG, the minimum relative
support threshold min_rsup, and the minimum relative con-

fidence threshold min_rconf.
on rules with hierarchical granular framework, Applied Computing and Infor-
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OUTPUT: A final set of all hierarchical temporal associa-

tion rules, HTAR.

Phase 1: Find temporal frequent itemsets.

STEP 1: Initialize the PTT (Periodical Total Transaction)
table as a zero table, in which the row number is
the time period number of the bottom level in

the hierarchy of time granules, and each entry in
the table is set as 0.

STEP 2: Find the periodical total transaction number pttj
within each time period pj of the bottom level in
HTG as the number of transactions in pj, and
put it in the PTT table.

STEP 3: Initialize the first appearance period FAP table as
an empty table, in which each tuple consists of two
fields: an item and the time period p of the first
transaction including it in TDB.

STEP 4: Find the time period p of the first transaction
including the item I in TDB, and then put the
item and its first time period p in FAP.

STEP 5: Find the temporal frequent itemsets within each
time period p by the Finding-Individual-TFI proce-
dure. Let the set of returned temporal frequent

itemsets for the j-th time period pj of the bottom
level of HTG be denoted as TFIj.

Phase 2: Find all hierarchical temporal frequent itemsets.

STEP 6: Initially set the set of hierarchical temporal fre-
quent itemsets (HTFI) as empty.

STEP 7: For each time period granule pg in each of all the
other levels in HTG other than the bottom one, do
the following substeps.

(a) Get the union of all TFIj’s in pg, and denote
them as possible itemsets, PIpg.

(b) For each itemset X in the set of PIpg, find the

maximum common period MCPX of all the
items in X within the time granule pg by using
the FAP table and then calculate the relative
support upper-bound rsubpg,X of X within the

time granule pg as:0 1
Please cite this arti
matics (2016), http
rsubpg;X ¼
X

pj2MCPx^pj # pg

cactualj;X þ
X

pj2MCPx^pj # pg

cubj;X
@ A
X

pj2MCPx^pj # pg

,
pttj;
where cactualj;X is the actual count of X within the j-
th time period pj of the time granule pg by the

sets of all TFIj of the time granule pg, and cubj;X
is the upper-bound (¼ k � pttj � 1) of X within

pj of pg by the PTT table.
(c) For each itemset X in set of PIpg, calculate the
relative support lower-bound rslbpg,X of X
within the time granule pg as:,

rslbpg;X ¼

X
pj2MCPx^pj # pg

cactualj;X

X
pj2MCPx^pj # pg

pttj:
cle in press as: T.-P. Hong et al., Discovery of temporal association rules
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(d) Store each X in the set of PIpg whose rslbpg,X

exceeds the minimum relative support thresh-
old min_rsup into the set of hierarchical

temporal frequent itemsets (HTFI) and set
PIpg = PIpg � X.

(e) For each itemset X remaining in the current set
of PIpg, scan the transactions to calculate the

relative support value rsuppg,X within the time
granule pg as: ,
with hi
rsuppg;X ¼
X

pj2MCPx^pj # pg

Cj;X

X
pj # pg

pttj;
(f) Store each X in the set of PIpg whose relative

support exceeds the minimum relative support

threshold min_rsup into the set of hierarchical
temporal frequent itemsets (HTFI); otherwise,
set PIpg = PIpg � X.

Phase 3: Find all hierarchical temporal association rules.

STEP 8: Initially set the set of hierarchical temporal fre-
quent sub-itemsets (HTFS) as empty.

STEP 9: For each itemset X in the HTFI set, do the follow-
ing substeps:
(a) Generate all possible sub-itemsets of the item-

set X.

(b) For each sub-itemset s, check whether the sub-
itemset s with the same common period exists
in the HTFI set. If it does, put the sub-itemset

s in the HTFS set and use the relative support
value of s in the HTFI set as the relative sup-
port value of s in the HTFS set; otherwise,

scan the transactions of the required time peri-
ods to find the relative support value of s, and
then put s with its relative support value in the
HTFS set.

STEP 10: For each itemset X with items (x1, x2, . . ., xr) in
the HTFI set, generate all possible hierarchical

temporal association rules and calculate the rela-
tive confidence value rconfpg,R of each possible
rule R.

STEP 11: Output the final set of hierarchical temporal asso-
ciation rules (HTAR) exceeding the minimum rel-
ative confidence min_rconf.

After STEP 11, all the rules in the set of HTAR have been
found from the temporal database. The Finding-Individual-TFI
procedure used in STEP 5 is described below. Here, the tradi-

tional Apriori algorithm is adopted to derive frequent itemsets
from the transactions within a time period.

The Finding-Individual-TFI procedure is as follows:

Input: A set of transactions TDBj within a time period pj.
Output: The temporal frequent itemsets TFIj in pj.

PSTEP 1: Set r= 1 and Cjr to include all the items in the
time period pj.

PSTEP 2: For each temporal candidate r-itemset in the set

of Cjr within TDBj, scan TDBj to store the
erarchical granular framework, Applied Computing and Infor-
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Figure 2 The pruning effects of the two approaches on the

synthetic data.
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itemset whose count exceeds the threshold of

k � pttj into TFIjr.

PSTEP 3: Generate the temporal candidate set Cj(r+1) from
TFIjr in the current time period pj. The r-sub-
itemsets of each candidate in Cj(r+1) must exist

in TFIjr.
PSTEP 4: If Cj(r+1) is not null, set r = r + 1 and repeat

PSTEPs 2 to 3; otherwise, set TFIj ¼
Sk¼r

k¼1TFIjk
and return TFIj.

5. Experimental results

In this section, the experimental results for showing the prun-
ing effects and efficiency of the proposed TPPF approach are
presented. As a comparison, the basic three-phase algorithm

without consideration of the predicting strategy (named TP-
HTAR, Three-Phase algorithm for Hierarchical Temporal
Association Rules) is derived from the proposed TPPF

approach. The experimental environment included a personal
computer with 3.0 GHz CPU and 2 GB memory, running
J2SDK 1.6.0. The two methods were performed on the same

machine using the same program language, data and parame-
ter settings. The execution time included data input, generation
of frequent itemsets and result output.

5.1. Experimental datasets

Two datasets including synthetic data and real data were used
to conduct the comprehensive empirical study. In terms of the

synthetic data, it was generated by the public IBM data gener-
ator [14]. The temporal database was generated by the model
used in [18]. The detailed information of the synthetic data is

shown in Table 2.
To attack the insufficiency of the synthetic data, we also

adopted a real dataset Foodmart as the other experimental

data. The Foodmart database is a well-known dataset from
Microsoft SQL Server 2000. It includes 21,556 transactions
and 1600 items.

5.2. Experimental results on synthetic data

The synthetic T10I4N4KD100KP16 dataset was first used in
the experiments. It was divided into 16 basic time periods,

which were organized into a hierarchy of 4 levels. Fig. 2 shows
the pruning effects of the two approaches, TP-HTAR and
TPPF, for the T10I4N4KD100KP16 dataset for different

thresholds within 0.3–0.4%.
Table 2 Parameter values of the synthetic data.

Parameter Description Default

value

T The average length of items per

transaction

10

I The average length of maximal potentially

frequent itemsets

4

N The total number of items 4000

D The total number of transactions 100,000

P The number of basic periods 16

Please cite this article in press as: T.-P. Hong et al., Discovery of temporal associati
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From the results in Fig. 2, it can be observed that TPPF
needed less database scans than TP-HTAR. It was because
TP-HTAR purely used the level-wise technique to handle the
problem of hierarchical temporal issues. In addition, if all

the frequent itemsets in each basic period were identified as
possible hierarchical temporal itemsets, then the transactions
in the time periods, in which the relative supports of the pos-

sible itemsets were unknown, had to be scanned to find the
actual relative supports for itemsets. Thus, the TP-HTAR per-
formed worse than the proposed TPPF in terms of avoiding

unnecessary data scans.
The experiments were then conducted to evaluate the effi-

ciency of the two algorithms, TPPF and TP-HTAR, for the

hierarchical temporal mining issue, and Fig. 3 shows the
results of the two algorithms working on the
T10I4N4KD100KP16 dataset with 16 basic periods and 4
levels for the synthetic datasets with the thresholds varying

from 0.3% to 0.4%.
The results clearly show that the execution time of the

TPPF for the hierarchical temporal mining issue performed

better than the other algorithm, TP-HTAR. The reason was
the same as that mentioned above. Since TPPF obviously
needed less data scans than TP-HTAR, the time cost of unnec-

essary data scans could effectively be saved by the TPPF.
Figure 3 The execution time of the two approaches on the

synthetic data.

on rules with hierarchical granular framework, Applied Computing and Infor-
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Figure 4 Execution time of generating association rules under

different minimum confidences on the synthetic data.

Figure 5 The execution time of the two approaches on the real

dataset Foodmart.

Figure 6 The execution time of generating association rules

under different minimum confidences on the real data.
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Accordingly, TPPF could be more efficient than TP-HTAR
for the synthetic dataset.

In addition to the above experimental results of discovering

the frequent itemsets, we also conducted an empirical study for
the efficiency of generating association rules based on the dis-
covered frequent itemsets. Fig. 4 shows the experimental
results of evaluating the rule generation using the frequent

itemsets yielded by different minimum relative support set
{0.3%, 0.32%, 0.34%, 0.36%, 0.38%, 0.4%}. That is, six sets
were employed to generate associations. The minimum confi-

dence values ranged from 0.2 to 0.8.
From Fig. 4, the experimental discovery can be summarized

as follows. First, all of the execution time is quite close, which

is within one second. It means the rule generation time is very
small when compared with that of generating frequent item-
sets. The reason is that, the rule generation is simpler and takes

much less time than generating frequent itemsets. Second,
whatever the minimum confidence is, the larger the minimum
relative support, the smaller the execution time. The reason
is when the minimum relative support becomes larger, less fre-

quent itemsets will be generated and thus the rule generation
cost will be less as well. Third, for each set, the differences of
execution time for generating rules under different minimum

confidence values are very slight. The reason is that the confi-
dence checking time depends on the number of frequent item-
sets generated, but not on the confidence thresholds. Besides,

larger minimum confidence values will get more rules and thus
need more time to generate them out. But rule generation is
very quick and thus there is no significant difference for differ-
ent thresholds.

In general, the values of the two parameters min_rsup and
min_rconf affect the performance of the proposed approach.
When min_rsup is set lower, more candidate itemsets are gen-

erated and thus the needed computational time becomes more
as well. Similarly, when min_rconf is set lower, more rules are
generated which needs more computational time. These char-

acteristics can be easily observed from Fig. 4 as well. Besides,
the minimum support and confidence values are usually deter-
mined according to the data characteristics and user require-

ment. There are some studies focusing on this issue, but it is
beyond our discussion here. Some scholars [13,30,31] adopt
the to p–k mining approach to find the results, instead of set-
ting the two thresholds.
Please cite this article in press as: T.-P. Hong et al., Discovery of temporal associati
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5.3. Experimental results on real data

In addition to synthetic data, a real dataset Foodmart was

tested in the experiments. The transactions were divided into
10 time periods and the time hierarchy was organized in three
levels, with 1, 5 and 10 time periods, respectively. Fig. 5 shows
the differences in the execution time needed by the two algo-

rithms for different thresholds, varying from 0.6% to 0.7%.
The experimental results show that the algorithm TPPF per-
formed much better than TP-HTAR since the number of data

scans of TPPF was much fewer than those of TP-HTAR. The
results are an echo of Figs. 2 and 3.

For showing the performance of generating association

rules, similar to Fig. 4, six sets with different minimum relative
support values yielded by the proposed methods were adopted
in the experiments, which are {0.6%, 0.62%, 0.64%, 0.66%,

0.68%, 0.7%}. Fig. 6 shows the experimental comparisons
for rule generation, which delivers some discovery. First, the
execution time for each set is very close to each other even
using different minimum confidence values. The reason is the

same as above. That is, the confidence checking time depends
on the numbers of frequent itemsets generated, but not on the
confidence thresholds. Second, the performance for smaller

confidence value is worse than that for larger confidence val-
ues. The reason is that the former will get more rules and thus
need more time to generate them out.
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6. Conclusions

In this paper, we introduce a new concept of temporal associ-
ation rule mining with a hierarchy of time granules to find hier-

archical temporal association rules in temporal databases, and
we also present the effective approach (abbreviated as TPPF)
to find such rules. In particular, an effective strategy is

designed to predict the upper-bound of support values for
itemsets. The strategy can be used to remove unpromising
itemsets at an early stage in the process, and the proposed
TPPF can effectively reduce the computational cost of scan-

ning a temporal database. Experiments were also made, with
results showing the proposed TPPF outperformed the other
one TP-HTAR in reducing database scan and computational

time.
The future research directions of this work are as follows.

First, we will attempt to investigate the incremental problem

of hierarchical temporal association rule mining. That is, based
on this work, we will design a method to mine the new result
without performing the whole mining procedure at database

modification. Second, the optimal minimum support and con-
fidence will be approximated by machine learning techniques.
Third, actually, this work is the beginning of hierarchical tem-
poral association rule mining. In the future, more efficient min-

ing algorithms such as FP-growth will be adopted as the
solutions to accelerate the mining process and more mining
consideration such as utility mining will be studied to extend

its applications.
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