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Abstract Selection of optimal features is an important area of research in medical data mining

systems. In this paper we introduce an efficient four-stage procedure – feature extraction, feature

subset selection, feature ranking and classification, called as Multi-Filtration Feature Selection

(MFFS), for an investigation on the improvement of detection accuracy and optimal feature subset

selection. The proposed method adjusts a parameter named ‘‘variance coverage’’ and builds the

model with the value at which maximum classification accuracy is obtained. This facilitates the

selection of a compact set of superior features, remarkably at a very low cost. An extensive exper-

imental comparison of the proposed method and other methods using four different classifiers

(Naı̈ve Bayes (NB), Support Vector Machine (SVM), multi layer perceptron (MLP) and J48 deci-

sion tree) and 22 different medical data sets confirm that the proposed MFFS strategy yields

promising results on feature selection and classification accuracy for medical data mining field of

research.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Data mining application in medicine has proved to be a
successful strategy in the areas of medical services including
prediction of usefulness of surgical procedures, clinical tests,
medication procedures, and the discovery of associations
among clinical and diagnosis data [37]. The applicability of

data mining for healthcare applications is increasingly gaining
importance. The availability of diverse-natured medical data
for diagnosis and prognosis and of pervasive data mining tech-

niques to process these data offers medical data mining a dis-
tinctive place to truly assist and impact patient care.

Due to proliferation of synergized information from enor-
mous patient repositories, there is a paradigm shift in the

insight of patients, clinicians and payers from qualitative anal-
ysis of clinical data to demanding a better quantitative visual-
ization of information based on all supporting medical data.
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For instance, the physicians can evaluate the diagnostic infor-
mation of many patients with identical conditions. In the same
way, they can verify their findings too, with the conformity of

peer physicians working on similar cases in other parts of the
world. The patterns that are discovered denote valuable
knowledge that helps medical discoveries, for example discov-

ering that a certain combination of features may help in better,
and more accurate diagnosis of a particular disease. Accurate
diagnosis of diseases and subsequently, providing efficient

treatment, form an important part of valuable medical services
given for patients in a health-care system.

The unique characteristics of medical databases that pose
challenges for data mining are the privacy-sensitive, heteroge-

neous, and voluminous data. These data may have valuable
information which awaits extraction. The required knowledge
is found to be encapsulated in/as various regularities and pat-

terns that may not be apparent in the raw data. Extracting
such knowledge has proved to be priceless for future medical
decision making. Feature selection is crucial for analysing

various dimensional bio-medical data. It is difficult for the
biologists or doctors to examine the whole feature-space
obtained through clinical laboratories at one time. In machine

learning, all the computational algorithms recommend only
few significant features for disease diagnosis. Then these rec-
ommended significant features may help doctors or experts
to understand the biomedical mechanism better with a deeper

knowledge about the cause of disease and provide the fastest
diagnosis for recovering the infected patients as early as
possible.

Feature selection methods [12] tend to identify the features
most relevant for classification and can be broadly categorized
as either subset selection methods or ranking methods. The

former type returns a subset of the original set of features
which are considered to be the most important for classifica-
tion. Ranking methods sort the features according to their use-

fulness in the classification task. Most of the classifiers,
irrespective of the application domain, uses the ranking
strategy to select the final feature subset, in an ad hoc manner.
Feature selection, as a pre-processing step to machine learning,

is prominent and effective in dimensionality reduction, by
removing irrelevant and redundant data, increasing learning
accuracy, and improving result comprehensibility. Feature

selection algorithms generally fall into two broad categories,
the filter model and the wrapper model [37].The filter model
depends on general characteristics of the training data to select

some features without involving any learning algorithm. The
filter model assesses the relevance of features from data alone,
independent of classifiers, using measures like distance, infor-
mation, dependency (correlation), and consistency. The filter

method is further classified into Feature Subset Selection
(FSS) and Feature Ranking (FR) methods. The wrapper
model needs one predetermined learning algorithm in feature

selection and uses its performance to evaluate and determine
which features are selected. For each of the generated new sub-
set of features, the wrapper model is supposed to learn the

hypothesis of a classifier. It has a propensity to find features
better suited to the predetermined learning algorithm resulting
in superior learning performance, but it also tends to take

more computation time and is economically more expensive
than the filter model [37]. Whenever dealing with a large num-
ber of features, the filter model is usually chosen due to its high
accuracy [9]. The hybrid model takes the advantages of the two
previous models, and uses an independent measure to identify
the best subsets for a given cardinality and applies a mining
algorithm to select the best subset among all best subsets

across different cardinalities. However, the ensemble of a filter
based model with another filter based model, once for subset
selection and again for ranking proves to be a promising

approach, for medical data mining. The ensemble is brought
about in a fashion so as to reduce the number of features
and also to enhance the classification accuracy.

The objective of this research work is aimed at showing that
the selection of more significant features from the available
raw medical dataset helps the physician to arrive at an accurate
diagnosis. The primary focus is on aggressive dimensionality

reduction so as to end up with increase in the prediction accu-
racy. The features are subjected to a double filtration process,
at the end of which, only the features that increase the accu-

racy, and form the subset with the lowest cardinality, with
their corresponding rank, are obtained. The method employs
an efficient strategy of ensemble feature correlation with rank-

ing method. The empirical results show that the proposed
Multi Filtration Feature Selection (MFFS) embedded classifier
model achieves remarkable dimensionality reduction in the 22

medical datasets obtained from the UCI Machine Learning
repository [10] and Kentridge repository [13].
2. Related work

Numerous works have been carried out in the field of dimen-
sionality reduction for medical diagnosis. The following
section presents the summary of those works, highlighting

the strengths and weaknesses of each method.
It could be observed that the naive Sequential Forward

Feature Selection (SFFS) (pure wrapper approach) [5] is

impractical for feature subset selection from a large number
of samples of high-dimensional features. Hence Gan et al. [4]
proposed the Filter-Dominating Hybrid Sequential Forward

Feature Selection (FDHSFFS) algorithm for high dimensional
feature subset selection. This method proved to be fast but
demanded huge computational complexity. Another variant

of the SFFS method called improved F-score and Sequential
Forward Search (IFSFS) was proposed by Xie and Wang
[36] for feature selection to diagnose erythemato-squamous
disease. This method was designed so as to improve the

F-score and measured the discrimination between more than
two sets of real numbers instead of measuring between only
two sets of real numbers. The method’s applicability to other

medical data sets was not reported and hence it was a very
specific system targeted at the diagnosis of erythemato-
squamous disease only.

Another category of feature selection methods used Mutual
Information score. Vinh et al. [32] proposed a novel feature
selection method based on the normalization of this well-
known mutual information measurement and utilized the

information measurement to estimate the potential of the
features. The method could not eclipse the strongly correlated
features impact on the classification results. Correlated

features may be accounted for redundancy and hence a single
representative feature from that subset may be selected for
further processing.

An incremental learning algorithm in which the most
informative features are learnt at each step, is proposed by
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Ruckstieb et al. [26] and is called as Sequential Online Feature
Selection (SOFS). Another Scatter Search-based approach
coupled with Decision Trees (SS+DT) is proposed by Lin

and Chen [17]. The method acquired optimal parameter set-
tings and selected the beneficial subset of features that resulted
in better classification results. In [16] Koprinska empirically

evaluated feature selection methods for classification of
Brain–Computer Interface (BCI) data. A new feature selection
method based on rough set theory has been proposed by Paul

and Maji [23]. The proposed method identified discriminative
and significant genes from high-dimensional microarray gene
expression data sets.

Correlation Based Filter [3,18] is another strategy for fea-

ture selection. Ensemble methods have also been proposed.
Raymer et al. [25] proposed a hybrid algorithm that coupled
a genetic algorithm with k-nearest-neighbour classifier and

applied it for protein–water binding from X-ray crystallo-
graphic protein structure data. MonirulKabi et al. [20] pre-
sented a new Hybrid Genetic Algorithm (HGA) for Feature

Selection (FS), called as HGAFS. It employed a new local
search operation that is devised and embedded in HGA to
fine-tune the search in feature selection process. The search

process is guided in such a way that the less correlated (dis-
tinct) features consisting of general and special characteristics
of a given data set are generated in subsequent iterations.

A new approach called Redundancy Demoting (RD) has

been proposed by Osl et al. [22]. It takes an arbitrary feature
ranking as input, and performs improvement in ranking by
identifying redundant features and demoting them to positions

in the ranking in which they are not redundant. Hybrid
schemes that combine wrapper-based and filter-based
approaches are also in the literature [2,11,30] are such schemes

where the features are ranked and then selected so as to offer
superior classification accuracy. In the first stage, the filter
model is used to rank the features by the relief algorithm

and then the highest relevant features are chosen to the classes
with the help of the threshold. In the second stage, they used
shapely values to evaluate the contribution of features to the
classification task in the ranked feature subset. Tanwani

et al. [31] gave a study on comprehensive evaluation of a set
of diverse machine learning schemes on a number of biomed-
ical datasets. Sanchez-Monedero et al. [27] studied and pro-

posed the suitability of Extreme Learning Machines (ELM)
for resolving bio-informatics and biomedical classification
problems.

After reviewing the works on feature selection for medical
dataset [29] it is observed that most of the existing methods
suffer from the following problems: (1) depending on the com-
plexity of the search method, the iterations of evaluations are

too large; (2) they rely on a univariate ranking that does not
take into account interaction between the variables already
included in the selected subset and the remaining ones. More-

over, a method that produces the best accuracy employs more
number of features and hence more running time is involved in
the construction of the respective classifiers. Contrarily, a

method that outputs the fewest number of features produces
inferior detection accuracy. A holistic and universal method
that achieves the best classification accuracy with fewest

features possible is still an open research problem. This paper
makes an attempt to design such a feature selection sequence
and it is called as ‘‘Multi Filtration Feature Selection
(MFFS)’’.
This paper is organized as follows: Section 3 describes the
proposed method with the suitable algorithm. Experimental
results and discussions are presented in Section 4. The paper

is concluded with a mention on the future scope of this work.

3. Proposed system

The proposed method involves four stages. The entire system
flow of the proposed model is shown in Fig. 1. The individual
stages are described in the following text.

3.1. System flow of the proposed method

3.1.1. Stage 1 – Relevant Feature Generation Phase (RFGP)

A representative of unsupervised dimensionality reduction
method is Principal Component Analysis (PCA) [14,39] which

aims at identifying a lower-dimensional space maximizing the
variance among data [38]. PCA is a very effective approach
of extracting features [6,21].

Let us denote the multi-dimensional dataset in the form of a

matrix, A. The dimensions actually represent directions along
which the data vary. The feature generation process, which
removes the irrelevant features and redundant features, mainly

finds an approximate ‘‘basis’’ to the set of directions. Only the
crucial dimensions that serve as the corner stone upon which
other dimensions are dependent are generated from the given

dataset. The redundant-duplicate dimensions are finally elimi-
nated with the sense that they can be reconstructed easily from
the available set of basis dimensions. This is equivalent to find-
ing the dimensions with maximal variance, since the points are

found to be constant approximately along other dimensions.
Variance factor is an important measure that denotes the
degree of data spread in a multi-dimensional dataset. Thus

dimensionality reduction is effectively contributed from this
first step of filtration by choosing appropriate variance factor
at which the system yields the minimum number of features

with maximum accuracy.
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The basic theoretical idea behind PCA is finding the princi-
pal components of the dataset that correspond to the compo-
nents along which the variation is the most. This is achieved by

finding the covariance matrix, i.e., we find the principal com-
ponents of the data, which correspond to the components
along which there is the most variation. This can be done using

the covariance matrix, AAT for our input matrix A, as follows.
Let the eigen values be represented as ki for the covariance

matrix. Then, the corresponding diagonal matrix is given in

Eq. (1) as:

L ¼

k1 0 . . . 0

0 k2 . . . 0

..

.

0 0 . . . kn

2
66664

3
77775 ð1Þ

The eigenvectors vi of the matrix should satisfy AAT as given

in Eq. (2) as

AATvi¼ kivi ð2Þ

On rewriting eigenvectors of the dataset as the rows of a
matrix P, the system becomes

AATP ¼ LP ð3Þ

It is apparent from Eq. (3) that the columns of this matrix P
represents the principal components of the original matrix
and hence confines to the directions of most variance [39,38].

PCA employs the entire features and it acquires a set of
projection vectors to extract global feature from given training
samples. The approach mainly consists of three primary
processes such distinction process, binary session and pattern

generation [29]. All these flavours make PCA [21] more suit-
able for applying on medical datasets, which typically have
these characteristics. The variance coverage factor is playing

a significant role in deciding the important features and hence
this parameter is tuned so as to capture the classifier model
with the best results.

3.1.2. Stage 2 – Feature Ranking Phase (FRP)

The correlation between each feature and the class and
between two features can be measured and best-first search

can be exploited in searching for a feature subset of maximum
overall correlation to the class and minimum correlation
among selected features. This is realized in the Correlation-

based Feature Selection (CFS) method [7]. Correlation based
Feature Selection is an algorithm that couples this evaluation
formula with an appropriate correlation measure and a heuris-
tic search strategy. CFS quickly identifies and screens irrele-

vant, redundant, and noisy features, and identifies relevant
features as long as their relevance does not strongly depend
on other features. CFS is a fully automatic algorithm––it does

not require the user to specify any thresholds or the number of
features to be selected, although both are simple to incorporate
if desired. CFS operates on the original (albeit discretized) fea-

ture space, meaning that any knowledge induced by a learning
algorithm, using features selected by CFS, can be interpreted
in terms of the original features, not in terms of a transformed

space. Most importantly, CFS is a filter, and, as such, does not
incur the high computational cost associated with repeatedly
invoking a learning algorithm.
The suggestion used by the CFS is on the basis that always
features strongly correlated with the predicted class form the
good feature subset than the features correlated with each

other. The feature subset created by the CFS is computed by
the merit of the feature subset ‘S’ containing ‘k’ features as
in Eq. (4).

The following equation provides the merit of the feature
subset ‘S’.

Merits ¼
kxcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk� 1Þxff

p ð4Þ

where Merits is the evaluating hypothesis of a feature subset ‘S’
containing ‘k’ features, xfc is the average value of feature–class

correlation, and xff is the average value of feature–feature

inter correlation.
The correlation between two entities ‘i’ and ‘j’, xij is calcu-

lated as in Eq. (5)

xij ¼
P
ði� iÞðj� jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
P
ði� iÞ2�½

P
ðj� jÞ2�

q : ð5Þ

where ‘i’ is the record’s value of the independent variable and
‘j’ is record’s value of the dependent variable which may be

either feature or class label. �i and �j are the means of the values
of the independent and dependent variables, respectively.

3.1.3. Stage 3 – Feature Re-Ranking Phase (FRRP)

In spite of feature extraction and selection, a problem is persis-
tent namely the classifier may be biased towards the attributes

with more values. Hence this biased nature has to be elimi-
nated for which we employ Symmetrical Uncertainty (SU). It
overcomes the problem of bias towards attributes with more

values, by dividing information gain by the sum of the entro-
pies of feature subsets Si and Sj.

Symmetry is a desired property for a measure of correla-

tions between features. However, information gain is biased
in favour of features with more values. Furthermore, the val-
ues have to be normalized to ensure they are comparable

and have the same influence. Therefore, we choose symmetri-
cal uncertainty. It compensates for information gain’s bias
towards features with more values and normalizes its values
to the range [0; 1] with value 1 indicating that knowledge of

the value of either one completely predicts the value of the
other and value 0 indicating that X and Y are independent.
In addition, it still treats a pair of features symmetrically.

Entropy-based measures require nominal features, but they
can be applied to measure correlations between continuous
features as well, if the values are discretized properly in

advance. Therefore, we use symmetrical uncertainty in this
work.

As CFS uses the best-first strategy search method to calcu-

late the merit of the feature subset, however there is a necessity
to fix the stopping criteria. Due to this strictly needed
constrain correlation between features is computed using
Symmetrical Uncertainty (SU) as specified in Eq. (6).

SU ¼ 2:0� HðSjÞ þHðSiÞ �HðSi;SjÞ
HðSjÞ þHðSiÞ

� �
ð6Þ

where H(Sj) and H(Si, Sj) are defined as in Eqs. (7) and
(8) as:
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HðSjÞ ¼ �
X
fseFSj

pðSjÞlog2ðpðSjÞÞ ð7Þ

where a realistic model of a feature Sj can be formed by

evaluating the training data, considering the individual’s
probability values of Sj. A new feature subset Si can be worked
out by partitioning the previously existing feature subset Sj,

then the relationship between subsets Si and Sj is given by:

HðSi;SjÞ ¼ �
X
xeX

PðSiÞ
X
yeY

PðSi=SjÞlog2PðSi=SjÞ ð8Þ

The algorithm is better explained by the Fig. 2.

3.1.4. Stage 4 – Classifier Evaluation

The proposed system is validated against standard successful
classifier models [35]. Classifiers are constructed with the final

subset of features obtained after subjecting the datasets to
RFGP, FRP and FRRP steps sequentially. A detailed insight
into various classifiers is presented in Section 4.4.

3.2. Algorithm for the proposed MFFS model

Traditional filter approaches usually select the top ranked fea-

tures or eliminate the irrelevant features by using a threshold
criterion. Since prediction is made after the single filtering
phenomenon, they report feeble accuracy. Alternatively, when
filtering is done, more than once, an improved accuracy may
be obtained. Hence the proposed scheme is designed with
Multi Filtration Feature Selection (MFFS) as the central logic.

It consists of the following steps:

4. Test results and discussion

4.1. Test scenario

Empirical study with the synthetic datasets has been executed,

to investigate the performance of the proposed algorithm in
the following perspectives:

1. Classification accuracy
2. Number of features selected
3. Average running time

Datasets, test set-up, procedure and objectives for the tests
necessary for the evaluation of these goals are described below.

4.2. Datasets

The proposed approach has been evaluated by experiments on
22 biomedical datasets from the UCI machine learning repos-

itory [10] and Kentridge repository [13]. The 22 biomedical
datasets used to test the proposed approach are summarized
in Table 1. The last column in Table 1 indicates the ‘‘imbalance
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ratio’’ present in each dataset. It is the ratio between the
cardinality of the class with the maximum instance to the
cardinality of the class with the minimum instance.

4.3. Test set-up

The tests are carried out in a system with Intel i5, 8 GB RAM,

DDR3, 500 GB hard drive on a Windows XP operating
system. The proposed algorithm is implemented using Weka
[34]. WEKA is acknowledged as a landmark system in the field

of machine learning and data mining. It has attained wide-
spread acceptance among the academia and industry spheres,
and has become a widely used tool for data mining research.

Another flavour that is highly encouraging is its ‘‘Open
Source’’ nature. The free access given to the source code has
enabled us to develop and customize the modules matching
our work. The stepwise approach is as follows. The input to

the system is given in the Attribute-Relation File Format
(ARFF). The proposed algorithm is executed and the features
in the ranked order are obtained as the output. A result is

created in Weka using the name specified in n@relation’’.
The attributes specified under n@attribute’’ and instances
specified under n@data’’ are retrieved from the ARFF file

and then they are added to the created table. 10-fold cross
validation is performed for all classifiers [8]. Fifty runs were
done for each classification algorithm on each dataset with
features selected by MFFS method. In each run, a dataset

was split into training and testing set, randomly. The results
obtained are shown in Tables 2–9.

4.4. Classification Models

4.4.1. Model M1 – Naı̈ve Bayes (NB)

Naı̈ve Bayesian Classifier is a simple probabilistic classifier [35]
with an assumption of conditional independence among the
features, i.e., the presence (or absence) of a particular feature

of a class is unrelated to the presence (or absence) of any other
feature. It only requires a small amount of training data to
estimate the parameters necessary for classification. Many
experiments have demonstrated that NB classifier has worked

quite well in various complex real-world situations and outper-
forms many other classifiers. Kernel estimation has been used
in cases of datasets with numerical attributes. Also supervised

discretization is done for converting numerical attributes to
nominal ones.
4.4.2. Model M2 – Support Vector Machine (SVM)

SVM [13,19] finds the hyper plane with maximum margin in
between two classes. The Support Vector Machine (SVM) is
actually based on learning with kernels some of which form

the support vectors. A great advantage of this technique is that
it can use large input data and feature sets. Thus, it is easy to
test the influence of the number of features on classification

accuracy. We implemented SVM classification [28] for two
types of kernels: polynomial kernel and Gaussian kernel
(Radial Basis Function – RBF). The SVM model with com-
plexity parameter C as 1.0, epsilon as 1.0E�12, normalized

training data, RBF kernel with gamma as 0.0.1, and tolerance
parameters as 0.0010 produced the best results.
4.4.3. Model M3 – Decision Tree (DT)

A decision tree [1,33] is a predictive machine-learning model

that decides the target value (dependent variable) of a new
sample based on various attribute values of the available data.
Decision tree’s internal node represents different attributes; the

branches between the nodes tell us the possible values that
these attributes can have in the observed samples, while the
end nodes are the target class labels. The J48 decision tree clas-

sifier [24] operates on the basis of constructing a tree and
branching it based on the attribute with the highest informa-
tion gain. The J48 tree with binary split allowed a confidence
factor of 0.25 and reduced error pruning is employed.

4.4.4. Model M4 – Multilayer perceptron (MLP)

An MLP [15] can be viewed as a logistic regression, where the

input is first transformed using a learnt non-linear transforma-
tion. The purpose of this transformation is to project the input
data into a linearly separable space. This intermediate layer is
referred to as a hidden layer. We have employed a back-

propagation network with 0.3 as learning rate and 0.02 as
momentum. The attributes are normalized in the range of
(0.1, 0.9). The training was carried out for 500 epochs.

4.5. Test procedure

For realizing dimension reduction via PCA, the orthogonal

base components are obtained out of the datasets through lin-
ear transformation. For the evaluation the PCA variance cov-
erage parameter d is varied in the range of (0.45, 0.95). In

preliminary test d values outside this range did not lead to
useful results for the analysis. So we tested in this range. The
proposed MFFS calculates the correlations of feature-class
and feature–feature using CFS and the feature subset space

is searched. The subset with the highest merit is subjected to
analysis. Then the resulting subset is re-ranked using symmet-
rical uncertainty principle. For performance analysis, the mod-

els M1-M4, generated according to the earlier discussion are
applied to the optimal feature subset, returned after MFFS
steps. The best accuracy in percentage along with the respec-

tive variance coverage and the number of features involved
to achieve it are returned.

4.6. Test objectives

From the goals stated above, the following objectives are
established:

O1 – enhancing the detection accuracy for the classifier
model, which is measured using the detection accuracy met-
ric expressed in percentage.

O2 – reducing the number of features so as to achieve the
best accuracy in each classifier model.
O3 – reducing the running time for model generation which

is measured in seconds.
O4 – determining the influence of the variance coverage of
the PCA feature extraction model on the MFFS
performance.

Test objectives O1 and O2 are the obvious test goals within
the focus of this work. High detection accuracy with the least
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number of features, which are shown in Tables 2–9 are proving
the usefulness of applying the proposed MFFS scheme to
feature selection.

Test objectives O3 is aimed at determining the overall
quality of our feature selection approach. Test objective O4
is formulated to address the impact of the variance coverage

of the PCA on the MFFS performance over each model.
To facilitate a logical sequence for the presentation of our

research results, the test objectives framed based on the goals

are ordered in a way to glide from the most specific to a more
general case. Tables 2–9 summarize the evaluation of test
objectives O1–O4.

4.7. Test results and discussion

In Table 2, the average classification accuracy of the chosen
algorithms over unprocessed datasets is provided. Tables 3–8

show the best average classification accuracy with the four
classifiers on each dataset and the best accuracy in each case
is highlighted in bold typeface. Table 9 shows the average
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running time in seconds taken by the proposed system.
Figs 3–11 show the performance of the proposed system.

It can be seen from Tables 2–8, that the classification accu-

racy based on the selected subsets by the proposed MFFS
scheme is better than that based on the original feature set.
This indicates that the selected feature subsets are representa-

tive and informative and, thus, can be used instead of the com-
plete data for pattern classification. The list of such selected
features is shown in Table 7.

From the empirical results obtained so far, it is worth
noting that each method has its strengths and limitations. In
particular, CFS obtains good classification accuracy in the
least amount of running time but at the expense of selecting

many more features; PCA selects the least number of features
but suffers in terms of classification accuracy and also requires
more running time than others; MFFS attains the best accu-

racy and robustness in a reasonable time with lowest number
of features. Considering all these factors, the proposed MFFS
scheme shows overall better performance than other methods.

Tables 10 and 11 summarize and compare characteristics of
Datasets

ocessed Datasets

Naïve Bayes (NB)
Support Vector Machine (SVM)
J48
Multi layer Percetron (MLP)

ssifiers on unprocessed biomedical data sets.

ical Datasets
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Fig. 7 Classification accuracy obtained for the existing systems and the proposed MFFS by SVM classifier.
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Fig. 5 Classification accuracy obtained for existing and the proposed MFFS by Naı̈ve Bayes classifier.
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Fig. 8 Number of features selected by the existing systems and the proposed MFFS (in log10 scale for uniform scaling) with J48 classifier.

0

20

40

60

80

100

A
cc

ur
ac

y 
in

 %

Bio-Medical Datasets

Fig. 9 Classification accuracy obtained for the existing systems and the proposed MFFS by J48 classifier.
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Fig. 11 Classification accuracy obtained for the existing systems and the proposed MFFS by MLP classifier.
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our proposed method for selective 6 datasets with those of
other previous works in the literature.

5. Conclusion

In this paper, we have proposed an efficient Multi Filtration

Feature Selection (MFFS) method applicable to medical data
mining. Empirical study on 6 synthetic medical datasets sug-
gests that MFFS gives better over-all performance than the

existing counterparts in terms of all three evaluation criteria,
i.e., number of selected features, classification accuracy, and
computational time. The comparison to other methods in the
literature also suggests MFFS has competitive performance.

MFFS is capable of eliminating irrelevant and redundant fea-
tures based on both feature subset selection and ranking mod-
els effectively, thus providing a small set of reliable features for

the physicians to prescribe further medications.
For simplicity, several key points are collected as follows.

(1) It seems that the classification performance is necessarily
proportional to the removal of redundant features,
heavily dependent on the inclusion of relevant features

and the ‘‘Accuracy’’ metric is observed maximum with
minimum number of features.

(2) The proposed MFFS algorithm operates invariably well
on any type of classifier model. This shows the general-

ization ability and applicability of the proposed system.
(3) Our training and test database collects the popular and

benchmark medical datasets. However, the proposed

method can be tested and applied on real-world dataset
too.

(4) The best accuracy rate achieved by our proposed system

is superior to the existing schemes.

To make our system more practical, future work could

include the following.

(a) Fitting the proposed system to classify any other real-
world dataset.

(b) Applying the proposed method for a multi-label
dataset, where a record may belong to many classes
simultaneously.
(c) Ensemble with some optimization strategies like Particle

Swarm Optimization (PSO), Ant Colony Optimization
(ACO), and Genetic Algorithm (GA) etc.

Summarily, MFFS can be expected to serve as an excellent
alternative for feature selection in the field of medical data
mining.
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