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Utility of positron emission tomography for
drug development for heart failure
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Only about 1 in 5,000 investigational agents in a preclinical stage acquires Food and Drug Administration approval. Among
many reasons for this includes an inefficient transition from preclinical to clinical phases, which exponentially increase the cost
and the delays the process of drug development. Positron emission tomography (PET) is a nuclear imaging technique that has
been used for the diagnosis, risk stratification, and guidance of therapy. However, lately with the advance of radiochemistry
and of molecular imaging technology, it became evident that PET could help novel drug development process. By using a PET
radioligand to report on receptor occupancy during novel agent therapy, it may help assess the effectiveness, efficacy, and
safety of such a new medication in an early preclinical stage and help design successful clinical trials even at a later phase. In
this article, we explore the potential implications of PET in the development of new heart failure therapies and review PET's
application in the respective pathophysiologic pathways such as myocardial perfusion, metabolism, innervation, inflammation,
apoptosis, and cardiac remodeling. (Am Heart J 2016;175:142-52.)
The cost for the development of a new pharmaceutical
agent has been estimated to be at least $800 million.1 The
drug development process takes well over a decade to
move from basic discoveries to animal testing, proof of
principle and proof of concept human studies; and finally
phase III trials assessing the clinical benefits. Many agents
with promising pharmacology and early-phase data fail in
the later stages to show clinical benefit. Development of
new medications for heart failure (HF) has been
particularly challenging. Phase II trials in HF rely on
echocardiographic or other surrogate markers like
functional capacity or biomarkers to guide the potential
for clinical benefit in the later stages of drug develop-
ment. In many attempts, however, despite such surrogate
markers showing benefit, they did not translate into
tangible results in registration trials yielding neutral
effects on survival. Many reasons for this disconnect are
hypothesized and highlight the need for alternate or
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incremental strategies to assess of the effects of
an investigational drug to better inform subsequent
large-scale trials.
Emerging applications of positron emission tomogra-

phy (PET) hold promise in this regard, and the
technology has been widely embraced by the oncological
community. Positron emission tomography imaging is the
use of specific radiotracers, which can report on
molecular events at the cellular level and could be
classified into broad areas according to their target and
function into receptors, proteins/enzymes, antibodies,
metabolic agents, nucleoside analogs, and labeled
drugs.2,3 Moreover, PET is widely accepted as being a
quantitive tool where as the older technology single-
photon emission computed tomography (SPECT) offers
mainly qualitative information. In this review, we
describe the implications of PET in cardiovascular system,
related HF pathophysiology, and highlight its potential
role in HF drug development.

Positron emission tomography in
drug development
Positron emission tomography is a 3-dimensional

noninvasive tomographic imaging modality that allows
in vivo imaging of physiological and pathological
processes involving molecules tagged with positron-
emitting radionuclides. These molecules can target defined
receptors or cellular transport mechanisms. Receptors
are usually proteins located on cellular membranes or in
the cytoplasm, which, when activated by specific ligands,
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Table I. Most common radiotracers and their use in
cardiovascular studies

Radionuclide Half-life Cardiac use

[15O] 2.06 min Yes
[64Cu] 12.7 h Yes
[124I] 4.2 d Yes
[13N] 10 min Yes
[11C] 20.4 min Yes
[89Zr] 78.41 h No
[18F] 110 min Yes
[68Ga] 67.6 min Yes
[82Rb] 1.25 min Yes
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trigger a second response through a variety of mecha-
nisms. Other processes imaged by PET include fatty acid
(FA) metabolism, nucleotide incorporation into DNA, and
blood flow. The recognition and anatomical allocation of
such targets depicts the disease pathophysiology and
highlights potential therapeutic targets. Ligands that
cause downstream changes after the receptor binding
are called agonists, whereas those that block changes and
prevent other agonists to bind to the receptor are called
antagonists. The imaging of these structures becomes
possible with the attachment of a positron emitter to
either a natural substrate of the receptor or to a
receptor-targeted novel medication. There are a wide
variety of radiolabels with different half lives available,
but themost commonly used in humans are 18Fwith 11C,
68Ga, 64Cu, 124I, 13N, and 15O as shown in Table I.4–7

The involvement of PET in drug development occurs in 2
forms. The first consists of themicrodose studies, which are
similar to pharmacokinetic studies assessing absorption,
distribution, metabolism, and excretion of a new agent, and
applied to early-phase studies.7,8 A microdose is defined as a
dose less than 1/100th of the dose predicted to have a
pharmacologic effect andwith amaximumdose of≤100μg.
In order to have valid and accurate results, it is important to
know the biologic properties of the newcompound in terms
of its affinity to other binding sites, whether there is a
transmembrane transport, what is the fraction of the agent
binding to protein fraction of the agent, and if the infused
compound follows a linear model in its concentration and
metabolism.8 Positron emission tomography has the advan-
tage of imaging receptor systems with the use of sub-
nanomolar concentrations of an investigated agent.
The second area is assessing the pharmacodynamic or

dose-finding studies to assess the effect of the novel agent
measuring the receptor occupancy.8,9 This process involves
coadministration of a labeled and nonlabeled (cold drug)
agent and these compete for binding to the target. Reduced
radioactivity in the area of interest when increased levels of
unlabeled drug are administered indicates high occupancy
of the investigational drug (Figure 1).8

In molecules with high affinity to target, PET can be
performed with the coinfusion of a cold drug. To assess
the pharmacodynamics of receptor binding, 3-compartmen-
tal model is applied; the free ligand in the plasma, the
nonspecifically bound and the bound ligand, with their
kinetic constants constitute and confine the interaction
between the 3 compartments.10,11 There are limitations to
this method which derive from (1) existence of other
binding sites, (2) endocytosis of the complex drug-receptor
and related downstream changes, (3) circulation of radi-
olabeled molecules from the metabolism of the novel agent,
and (4) in cerebrovascular drugs, brai-blood barrier poses
an extra parameter over the 3-compartment model, which
may have safety concerns for HF drug development.
It is estimated that less than 1 in 5,000 compounds at

the preclinical stage will be developed into a Food and
Drug Administration (FDA)–approved drug. Any tool that
helps in screening unsuitable drugs has the potential to
reduce the costs of developing new drugs. Table II
summarizes the potential implications of PET throughout
the development process of a new medication.
For drug development, there are 2 PET radiopharmaceu-

ticals thatmay be used. Substituting natural 12Cwith 11C, or
19Fwith 18F, can develop a copy of test drug, and this can be
monitored for distribution of the test drug at the tracer or
therapeutic level. The second PET tracer would be one of a
number of well-characterized radioligands that are specifi-
cally used tomonitor thebindingof the test drug to the target
of interest aswell as to compare the test drug to other agents
that target the same system.
In the preclinical setting, the PET version of the

candidate molecule can be used in biodistribution studies
to determine if it is reaching the tissue of interest and the
potential off target accumulation. Positron emission
tomography can also be used with a carrier amount of
the 12C- or 19F-labeled drug to see the effect of drug mass
on the pharmacokinetics. Positron emission tomography
can also be used with one of a number of well-character-
ized radiopharmaceuticals, which target a specific
receptor or transport system to see the pharmacodynam-
ics of the unlabeled drug candidate.
For the first time in human studies, PET can provide

information on the pharmacokinetics and distribution of
the new drug. For this phase, the FDA allows limited
studies at a subpharmacologic dose (typically microgram
or nanomole amounts) when supported with a limited
toxicologic data set. This exploratory investigational new
drug mechanism allows the investigator to rapidly
determine if the drug targets its intended target and as
such is a critical selection criterion for further develop-
ment and can be used to optimize the dose range to be
evaluated in subsequent clinical testing.
Many phase I/II studies fail because the drug is tested in

the wrong population. Positron emission tomography
microdosing studies have the potential to select optimal
subjects who would benefit most from the therapy. In
addition, if the PET studies are performed along with
traditional phase 1 dose escalation study, it can help to



Figure 1

Positron emission tomography occupancy studies regarding a receptor in human brain. The upper set of images shows the uptake of a
radiolabaled drug. Brighter regions define increased radioisotope concentration. In the lower set of images, PET was performed after the
administration of cold drug competing for the same binding site. Reprinted with permission from Matthews et al.9

Table II. Implications of PET in drug development

Preclinical development
▪ Biodistribution studies confirming that a drug candidate reaches the target tissue and does not accumulate in nontarget sites of potential toxicity
▪ Pharmacokinetics and occupancy measures to guide dose selection for early in vivo studies
▪ Use of PET as a biomarker for proof of pharmacology studies and/or to differentiate between drug-candidate efficacy data/behavior and toxicity

Phase 0 clinical studies (microdose studies)
▪ Validation that pharmacokinetic and distribution from preclinical studies can be extended to humans
▪ Occupancy analysis to get proper dose range for phases I and II

Phase 1 studies
▪ Primary opportunity is to use PET to help stratify patients based on the potential for treatment efficacy
▪ Understand the relationship of occupancy with toxicity

Phase 2 studies
▪ PET imaging can pick responders and nonresponders.
▪ Validate blood concentration as a surrogate for occupancy for phase III studies

Phase 3 studies
▪ Validate blood concentration as a surrogate for occupancy for phase III studies
▪ Imaging can pharmacologically differentiate the new drug (in trial) from marketed drugs or competitor compounds.

Clinical use of a PET radiopharmaceutical
▪ Differentiate between available treatments
▪ Detect disease or associated pathology earlier
▪ Improve disease classification or diagnosis and related drug choice (and dose)
▪ Identify/monitor disease progression and treatment
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resolve the issue of target occupancy with any toxicity.
Importantly, the use of PET during phase I/II trials can be
a critical selection criterion for any drug candidates
before they enter the phase III testing. The microdosing
studies can be applied during the phase III studies to
ensure the selection of the optimal patients. Positron
emission tomography radiotracers specific for the exper-
imental drug target can be used in phase III testing to
differentiate the pharmacology of the agent with
competitor compounds.
Finally, when the new drug becomes approved, PET
can continue to be a patient selection tool as an
FDA-approved radiopharmaceutical drug.

Positron emission tomography imaging
of HF pathophysiology
Myocardial metabolism
Alterations in myocardial energy metabolism has been

well described in HF.12 Normal myocardium uses mainly
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FAs as fuel. In conditions of increasedwall stress and oxygen
demand, there is an increase in myocardial oxygen
consumption.13 “Aerobic” FA is a substrate to anaerobic
glucose utilization and FA uptake in ischemic regions is
decreased. (R,S)-[18F]fluoro-6-thiaheptadecanoic acid
(FTHA) has been proposed as a PET tracer of theβ-oxidation
pathway. Initial results with animal models were promising,
but uptake and retention in myocardium were not sensitive
to the inhibition of β-oxidation by hypoxia.14 [18F]fluor-
o-4-thia-palmitate ([18F]FTP) is structurally modified palmi-
tate analog designed to overcome the back diffusion of
nonoxidized [11C] palmitate under ischemic conditions in
imaging cardiac FA metabolism.15 Because dietary oleate
(18:1) is preferentially oxidized relative to palmitate (16:0)
and stearate (18:0), it is anticipated that an oleic acid analog
of [18F]FTP might show a higher specificity for mitochon-
drial FA oxidation than [18F]FTP itself. [18F]Fluoro-4-thia-ole-
ate demonstrated slower myocardial clearance and higher
heart to blood, heart to lung, and heart to liver radioactivity
concentration ratios.15 In mild to moderate ischemia,
β-oxidation ceases and anaerobic metabolism supervenes.
Glucose becomes the primary substrate for increased
anaerobic glycolysis and for continued, albeit diminished,
oxidative metabolism.16 [18F]Fluoro-2-deoxy-d-glucose
([18F]FDG) has been used to demonstrate the accelerated
myocardial glucose metabolism.17 [18F]FDG can be consid-
ered an ideal radiotracer in that it mimics natural glucose
through its active transport through the GLUT1 transporter
and subsequent phosphorylation inside the cell. Once
phosphorylated, the FDG-6 phosphate product is unable to
freely diffuse out of the cell product and the position of the
18F label at 2′ site makes it stable to further metabolism. The
18F activity is effectively trapped inside the cell and the
uptake is simply proportional to the GLUT1 transport and
phosphorylation rates.
A decrease in FAmetabolism and increased use of glucose

as substrate in ventricular hypertrophy have been shown by
PET with increased FDG uptake.18 Similarly, decreased FA
uptake and oxidation has been shown using PET with
[11C]palmitate and [11C]glucose as radiotracers in nonis-
chemic HF.19 However, in a study with ischemic and
nonischemic HF, Taylor et al12 investigated the alterations in
myocardial FA use in the nonischemic regions using PET
with FTHA and showed that myocardial FA uptake in HF is
higher than normal heart, whereas myocardial glucose
uptake rates are lower. This controversy regarding the
preference in humanmyocardial metabolism in HF has been
attributed to other comorbidities that may coexist like
diabetes, obesity, and insulin resistance, and more data are
needed in to have a clear picture.20 Hence, therapies
targeting this shift in energy substrate in the failing heart can
be developed and evaluated using PET.

Myocardial perfusion imaging
Myocardial perfusion imaging detects blood flows

through the heart and can provide pathophysiologic
insights into HF pathophysiology. There are 3 PET
radiotracers that are used, including [15O]water,
[13N]ammonia, and [82Rb]rubidium chloride. The phys-
ical half-life of [15O]water is 2.06 minutes.21 The short
half-life requires an onsite cyclotron. [15O]water has been
used for the quantification of myocardial blood flow
(MBF) and coronary flow reserve (CFR) assessment.22

However, it is not approved by the FDA for clinical use
and is primarily used for measuring MBF in research.21

The half-life of 13N is 9.96 minutes and typically requires
an onsite cyclotron for production of [13N] ammonia.21

Its use has been validated in MBF and CFR and is
approved for clinical use. The half-life of 82Rb is 1.25
minutes and it requires an onsite generator.21 Although
the low myocardial extraction fraction of 82Rb does not
render it ideal for absolute quantification of MBF and CFR,
it has been widely validated for this purpose23,24 and
provides useful information in clinical setting.25–27

Flurpiridaz F-18 is a novel myocardial perfusion imaging
tracer that is a structural analog of pyridaben, a known
inhibitor of the reduced nicotinamide adenine dinucleotide/
ubiquinone oxidoreductase known as mitochondrial com-
plex-1 (MC-1).21 In a submitochondrial assay, [18F]flurpiridaz
binds to MC-1 with high affinity and demonstrates high
myocardial uptake for perfusion deficits. It exhibits rapid
uptake in the myocardium, prolonged retention, and
superior extraction compared with thallium and techne-
tium.28 Uptake and washout kinetics of [18F]flurpiridaz in
rats demonstrated a rapid uptake, with a time to half-
maximal uptake of 35 seconds, and slow washout with an
efflux half-time greater than 120 minutes.29 This allows for
fast and sustained accumulation in the heart. [18F]flurpiridaz
is currently in commercial development and is undergoing
phase III trials. Three other MC-1 inhibitor classes studied in
animal models are [18F]RP1003 fenazaquin; [18F]RP1004 or
pyridaben, which demonstrated superior profile with
minimal washout and less background interference; and
[18F]RP1005: Chromone.30 [18F]MC1-27 is a series of
fluorinated pyridazinone derivatives with half minimal
(50%) inhibitory concentration values ranging from 8 to
4000 nM for the MC-1. It has high cardiac uptake and
minimal lung or liver interference.31

The combination of myocardial metabolism and
perfusion could identify the presence of scarring in the
myocardium. There are regions with no perfusion and
FDG uptake, which are identified as scar, but importantly,
there are regions with abnormal perfusion, which maybe
scar or viable-hibernating myocardium. There have been
several models developed calculating the percentage of
the scar areas to establish prognosis32–34 and may be
useful for selection of subjects for novel therapies.

Inflammation
There are multiple imaging modalities that can detect

and characterize the extent and severity of coronary
atherosclerosis, but none identify patients who are at risk
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for plaque rupture. Consequently, [18F]FDG is being
evaluated for the detection of biologically active athero-
sclerosis based on the premise that the tracer accumu-
lates in activated macrophages, which are key
inflammatory component of a plaque.17 The increased
uptake has been noted in animal models of atherosclero-
sis and, in humans, atherosclerosis of the carotid artery
and aorta.35–38 [18F] attached to other compounds, such
as FDG and sodium fluoride (NaF), has also been used to
target and image active inflammatory atherosclerosis and
micro-calcifications.39–42

Recently, the role of a transmembrane G-protein–coupled
chemokine receptor, C-X-C chemokine receptor type 4
(CXCR4), involved in leucocyte chemotaxis, was investigat-
ed in mice model of acute myocardial infarction (AMI).43

CXCR4 was labeled with[68GA]-pentixafor, and PET dem-
onstrated an increased uptake in the infarct region (along
with the bonemarrow). The radiosignalwas attenuated after
long-term treatment with enalapril and abolished with the
infusion of a specific CXCR4 antagonist. The evidence of the
involvement of this chemokine receptor in the inflammatory
phase post-AMI, and the existence of an efficient CXCR4
blocker, may have therapeutic implications. However,
current literature on the therapeutic use of this blocker has
shown mixed results,44,45 whereas there is an ongoing trial
with another agent of this class (CATCH-AMI, ClinicalTrials.-
gov, NCT01905475), which may further elucidate this field.

Cardiac remodeling
Remodeling is a response of the myocardium and

vasculature to a range of hemodynamic, metabolic, and
inflammatory stimuli.46 Adaptive at first, when sustained, it
becomes pathogenic. The endothelial cell senses the environ-
ment and signal modulations of vascular function to maintain
homeostasis and host defenses against injury.47 Inappropriate
signaling from vascular endothelial cells leads to arterial
remodeling and causes atherosclerosis and hypertension.46

Endothelin. Endothelin receptors are transmembrane
proteins that are distributed throughout the body.48

Endothelin exists in 3 isoforms and, in addition to
vasoconstriction, are involved in cell proliferation and
hormone production.49 The endothelins act through 2
receptors: subtype-A (ETA) and subtype-B (ETB). The first
selective PET radioligands were the ETA-selective antagonist
[ 11C]PD156707 and the ETB-selective agonist
[18F]BQ3020.50,51 ETA receptor antagonists have been
extensively studied for treatment in heart disease.52,53 Both
[11C]BMS-5p3 and 18F-(N-[[29-[[(4,5-dimethyl-3-isoxazolyl)
amino]sulfonyl]-4-(2-oxazolyl)[1,19-biphenyl]-2-yl]
methyl]-N,4-fluorobenzamide) ([18F]FBzBMS 5) bind selec-
tively to the ETA receptor in vivo.49,54 18F-labeled analog of
FBzBMS 5, which is an endothelin receptor antagonist, was
reported to adequately image the expression of ETA
receptors even in infarcted regions of animal myocardium,
demonstrating a reduced uptake after the site blockage with
different doses of oral bosentan (Figure 2).54
Integrins. Integrins represent proteins that are involved
in cell migration, proliferation, survival, and differentiation.
55[18F]fluorogalacto-RGD has high affinity for αϒ and β3

integrin receptors, and has been developed as a PET ligand
for monitoring myocardial repair after infarction.56

Matrix metalloproteinases. Matrix metalloprotein-
ases (MMPs) are a group of extracellular degradative
enzymes that have a pivotal role in ventricular remodel-
ing.57 The induction of MMP transcription is increased by
activation of protein kinase C, a process that is activated
by catecholamines, angiotensin II, and endothelin.58,59

Noninvasive hybrid SPECT/computed tomography (CT)
imaging approach for assessing MMP activation with
ligand [99mTc]RP805, all in conjunction with cine
magnetic resonance (MR) for investigation of ventricular
deformation, has been studied. Matusiak et al60 success-
fully labeled nanomolar affinity MMP with 18F PET
radioligand in an in vitro study of human bronchial and
breast epithelial cancer cells.
Angiotensin-converting enzyme. Inhibiting angioten-

sin-converting enzyme (ACE) decreases primary pulmonary
hypertension and delays pulmonary vascular remodeling.
Qing et al61 used radiolabeled [18F]fluorocaptopril in PET to
show that the total mass of pulmonary ACE appears to be
significantly reduced in pulmonary hypertension and that
only lowdoses of ACE inhibitorsmay be needed to block the
effects of ACE on vascular remodeling.

Angiotensin II type 1 receptors
The involvement of a separate myocardial renin-angio-

tensin-aldosterone system has been implicated in the
postinfarct remodeling process, with the PET imaging of
an angiotensin II type 1 receptor (AT1R)–specific labeled
substrate [11C]-2-butyl-5-methoxy-methyl-6-(1-oxopyridi-
n-2-yl)-3-[[2-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl]-3H-i-
midazo[4,5-b]pyridine ([11C]KR31173). However, it
seems that there are species-specific differences in the
AT1R postinfarct up-regulation because in rats, there is an
increase uptake in the infarct area,62 although in pigs, it is in
both infarct and remotemyocardial regions.63 AT1R imaging
was also proven to be safe in healthy humans and provide
valid data regarding its blockage with the use of angiotensin
receptor blockers, such as olmesartan.63 Thus, there are
extensive potentials for the study, but also for the regulation
of remodeling, through the pathway of AT1R.

Cardiac innervation
The role of sympathetic activation in HF is well known.

Disorders of cardiac innervation can be detected by
radiotracers that target sympathetic and parasympathetic
nerve terminals or postsynaptic receptors. The sympathetic
nervous system is the predominant autonomic component in
the ventricles. The available presynaptic sympathetic radio-
tracers include [11C]hydroxyephedrine, [11C]epinephrine,
[11C]phenylephirine, and [18F]dopamine, whereas
[11C]CGP12177 and [11C]GB67 are postsynaptic



Figure 2

In vivo PET and CT images in healthy rats after the infusion with the radiolabel [18F]FBzBMS. Upper images show [18F]FBzBMS myocardial uptake,
which is significantly diminished after pretreatment with oral bosentan (lower images). There is no [18F]FBzBMS uptake in adjacent organs, that is,
lung and liver. ID, injected dose. This research was originally published in J Nucl Med. Higuchi et al.54
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radiotracers.17,56 The most commonly used tracer for
imaging the presynaptic adrenergic function is [123I]
metaiodobenzylguanidine (MIBG) [123I], which is not
catabolized by monoaminooxidase and localizes at the
presynaptic nerve endings. N-[3-bromo-4-(3-[18F]fluoro-
propoxy)-benzyl]-guanidine [18F]LMI1195, shares similarities
with [123I]MIBG based on its benzylguanidine structure. The
high specificity of [18F]LMI1195 for the norepinephrine
transporter has been shown.64,65 Other 18F-labeled MIBG
analogs are indevelopment.66,67 11C-meta-hydroxyepinephrine
(HED) ([11C]HED) is another PET radiotracer with similar
properties to MIBG but provides a higher resolution and
sensitivity, while depicting the regional heterogeneity of
myocardial uptake. Ischemic HF patients who developed
cardiac arrest hadgreater denervated, but viablemyocardium.68

Apoptosis
Myocyte apoptosis is related to worsening HF69,70 and has

been evaluated by radiolabel imaging of annexin V and
caspases. Phosphatidylserine is a phospholipid in the
internal cell membrane, which during apoptosis is external-
ized to theouter cellmembrane andbinds to several proteins
including annexin V.71 Annexin V, which has been labeled
with 99mTc, was reported to have an increased uptake in
regions of infarcted myocardium of rats.72,73 Another area
where the PET imaging of annexin V showed promising
findings in animals is with chemotherapy-induced cardio-
myopathy.74 Development of PET annexinV tracers75,76will
provide a better spatial resolution of the myocardium and
provide the potential for the design and development of
relevant studies.

Role of PET in HF drug development
Positron emission tomography imaging provides a

promising noninvasive modality for therapeutic agents
affecting myocardial metabolism. The use of PET
metabolic imaging provides superior detection sensitivity
in the evaluation of different targets and pathways at the
cellular and subcellular level. The use of PET will bring
the focus of targeting therapy in HF to the myocardium.
Compared with developing new treatments for encoun-
tering the several maladaptive processes in HF, the
orientation to the myocardial abnormalities has a higher
chance of transitioning myocardium into recovery.77,78

At the preclinical stage, imaging with radiolabeled
investigational drugs would allow for the study of
pharmacokinetic behavior and its accumulation at the
target vs nontarget tissue. Such studies could provide
information if in fact the agent is reaching its target and
also identify potential toxicity.79 Investigational drug
analogs used against a validated radioligand selective for
the same biological target could provide quantitative
measures of receptor occupancy. Such data could guide
design optimal dosing and timing schedules in trials,
thereby improving their efficiency and cost-effectiveness.
The use of FDG as a radiotracer for glucose metabolism
and viability detection in heart is well established.
Although myocardial metabolism and viability are the

image of 
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mainstay in cardiac PET imaging, the development of
newer radioligands like rubium chloride ([82Rb]RbCl2),
[15O] water, [13N] ammonia, and [18F]FTHA can be
used in conjunction with drugs to study their effects in
early-phase trials.
Overall there are 4main areas for the application of PET in

HF drug development: (a) to provide information on the
biodistribution of a drug, (b) to predict efficacy of drug
candidates, (c) to monitor the effectiveness of therapy in
early drug development phases, and (d) as a method for
prescreening patient populations for clinical trials.80

Biodistribution
Biodistribution of a drug requires radiolabeling the drug

itself. Bergström et al81 developed a radiosynthesis of
[11C]-zolmitriptan for studying drug biodistribution.
Similarly, Roche82 used a radiolabeled antibody against
human epidermal growth factor receptor-3, [89Zr]
RO5479599, to provide information on their trial of
RO5479599 alone or in combination with erlotinib or
cetuximab in patients with human epidermal growth
factor receptor-3–positive solid tumors. Zofenopril, an
ACE inhibitor, in its active form zofenoprilat, was labeled
with [11C] and was shown to have cardiac accumulation,
in addition to the uptake in tissues with high levels of
angiotensin converting enzyme (ACE), such as lungs and
kidneys and in organs involved in drug metabolism, like
liver and gall bladder.83 In cardiovascular research, PET
can give the opportunity to image the direct interaction
of the potential medication with the myocardium at a
cellular level. Particularly in HF, subjects have several
comorbidities, such as renal and hepatic dysfunction;
thus, the potential of investigating the toxicity of novel
agents (by exploring their biodistribution in other tissues)
in minimal doses enhances the safety and the compliance
of the participants.

Drug efficacy and effectiveness
PET can be used to study the receptor occupancy of drugs.

A radiolabeled biomarker of the receptor is developed
which is structurally different from the drug under study to
ensure that any displacement of the tracer be attributed to
the drug. Nyberg et al84 used a radioligand (S,S)-[18F]FMe-
NER-D2 for the norepinephrine transporter to show that
norquetiapine, a metabolite of quetiapine, also has high
affinity for the 5-hydroxytryptamine1A and dopamine D2
receptors, which may account for its efficacy in various
psychiatric disorders other than its antipsychotic action. In
an animal study, candesartan was labeled with [11C] ([11C]
methyl-candesartan) and the pharmacokinetics were inves-
tigated regarding changes in the AT1Rs in the kidney.85

Lisinoprilwas labeledwith 99mTc tomonitor theup-regulation
of ACE in various tissues and, thus, the progression of the
failing heart.86 The effectiveness of the oral angiotensin
receptor antagonist valsartan vs the intravenous agent
SK-1080 in blocking the myocardial AT1R was investigated
in rats, by comparing the uptake of the AT1R-specific
radioligand [11C]-2-butyl-5-methoxy-methyl-6-(1-oxopyri-
din-2-yl)-3-[[2-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl]-3H-
imidazo[4,5-b]pyridine ([11C]KR31173).62 As collateral
analysis, it was shown that the intravenous agent achieved
a complete blockage of the AT1R compared with the
partial effect of oral valsartan.62

By exploring the uptake of a labeled HF medication in
the cardiovascular system and its corresponding effect to
the myocardial receptors, effectiveness can be assessed
thoroughly and can lead to the successful transfer of
novel medications from an early to a later phase of
development (Figure 3).

Prescreening patients
Positron emission tomography imaging may help select

HF patients for specific therapies. A β-adrenoreceptor
(β-AR) antagonist, [11C]CGP12177, was used to measure
the baseline density of the β-AR in subjects with
idiopathic dilated cardiomyopathy. Patients with low
levels of β-AR had greater improvement in ejection
fraction after the treatment with carvedilol.87 Imaging of
cardiac innervation has also been used to risk stratify HF
patients. The PAREPET study investigated the prognostic
role of the quantification of cardiac denervation by using
[11C]HED in 204 subjects with ischemic cardiomyopathy.
After 4 years, sympathetic denervation was associated
with sudden arrest independent of ejection fraction and
infarct volume, and thus, these patients could benefit
from a defibrillator.68 Accordingly, a multiparametric
[18F]FDG PET reported to predict the responders and
nonresponders to cardiac resynchronization therapy.88

Positron emission tomography has the potential of
providing significant insights into HF pathophysiology by
better characterizing the myocardial substrate. Positron
emission tomography can differentiate the regional state
of myocardium from normal to dysfunctional but viable
to viable. This in turn would contribute detecting HF
patients more amenable to recovery or to determine the
best timing to move to more advanced therapies and to
develop new therapies targeting the myocardium.78,89

The development of direct markers of fibrosis in animals
by attaching the radioligand [68Ga] to collagelin, a cyclic
peptide with micromolar affinity to collagen, provides an
example of such potential.90

Combination studies
Positron emission tomography provides higher-quality

image, shorter scans, and higher temporal resolution than
SPECT. Positron emission tomography combined with
MR or CT gives the added benefit of functional
information from PET added with anatomical information
from MR or CT. Magnetic resonance delivers better soft
tissue contrast with less radiation and is more sensitive for
imaging myocardium. Integration of PET with MR in the
presence of functional MR through MR spectroscopy,



Figure 3

In vivo PET images of rat myocardium. One week after a technically induced myocardial infarction after the administration of the
radiopharmaceuticals 11C-KR31137 and 13N-ammonia. A, Anterior maximum-intensity-projection chest view. B, In the middle set of views, there
is an increased 11C-KR31173 uptake in segments with reduced myocardial perfusion by 13N-ammonia. C, In the lower images, the infusion with
AT1R blocker SK-1080 results in the absence of increased 11C-KR31173 uptake. HLA, horizontal long axis; SA, short axis. This research was
originally published in J Nucl Med. Higuchi T et al.62
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diffusion-weighted imaging, and perfusion imaging can
provide important metabolic and functional information.91

There have been 2 approaches with PET/MR. The first
consists of the 2 tests done separately,which is cost and time
inefficient, and renders problemswithmatching the 2 sets of
images related to patient repositioning and time lag. An
alternate approach is using a single machine and performing
the test at one time.

Safety and radiation exposure
Radiation protection and assessment of worker expo-

sure to ionizing radiation, emitted mainly by the isotope
18F, are important issues. The total effective dose to the
patient from a PET/CT is ≈10 mSv. The majority comes
from internal irradiation due to radiopharmaceuticals and
the minority is due to the CT scan (low-dose CT scan≈2-4
mSv). For comparison, the average background effective
radiation dose is 3 mSv, a stroke protocol CT delivers 14
mSv, and an angiogram aorta CT deliver 24 mSv.92

Compared with PET/CT, PET/MR reduces the exposure
of ionizing radiation. However, PET/MR may be associ-
ated with a higher-radiation exposure for the technicians
performing the examination, as patient positioning takes
considerably longer, particularly when attaching and
connecting the MR surface coils, during which the
technician is near the gamma-emitting patient.91

Limitations of PET in HF drug development
The cost of PET is higher compared with echocardiog-

raphy but has the potential to save unwarranted phase III
clinical trials. Most of the radioligands used as investiga-
tional drug analogs have shorter half-lives and may
require an on-site cyclotron; however, virtually all
clinically useful tracers can be converted to 18F analogs
for wide dissemination. Aside from time needed to train
staff to use drug-specific radiotraces and interpret PET,
the time needed to develop radiotracers for use in drug
testing poses a considerable burden for nuclear medicine
centers. Finally, cross-laboratory standardization is need-
ed for wide use.
Conclusion
Positron emission tomography is a mature imaging

technique, with continuously growing acceptance world-
wide. Beyond its applicability in diagnosis, stratification,
and understanding of pathophysiology in oncology and
neurology/psychiatry, the growth of radiochemistry and
of novel combined molecular imaging technologies
opens new horizons in cardiology and in HF, in particular.
The evolution of PET could help either in the early-phase
drug trials, by confirming the successful drug–tissue
target interaction, or in phase II/III trials with the more
convenient determination of effectiveness, efficacy, and
safety and the preselection of more appropriate candi-
dates for these emerging treatments. This might boost the
transition of new under investigation agents to later-phase
trials and production, by reducing the temporal and
financial burden, thus providing earlier access to more
promising therapies for millions of patients worldwide.
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