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Abstract

A graph on n vertices is said to admit a prime labeling if we can label its vertices with the first n natural numbers such that any
two adjacent vertices have relatively prime labels. Here we extend the idea of prime labeling to the Gaussian integers, which are
the complex numbers whose real and imaginary parts are both integers. We begin by defining an order on the Gaussian integers
that lie in the first quadrant. Using this ordering, we show that several families of trees admit a prime labeling with the Gaussian
integers.
c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A graph on n vertices admits a prime labeling if its vertices can be labeled with the first n natural numbers in
such a way that any two adjacent vertices have relatively prime labels. Many families of graphs are known to admit
prime labelings — such as paths, stars, caterpillars, complete binary trees, spiders, palm trees, fans, flowers, and many
more [1,2]. Entringer conjectured that any tree admits a prime labeling, however this conjecture is still open in general.
In this paper we extend the study of prime labelings to the Gaussian integers.

In order to extend the notion of a prime labeling to Gaussian integers, we must first define what we mean by “the
first n Gaussian integers”. In Section 2, we define a spiral ordering on the Gaussian integers that allows us to linearly
order the Gaussian integers. This spiral ordering preserves many familiar properties of the natural ordering on N. For
example, the spiral ordering alternates parity, and consecutive odd integers in the spiral ordering are relatively prime.
We discuss further properties of the spiral ordering in Section 2. In Section 3, we apply the properties of the spiral
ordering to prove that several families of trees admit a prime labeling with the Gaussian integers under the spiral
ordering.
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2. Background and definitions

2.1. Background on the Gaussian integers

We begin with some relevant background on Gaussian integers to provide a foundation for our work.
The Gaussian integers, denoted Z[i], are the complex numbers of the form a + bi, where a, b ∈ Z and i2 = −1.

A unit in the Gaussian integers is one of ±1, ±i. An associate of a Gaussian integer α is u · α where u is a Gaussian
unit. The norm of a Gaussian integer a + bi, denoted by N (a + bi), is given by a2

+ b2. A Gaussian integer is even
if it is divisible by 1 + i and odd otherwise. This is because Gaussian integers with even norms are divisible by 1 + i.

Definition 2.1. A Gaussian integer ρ is prime if its only divisors are ±1, ±i, ±ρ, or ±ρi.

Besides this definition of Gaussian primes, we have the following characterization theorem for Gaussian primes.
Further information on the Gaussian integers can be found in Rosen’s Elementary Number Theory [3].

Theorem 2.2. A Gaussian integer α ∈ Z[i] is prime if and only if either

• α = ±(1 ± i),
• N (α) is a prime integer congruent to 1 (mod 4), or
• α = p + 0i or α = 0 + pi where p is a prime in Z and |p| ≡ 3 (mod 4).

Definition 2.3. Let α and β be Gaussian integers. We say α and β are relatively prime or coprime if their only
common divisors are the units in Z[i].

2.2. Prime labelings of graphs with the Gaussian integers

Throughout this paper we consider finite graphs without loops or multiple edges, and in particular we will study
trees. We write uv to denote an edge in a graph connecting vertex u to vertex v. For trees, we say that a vertex is a
leaf or endvertex if it has degree 1 and that it is an internal node otherwise.

Our goal is to extend the study of the prime labeling of trees to the Gaussian integers. Because the Gaussian integers
are not totally ordered, we must first give an appropriate definition of “the first n Gaussian integers”. We propose the
following ordering:

Definition 2.4. The spiral ordering of the Gaussian integers is a recursively defined ordering of the Gaussian
integers. We denote the nth Gaussian integer in the spiral ordering by γn . The ordering is defined beginning with
γ1 = 1 and continuing as:

γn+1 =



γn + i, if Re(γn) ≡ 1 (mod 2), Re(γn) > Im(γn) + 1
γn − 1, if Im(γn) ≡ 0 (mod 2), Re(γn) ≤ Im(γn) + 1, Re(γn) > 1
γn + 1, if Im(γn) ≡ 1 (mod 2), Re(γn) < Im(γn) + 1
γn + i, if Im(γn) ≡ 0 (mod 2), Re(γn) = 1
γn − i, if Re(γn) ≡ 0 (mod 2), Re(γn) ≥ Im(γn) + 1, Im(γn) > 0
γn + 1, if Re(γn) ≡ 0 (mod 2), Im(γn) = 0.

This is illustrated in Fig. 1.

Under this ordering, the first 10 Gaussian integers are

1, 1 + i, 2 + i, 2, 3, 3 + i, 3 + 2i, 2 + 2i, 1 + 2i, 1 + 3i, . . . ,

and we write [γn] to denote the set of the first n Gaussian integers in the spiral ordering.
We exclude the imaginary axis to ensure that the spiral ordering excludes associates. Consecutive Gaussian integers

in this ordering are separated by a unit and therefore alternate parity, as in the usual ordering of N. However, several
properties of the ordinary integers do not hold. In the set of the first N (1+2i) ·k numbers, (k ∈ N), it is not guaranteed
that there are exactly k multiples of 1 + 2i (or any other residue class mod 1 + 2i). Furthermore, odd integers with
indices separated by a power of two are not guaranteed to be relatively prime to each other.

This definition of the spiral ordering for the Gaussian integers leads to the following definition of prime labeling
of trees with Gaussian integers.
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Fig. 1. The spiral ordering of the Gaussian integers.

Definition 2.5. Let G be a graph on n vertices. A Gaussian prime labeling of G is a bijection ℓ : V (G) → [γn]

such that if uv ∈ E(G), then ℓ(u) and ℓ(v) are relatively prime; that is, neighboring vertices have relatively prime
labels.

2.3. Properties of the spiral ordering

We define several pieces of the Gaussian spiral ordering. Corners of the spiral ordering occur when the spiral turns
from north to east or east to north, from south to east or east to south, or from north to west or west to north. Branches
of the spiral occur when the spiral travels along a straight path going north, south, east, or west. Steps along the real
axis and the Re(z) = 1 line are not counted as branches.

Our first goal is to determine the index of an arbitrary Gaussian integer, a + bi, in the spiral order based on which
type of branch or corner it lies on. We use I (a + bi) to denote the index of a + bi in the spiral ordering. First note that
there are three types of corners:

• real corners at Gaussian integers on the real axis,

• Re(z) = 1 corners at Gaussian integers on the Re(z) = 1 line, and

• interior corners at Gaussian integers on the line Re(z) − Im(z) = 1.

Gaussian integers at real corners are even when Re(z) is even and is odd otherwise. Gaussian integers at Re(z) = 1
corners are even when Im(z) is odd and are even otherwise.

Similarly the branches come in four types:

• up-oriented branches, which contain Gaussian integers between odd corners on the real axis and interior
corners,

• down-oriented branches, which contain Gaussian integers between interior corners and even corners on the real
axis,

• right-oriented branches, which contain Gaussian integers between even corners on the Re(z) = 1 line and interior
corners, and

• left-oriented branches, which contain Gaussian integers between interior corners and odd corners on the Re(z) = 1
line.



168 S. Klee et al. / AKCE International Journal of Graphs and Combinatorics 13 (2016) 165–176

Lemma 2.6. Corners in the spiral ordering lie on either the real axis, the Re(z) = 1 line, or the line Im(z) =

Re(z) − 1. Their indices are found as follows:

I (a + bi) =


a2, if b = 0, a ≡ 0 (mod 2) — Even corners on the real axis
(a − 1)2

+ 1, if b = 0, a ≡ 1 (mod 2) — Odd corners on the real axis
(b + 1)2, if a = 1, b ≡ 0 (mod 2) — Odd corners on the Re(z) = 1 line
b2

+ 1, if a = 1, b ≡ 1 (mod 2) — Even corners on the Re(z) = 1 line
b2

+ b + 1, if b = a − 1 — Interior corners.

Proof. Observe that Gaussian integers of the form a + 0i, with a even, or 1 + bi, with b even, are the corner nodes
in squares composed of a2 or (b + 1)2 nodes respectively. The spiral-ordering path will pass through each of these
nodes once and will end on an even corner on the real axis if the number of nodes is even, and an odd corner on the
Re(z) = 1 line if the number of nodes is odd. Therefore, the index of an even corner on the real or an odd corner on
the Re(z) = 1 line will be the number of nodes in that square.

Odd corners on the real axis and even corners on the Re(z) = 1 line will always have the index following the
corresponding even corners of the real axis and odd corners on the Re(z) = 1 line.

The interior corners are of the form (b + 1) + bi. If b is even, then the corner is b nodes before an odd corner on
the Re(z) = 1 line. If b is odd, the corner is b nodes before an even corner on the Re(z) = 1 line. In either case, since
a = b + 1, the index of the corner will be a2

− b. �

Theorem 2.7. Let a +bi be a Gaussian integer with a > 0 and b ≥ 0. Then its index in the spiral ordering, I (a +bi),
is given by the following formula:

I (a + bi) =


(a − 1)2

+ 1 + b, if a ≡ 1 (mod 2), a ≥ (b + 1) — Up-oriented branches
(b + 1)2

− a + 1, if b ≡ 0 (mod 2), a ≤ (b + 1) — Left-oriented branches
b2

+ a, if b ≡ 1 (mod 2), a ≤ (b + 1) — Right-oriented branches
a2

− b, if a ≡ 0 (mod 2), a ≥ (b + 1) — Down-oriented branches.

Proof. Each branch references the corners of the spiral ordering. If a +bi lies on an up-oriented branch, then a is odd.
Consider the odd corner on the real axis at a + 0i. By Lemma 2.6, the index of this corner is (a − 1)2

+ 1. Therefore
the index of a + bi is (a − 1)2

+ 1 + b.
If a + bi lies on a left-oriented branch, then b is even. Consider the odd corner on the Re(z) = 1 line at 1 + bi. By

Lemma 2.6, the index of this corner is (b +1)2. Therefore the index of a +bi is (b +1)2
− (a −1) = (b +1)2

−a +1.
If a + bi lies on a right-oriented branch, then b is odd. Consider the even corner on the Re(z) = 1 line at 1 + bi.

By Lemma 2.6, the index of this corner is b2
+ 1. Therefore the index of a + bi is b2

+ 1 + (a − 1) = b2
+ a.

If a + bi lies on a down-oriented branch, then a is even. Consider the even corner on the real axis at a + 0i. By
Lemma 2.6, the index of this corner is a2. Therefore the index of a + bi is a2

− b. �

Now that we have a formula for the index of a Gaussian integer in the spiral ordering, we prove several lemmas
about Gaussian integers that will be useful in proving that various families of trees have Gaussian prime labelings.

Lemma 2.8. Let α be a Gaussian integer and u be a unit. Then α and α + u are relatively prime.

Proof. Suppose that there exists a Gaussian integer λ such that λ|α and λ|(α + u). This means that λ must also divide
u = (α + u) − α. But the only Gaussian integers that divide u are the units, so λ must be a unit. Thus α and α + u are
relatively prime. �

The following corollary is immediate because consecutive Gaussian integers in the spiral ordering have a difference
of one unit.

Corollary 2.9. Consecutive Gaussian integers in the spiral ordering are relatively prime.

Lemma 2.10. Let α be an odd Gaussian integer, let c be a positive integer, and let u be a unit. Then α and α+u·(1+i)c

are relatively prime.
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Proof. Suppose that α and α + u · (1 + i)c share a common divisor γ . It follows that γ divides u · (1 + i)c
=

(α + u · (1 + i)c) − α. However, the only divisors of u · (1 + i)c in Z[i] are all powers of (1 + i) and its associates
and the units in Z[i]. Since α is odd, it is not divisible (1 + i) or its associates because those numbers are all even.
Therefore, γ must be a unit. Hence α and α + u · (1 + i)c are relatively prime. �

Corollary 2.11. Consecutive odd Gaussian integers in the spiral ordering are relatively prime.

Proof. Consecutive odd Gaussian integers in the spiral ordering differ by two units. The only possible differences
between them are therefore 1 + i, 2, or one of their associates. Since 2 = −i(1 + i)2, all of these differences are of the
form u · (1 + i)c so the result follows from Lemma 2.10. �

Lemma 2.12. Let α be a Gaussian integer and let ρ be a prime Gaussian integer. Then α and α + ρ are relatively
prime if and only if ρ ̸ | α.

Proof. Assume that there exists a Gaussian integer γ such that γ | α and γ | α + ρ. Then γ must also divide
(α + ρ) − α = ρ. But ρ is prime, so either γ = u or γ = ρ · u for some unit u. If γ = ρ · u, then α and α + ρ have a
common factor of ρ and are not relatively prime. If γ is a unit, then α and α + ρ have only a common factor of a unit
and are relatively prime. Therefore α and α + ρ are relatively prime if and only if ρ ̸ | α. �

Lemma 2.13. Let p ∈ N be a prime integer congruent to 3 (mod 4) and let α = a + bi be a Gaussian integer such
that p | α. Then the index of α in the spiral ordering is congruent to 0 or 2 (mod p).

Proof. By Theorem 2.2, p is prime in Z[i], so if p | a + bi, then p | a and p | b. So a ≡ b ≡ 0 (mod p). From
Theorem 2.7, we can calculate the index I (α) of α and examine it modulo p. There are four cases to consider. In
Case 1, I (α) = (a − 1)2

+ 1 + b ≡ (−1)2
+ 1 + 0 (mod p) ≡ 2 (mod p). In Case 2, I (α) = (b + 1)2

− a + 1 ≡

12
− 0 + 1 (mod p) ≡ 2 (mod p). In Case 3, I (α) = b2

+ a ≡ 02
+ 0 (mod )p ≡ 0 (mod p). In Case 4,

I (α) = a2
− b ≡ 02

− 0 (mod p) ≡ 0 (mod p). Therefore I (α) ≡ 0 (mod p) or I (α) ≡ 2 (mod p) for any α such
that p | α. �

3. Results for families of trees

We can now use the properties of the spiral ordering from the previous section to construct a Gaussian prime
labeling for several classes of trees. For each class of tree considered, we will give a definition, an example figure, and
then provide our proof of the existence of a Gaussian prime labeling. We consider stars, paths, spiders, n-centipedes,
(n, k, m)-double stars, (n, 2)-centipedes, and (n, 3)-firecrackers.

3.1. Results on stars, paths, spiders, n-centipedes, and (n, k, m)-double stars

Definition 3.1. The star graph, Sn , on n vertices is the graph with (see Fig. 2)

V (Sn) = {v1, v2, . . . , vn}, and E(Sn) = {v1vk : 2 ≤ k ≤ n}.

Theorem 3.2. Any star graph admits a Gaussian prime labeling.

Proof. Label vertex v j with γ j . The center vertex v1 is then labeled with γ1 = 1, which is relatively prime to all
Gaussian integers. Therefore this is a Gaussian prime labeling. �

Definition 3.3. The path graph, Pn , on n vertices is the graph with (see Fig. 3)

V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {v jv j+1 : 1 ≤ j ≤ n − 1}.

Theorem 3.4. Any path admits a Gaussian prime labeling.

Proof. Label vertex v j with γ j . By Corollary 2.9 consecutive Gaussian integers in the spiral ordering are relatively
prime, so this is a prime labeling of the path. �
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Fig. 2. The star graph on 11 vertices.

Fig. 3. The path on 9 vertices.

Fig. 4. Example of a spider graph.

Definition 3.5. A spider graph is a tree with one vertex of degree at least 3 and all other vertices having degree 1 or
2 (see Fig. 4).

Theorem 3.6. Any spider tree admits a Gaussian prime labeling.

Proof. Let T be a spider tree and suppose the center vertex v1 has degree k. Then if we remove v1 from T we are left
with paths L1, L2, . . . , Lk with lengths a1, a2, . . . , ak respectively. So label v1 with 1 and label L1 with the next a1
consecutive Gaussian integers γ2, γ3, . . . , γ1+a1 , then label L2 with the next a2 consecutive Gaussian integers, and
so on. By Corollary 2.9 this is a Gaussian prime labeling. �

Definition 3.7. The n-centipede tree, cn , is the graph with (see Fig. 5)

V (cn) = {v1, v2, . . . , v2n},

and

E(cn) = {v2k−1v2k : 1 ≤ k ≤ n} ∪ { v2k−1v2k+1 : 1 ≤ k ≤ n − 1}.

Theorem 3.8. Any n-centipede tree admits a Gaussian prime labeling.

Proof. Label vertex vk with γk . This is a Gaussian prime labeling because consecutive Gaussian integers in the
spiral ordering are relatively prime by Corollary 2.9 and consecutive odd Gaussian integers in the spiral ordering are
relatively prime by Corollary 2.11. �
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Fig. 5. The 6-centipede tree.

Fig. 6. The (6, 6, 11)-double star tree.

Definition 3.9. Let n, k, m be integers with k ≤ m. The (n, k, m)-double star tree, DSn,k,m , is the graph with

V (DSn,k,m) = {v1, . . . , vn, vn+1, . . . , vn+k−1, vn+k, . . . , vn+k+m−2},

and

E(DSn,k,m) = {v jv j+1 : 1 ≤ j ≤ n − 1, v1vn+ j : 1 ≤ j ≤ k − 1, vnvn+k+ j : 0 ≤ j ≤ m − 2}.

In the (n, k, m)-double star tree we have a path of length n whose endvertices v1 and vn are the central vertices for
stars on k and m vertices respectively (not including the other vertices on the path) (see Fig. 6).

Theorem 3.10. Any (n, k, m)-double star tree has a Gaussian prime labeling.

Proof. Label vn with γ1 = 1, v1 with γ2 = 1 + i, and v2, . . . , vn−1 with the consecutive Gaussian integers
γ3, . . . , γn . We now label the k − 1 remaining vertices adjacent to v1 with odd Gaussian integers. If n is odd, label
vn+1, . . . , vn+k−1 with γn+2, γn+4, . . . , γn+2k−2. If n is even, label vn+1, . . . , vn+k−1 with γn+1, γn+3, . . . , γn+2k−3.
Label the remaining vertices adjacent to vn arbitrarily with the remaining Gaussian integers in [γn+k+m−2]. This is
a Gaussian prime labeling because 1 + i is relatively prime to all odd Gaussian integers, 1 is relatively prime to all
Gaussian integers, and the path is labeled with consecutive Gaussian integers. �

Note that when n = 1, this is a star graph and when k = m = 0 it is a path. When k = m and n = 2, it is a
firecracker graph.

3.2. Results on (n, 2)-centipede trees

Definition 3.11. The (n, 2)-centipede tree, cn,2, is the graph with

V (cn,2) = {v1, v2, . . . , v3n},

and

E(cn,2) = {v3k−1v3k−2, v3k−1v3k : 1 ≤ k ≤ n} ∪ {v3k−1v3k+2 : 1 ≤ k ≤ n − 1}.

The (n, 2)-centipede tree has n vertices on its spine with indices that are congruent to 2 (mod 3). Each vertex on the
spine has two leaf nodes adjacent to it. We call each spine vertex v3k−1 and its neighboring leaves v3k−2 and v3k the
kth segment of the tree (see Fig. 7).

Before we prove a result about (n, 2)-centipede trees, we will prove a lemma about Gaussian integers whose indices
are three places apart in the spiral ordering.
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Fig. 7. The (6,2)-centipede tree.

Lemma 3.12. Let k ∈ Z with k ≥ 2, and consider the Gaussian integers γ3k−1 and γ3k+2. Then δ = γ3k+2 − γ3k−1 ∈

{±3, ± 3i, 1, i, 2 − i, − 2 + i, 1 − 2i, − 1 + 2i}, and each of these values of δ does arise for some k.

Proof. In the spiral ordering, Gaussian integers whose indices differ by 3 are three units apart. The possible combi-
nations of three units are 3, 1, 1 + 2i, 2 + i, and their associates. First, we know that the orientation of the spiral
ordering will rule out −2 − i, −1 − 2i, −1, and −i. If γ3k−1 and γ3k+2 lie on the same branch, then they differ by ±3
or ±3i. Otherwise there is a corner between them and we consider three possibilities: γ3k−1 and γ3k+2 are separated
by a corner on the real axis, γ3k−1 and γ3k+2 are separated by a corner on the line Re(z) = 1, or γ3k−1 and γ3k+2 are
separated by an interior corner.

Around corners on the real axis, we know γ3k−1 is of the form a + 0i, a + i, or a + 2i for some even integer
a. If γ3k−1 = a + 0i, by Theorem 2.7, we know its index is a2 which is not congruent to (3k − 1) ≡ 2 (mod 3).
Therefore γ3k−1 ≠ a + 0i. If γ3k−1 = a + i, then by Theorem 2.7 we know that 3k − 1 = a2

− 1 which is possible
when a ≡ 0 (mod 3). In this case γ3k+2 = (a + 1) + i, so δ = 1. If γ3k−1 = a + 2i, by Theorem 2.7, we know that
3k − 1 = a2

− 2 which is possible when a2
≡ 1 (mod 3). In this case γ3k+2 = (a + 1) + 0i, so δ = 1 − 2i. The

possible values of δ for corners on the real axis are thus 1 and 1 − 2i.
Around corners on the line Re(z) = 1, we know that γ3k−1 is of the form 1+bi, 2+bi, or 3+bi for some even integer

b or else γ3k−1 and γ3k+2 would lie on the same branch. If γ3k−1 = 1+bi, by Theorem 2.7 its index would be (b+1)2,
which is not congruent to (3k − 1) ≡ 2 (mod 3). Therefore γ3k−1 ≠ 1 + bi. If γ3k−1 = 2 + bi, then Theorem 2.7 says
that 3k − 1 = (b + 1)2

− 1, which is possible when b ≡ 2 (mod 3). In this case γ3k+2 = 2 + (b + 1)i and so δ = i. If
γ3k−1 = 3+bi, then Theorem 2.7 says that 3k −1 = (b+1)2

−2, which is possible when b ≡ 0 (mod 3). In this case
γ3k+2 = 1+(b+ i) and so δ = −2+ i. The possible values of δ for corners on the line Re(z) = 1 are thus i and −2+ i.

Around interior corners there are two possible orientations. Either the spiral is moving from an up-oriented branch
to a left-oriented branch or the spiral is moving from a right-oriented branch to a down-oriented branch. First, consider
the up-left interior corner. We know γ3k−1 has the form a + (a − 2)i or a + (a − 3)i as γ3k−1 and γ3k+2 would lie on
the same branch otherwise.

If γ3k−1 = a + (a − 2)i, Theorem 2.7 says that 3k − 1 = (a − 1)2
+ 1 + a − 2 = (a − 1)2

+ (a − 1) which is
possible when a ≡ 2 (mod 3). In this case γ3k+2 = (a − 2) + (a − 1)i and so δ = −2 + i.

If γ3k−1 = a+(a−3)i, Theorem 2.7 says that 3k−1 = (a−1)2
+a−2 = a2

−a−1; or, equivalently, that 3k = a2
−

a. This is possible when a ≡ 0 (mod 3) or a ≡ 1 (mod 3). In this case γ3k+2 = (a −1)+(a −1)i and so δ = −1+2i.
By symmetry, the possible δ values for a right-down interior corner are 2 − i and 1 − 2i. �

Lemma 3.13. Let k ∈ Z with k ≥ 2 and consider the Gaussian integers γ3k−1 and γ3k+2. Let δ = γ3k+2 − γ3k−1.
If δ ∈ {i, 1 − 2i}, then k must be odd.

Proof. First suppose δ = i. This happens only when γ3k−1 = 2 + bi and γ3k+2 = 2 + (b + 1)i; i.e., the spiral turns at
the line Re(z) = 1. By Theorem 2.7, b is even and 3k − 1 = (b + 1)2

− 2 + 1 = b2
+ 2b is even. Thus k must be odd.

Next, suppose δ = 1 − 2i. There are two scenarios in which this can happen. First, as the spiral makes a right-to-
down turn around an interior corner; and second, as the spiral makes a down-to-right turn at the real axis. In the former
case, γ3k−1 = b + bi. By Theorem 2.7, 3k − 1 = b2

+ b is even. Therefore k is odd. In the latter case, γ3k−1 = a + 2i
for some even a. By Theorem 2.7, 3k − 1 = a2

− 2 is even. Once again, k must be odd. �

Theorem 3.14. Any (n, 2)-centipede tree admits a Gaussian prime labeling.

Proof. Begin by labeling vertex v j with γ j . We call the set of nodes {v3k−1}
n
k=1 which have degree greater than one

the spine of the tree, and the other nodes the leaves. Each spine–leaf pair in the same segment will be relatively prime
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Fig. 8. Initial labeling of the (6,2)-centipede.

Fig. 9. Labeling of the (6,2)-centipede after the swap.

because they are labeled by consecutive Gaussian integers, but there will be adjacent nodes down the spine that are
not relatively prime.

Consider the possible separations of pairs of nodes on the spine. Let δk = γ3k+2 − γ3k−1. By Lemma 3.12,
δk ∈ {±3, ±3i, 1, i, 2 − i, − 2 + i, 1 − 2i, − 1 + 2i}. This presents a problem whenever δk is not a unit, but it
divides both γ3k+2 and γ3k−1. To solve this problem, we will swap the labels of some spine nodes with the labels of
one of their leaf neighbors (see Fig. 8).

Specifically, we swap each even γ3k−1 on the spine with its neighboring leaf γ3k and consider the new labeling. In
each segment of the caterpillar where a swap occurred, the node on the spine is consecutive to one of its leaves and
a consecutive odd to the other one. Thus, by Corollaries 2.9 and 2.11, the node on the spine is relatively prime to its
adjacent leaves (see Fig. 9).

Now we verify that the labels of the nodes along the spine are relatively prime. Along the spine, we will have a
sequence of odd Gaussian integers with indices 3, 5, 9, 11, . . . , 6k + 3, 6k + 5, . . .. Every pair of adjacent vertices
along the spine are either consecutive odd Gaussian integers or odd Gaussian integers whose indices differ by four. In
the former case, the labels are relatively prime by Corollary 2.11. We claim that the labels in the latter case are also
relatively prime.

Let γ3k−1 and γ3k+3 be a pair of neighboring vertices on the spine whose indices differ by four. We assume γ3k−1
is the vertex that was originally unswapped, while γ3k+3 is the vertex that was swapped onto the spine. Therefore, the
index 3k − 1 is odd, which means k is even.

As before, consider the difference δk := γ3k+2 − γ3k−1 and δ′

k := γ3k+3 − γ3k−1. By Lemmas 3.12 and 3.13,
δk ∈ {±3, ±3i, 1, 2 − i, −2 + i, −1 + 2i}. We examine each of these possibilities separately.

If δk = ±3, ±3i, then it follows from Theorem 2.7 that δ′

k = ±4, ±4i. For example, when δk = 3, γ3k−1 and γ3k+2
are situated on a right-oriented branch. So γ3k+3 equals either 4 or 3 − i. If γ3k+3 = 3 − i, then γ3k+2 = (b + 1) + bi
for some odd b. Therefore, by Theorem 2.7, 3k + 2 = b2

+ b + 1. On the one hand, k is even so 3k + 2 is even. On
the other hand, b is odd, so b2

+ b + 1 is odd, a contradiction. Therefore, δ′

k = 4. The proofs of the remaining cases
follow similarly.

If δk = 1, then δ′

k = 1 + i because δk = 1 only when the spiral turns as it meets the real axis. If δk = 2 − i, then
δ′

k = 2 − 2i because δk = 2 − i when the spiral makes a right-to-down turn at an interior corner.
If δk = −2+ i, then either δ′

k = −1+ i (as the spiral turns at the Re(z) = 1 line) or δ′

k = −3+ i (as the spiral makes
an up-to-left turn at an interior corner). However, the latter case is impossible. In that case γ3k−1 = a + (a −2)i, so by
Theorem 2.7, 3k − 1 = (a − 1)2

+ 1 + a − 2 = a2
− a, which is even. But k is even so 3k − 1 is odd, a contradiction.

Therefore, when δk = −2 + i, we have δ′

k = −1 + i.
Finally, if δk = −1 + 2i, the spiral makes an up-to-left turn at an interior corner and hence δ′

k = −2 + 2i.
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Fig. 10. The (6, 3)-firecracker tree.

Table 1
Components of multiples of 1 + 2i and 2 + i reduced modulo 5.

Re(α) Im(α) Re(α) Im(α)

0 0 0 0
1 2 1 3
2 4 2 1
3 1 3 4
4 3 4 2
(A) 1 + 2i | α (B) 2 + i | α

In summary, we have concluded that δ′

k ∈ {±4, ±4i, 2 − 2i, −1 + i, −2 + 2i}. Up to multiplication by a unit, each
of these values δ′

k is a power of 1 + i. Thus by Lemma 2.10, the odd labels along the spine are all relatively prime.
Therefore, we have achieved a prime labeling of the (n, 2)-centipede. �

3.3. Results on (n, 3)-firecracker trees

The proof that (n, 2)-caterpillar trees admit a Gaussian prime labeling relied on an initial natural labeling that was
slightly modified to give a prime labeling. In this section we use a similar technique to show that certain firecracker
trees also admit prime labelings.

Definition 3.15. The (n, 3)-firecracker tree, Fn,3 is the graph with (see Fig. 10)

V (Fn,3) = {v1, v2, . . . , v3n},

and

E(Fn,3) = {v3k−2v3k−1, v3k−1v3k : 1 ≤ k ≤ n} ∪ { v3k−2v3k+1 : 1 ≤ k ≤ n − 1}.

We call the n vertices v1, v4, v7, . . . , v3n−2 the spine of the tree. The set of vertices v3k−2, v3k−1, v3k for some
k is called the kth level of the tree.

Lemma 3.16. Let α = a + bi be a Gaussian integer. Then 1 + 2i | α if and only if 5 | a + 2b and 2 + i | α if and only
if 5 | 2a + b.

Proof. Suppose 1 + 2i | α. Then a+bi
1+2i =

(a+2b)+(b−2a)i
5 ∈ Z[i]. Hence 5 | a + 2b. Conversely, suppose 5 | a + 2b

such that a + 2b = 5m. It follows that a = 5m − 2b so b − 2a = b − 2(5m − 2b) = 5b − 10m, and 5 | b − 2a.
Therefore 5 | (a + 2b) + (b − 2a)i, so 5 | (a + bi)(1 − 2i), and (1 + 2i)(1 − 2i) | (a + bi)(1 − 2i). Hence 1 + 2i | α.

The argument for 2 + i is similar. �

This lemma is illustrated in Table 1, which shows the mod 5 residues of a multiple of 1 + 2i or 2 + i.

Lemma 3.17. For k ∈ N, let δk = γ3k+1 − γ3k−2 and assume that δk is not a unit. If δk | γ3k−2 and δk | γ3k+1 then
one of the following six conditions holds:

(1) δk = −1 + 2i and γ3k−2 = a + (a − 3)i for a ≡ 1 (mod 5) and a odd,
(2) δk = 2 − i and γ3k−2 = (a − 2) + (a − 1)i for a ≡ 3 (mod 5) and a even,



S. Klee et al. / AKCE International Journal of Graphs and Combinatorics 13 (2016) 165–176 175

(3) δk = 1 − 2i and γ3k−2 = (a − 1) + 2i for a ≡ 0 (mod 5) and a odd,
(4) δk = 1 + 2i and γ3k−2 = a + 0i for a ≡ 0 (mod 5) and a even,
(5) δk = −2 + i and γ3k−2 = 3 + bi for b ≡ 1 (mod 5) and b even,
(6) δk = 2 + i and γ3k−2 = 1 + bi for b ≡ 3 (mod 5) and b even.

Proof. First, by Lemma 2.13 δk is not equal to 3 or one of its associates. Because γ3k−2 and γ3k+1 are three indices
apart in the spiral ordering and δk is not 1, 3, or any of their associates, δk must be 1 + 2i, 2 + i, or one of their
associates. We also know that δk ≠ −1 − 2i, −2 − i by the orientation of the spiral ordering. Now we consider the
remaining associates according to the location of γ3k−2 in the spiral ordering.

Case 1: Interior corners on up-left branches. This case corresponds to δk = −1+2i or δk = −2+ i. If δk = −2+ i,
then γ3k−2 = a+(a−2)i for some odd a because it is one step below the interior corner a+(a−1)i. Then Theorem 2.7
says that its index is (a − 1)2

+ (a − 2)+ 1, which is always congruent to 0 or 2 mod 3. This contradicts that the index
is 3k − 2 ≡ 1 (mod 3). Therefore this δk does not occur.

If δk = −1 + 2i = i(2 + i), then by Theorem 2.7 γ3k−2 = a + (a − 3)i for some odd a because it is two steps
below the interior corner a + (a − 1)i. Using Table 1 we see that we must have a ≡ 1 (mod 5) for this to occur.

Case 2: Interior corners on right-down branches. This case corresponds to δk = 2− i or δk = 1−2i. If δk = 1−2i,
then γ3k−2 = (a − 1) + (a − 1)i for some a because it is one step left of the interior corner a + (a − 1)i. Theorem 2.7
says that its index is (a − 1)2

+ (a − 1), which is always congruent to 0 or 2 (mod 3). Again this contradicts that the
index is 3k − 2 ≡ 1 (mod 3). So this δk does not occur.

If δk = 2 − i = −i(1 + 2i), then by Theorem 2.7 γ3k−2 = (a − 2) + (a − 1)i for some even a because it is two
steps left of the interior corner a + (a − 1)i. Using Table 1 we see that we must have a ≡ 3 (mod 5) for this to occur.

Case 3: Corners on the real axis. This case corresponds to δk = 1 − 2i or δk = 1 + 2i. If δk = 1 − 2i = −i(2 + i)
then γ3k+1 = a + 0i and γ3k−2 = (a − 1) + 2i for some odd a (by Theorem 2.7) with a ≡ 0 (mod 5) (by Table 1).

If δ = 1+2i, then γ3k−2 = a +0i and γ3k+1 = (a +1)+2i for some even a (by Theorem 2.7) with a ≡ 0 (mod 5)

(by Table 1).
Case 4: Corners on the line Re(z) = 1. This case corresponds to δk = 2+i or δk = −2+i. If δk = −2+i = i(1+2i),

then by Theorem 2.7 γ3k−2 = 3 + bi for some even b because it is 2 away from the corner on the Re(z) = 1 line at
1 + bi. Using Table 1 we see that we must have b ≡ 1 (mod 5) for this to occur.

If δk = 2 + i, then by Theorem 2.7 γ3k−2 = 1 + bi for some even b because it is a corner on the Re(z) = 1 line.
Using Table 1 we see that we must have b ≡ 3 (mod 5) for this to occur. �

Theorem 3.18. Any (n, 3)-firecracker tree has a Gaussian prime labeling.

Proof. A natural first attempt at labeling the (n, 3)-firecracker is to label it consecutively by labeling v j with γ j for
all j . This is a nearly prime labeling, so we make a handful of swaps of labels to resolve the issues that appear and
give a fully prime labeling. The full labeling procedure is as follows.

We define an initial labeling ℓ1 of the (n, 3)-firecracker so that ℓ1(v j ) = γ j . Now we define a new labeling ℓ

in the following way. Let δk = ℓ1(v3k+1) − ℓ1(v3k−2). Consider each k where δk is not a unit, δk | ℓ1(v3k−2),
and δk | ℓ1(v3k+1). By Lemma 3.17 we know that δk ∈ {−1 + 2i, 2 − i, 1 − 2i, 1 + 2i, − 2 + i, 2 + i}. If
δk = −1 + 2i, 2 − i, 1 + 2i, or −2 + i, then we set ℓ(v3k−2) = γ3k and ℓ(v3k) = γ3k−2. If δk = 1 − 2i, then we set
ℓ(v3k+1) = γ3k+3 and ℓ(v3k+3) = γ3k+1. If δk = 2+i, then we set ℓ(v3k−2) = γ3k , ℓ(v3k) = γ3k−2, ℓ(v3k−5) = γ3k−3,
and ℓ(v3k−3) = γ3k−5. For all other v j , keep ℓ(v j ) = ℓ1(v j ) = γ j .

Because the effect of each above change is to swap the labels of vertices at the ends of a particular level, adjacent
vertices on the same level are still labeled with consecutive Gaussian integers in the spiral ordering, which are
relatively prime. Therefore, we only need to show that this new labeling has created a prime labeling on the spine. To
show the vertices along the spine are now relatively prime, we examine each edge along the spine. If neither vertex
incident to a given edge is affected by the relabeling, then the labels are relatively prime. Otherwise we must inspect
each relabeled vertex to make sure its new label is relatively prime to its neighbors on the spine. To do this, we consider
each δk in turn. Note that the conditions from Lemma 3.17 force k to be large enough that if δk | γ3k+1 and δk | γ3k−2
then γ3k+1 and γ3k+3 are on the same branch and γ3k−2 and γ3k−5 are on the same branch and so neither γ3k+3 or
γ3k−5 was relabeled.

If δk = −1+2i, then ℓ(v3k−2) = γ3k . By Lemma 3.17 γ3k lies at an interior corner a+(a−1)i with a ≡ 1 (mod 5).
Since ℓ(v3k−2) = γ3k and ℓ(v3k+1) = γ3k+1 are relatively prime, we need only check whether ℓ(v3k−2) and ℓ(v3k−5)
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are relatively prime. Then δ′
:= ℓ(v3k−2)−ℓ(v3k−5) = γ3k−γ3k−5 = 5i, so their only possible common factors are unit

multiples of 1+2i and 2+ i. Consulting Table 1, we see that because Re(γ3k) ≡ 1 (mod 5) and Im(γ3k) ≡ 0 (mod 5)

neither 1 + 2i or 2 + i divides γ3k and so ℓ(v3k−2) and ℓ(v3k−5) are relatively prime.
If δk = 2 − i, then ℓ(v3k−2) = γ3k . Note that γ3k lies at an interior corner a + (a − 1)i for some a ≡ 3 (mod 5) by

Lemma 3.17. Here δ′
:= ℓ(v3k−2) − ℓ(v3k−5) = γ3k − γ3k−5 = 5, so the only possible common factors are again unit

multiples of 1+2i and 2+ i. Consulting Table 1, we see that because Re(γ3k) ≡ 3 (mod 5) and Im(γ3k) ≡ 2 (mod 5)

neither 2 + i nor 1 + 2i divides γ3k and thus ℓ(v3k−2) and ℓ(v3k−5) are relatively prime.
If δk = 1 − 2i then γ3k+1 = a + 0i for some odd a ≡ 0 (mod 5) and ℓ(v3k+1) = γ3k+3. Since ℓ(v3k+1) = γ3k+3

and ℓ(v3k+4) = γ3k+4 are consecutive, they are relatively prime and we need only consider the new δ′
:=

ℓ(v3k+1) − ℓ(v3k−2) = γ3k+3 − γ3k−2 = (a + 2i) − ((a − 1) + 2i) = 1. So ℓ(v3k−2) and ℓ(v3k+1) are also relatively
prime.

If δk = 1 + 2i, then γ3k−2 = a + 0i for some even a ≡ 0 (mod 5) and ℓ(v3k−2) = γ3k . Since ℓ(v3k−2) = γ3k and
ℓ(v3k+1) = γ3k+1 are consecutive, they are relatively prime and we only consider the new δ′

:= ℓ(v3k−2)−ℓ(v3k−5) =

γ3k − γ3k−5 = 1 − 2i. Because γ3k−2 is a multiple of both 1 + 2i and 2 + i, it follows that γ3k is not divisible by 1 + 2i
or 2 + i. So ℓ(v3k−2) and ℓ(v3k−5) are relatively prime.

If δk = −2+i, then ℓ(v3k−2) = γ3k = 1+bi for some b ≡ 1 (mod 5). Since ℓ(v3k+1) = γ3k+1 and ℓ(v3k−2) = γ3k
are consecutive, they are relatively prime and we need only look at δ′

:= ℓ(v3k−2)−ℓ(v3k−5) = γ3k−γ3k−5. Consulting
Table 1, we see that because Re(γ3k) = 1 and Im(γ3k) ≡ 1 (mod 5) neither 1 + 2i or 2 + i divides γ3k . So ℓ(v3k−2)

and ℓ(v3k−5) are relatively prime.
If δk = 2 + i, then ℓ(v3k−2) = γ3k = 2 + (b + 1)i for some b ≡ 3 (mod 5). We also have ℓ(v3k+1) = γ3k+1 =

3 + (b + 1)i, ℓ(v3k−8) = γ3k−8 = 7 + bi, and ℓ(v3k−5) = γ3k−3 = 2 + bi. We now have the sequence of labels on
the spine of γ3k−8, γ3k−3, γ3k, γ3k+1. First, γ3k and γ3k+1 are consecutive and thus relatively prime. Also, γ3k−3 and
γ3k have a difference of i and are thus relatively prime. Finally, δ′

:= ℓ(v3k−5) − ℓ(v3k−8) = γ3k−3 − γ3k−8 = −5.
Consulting Table 1 we see that because Re(γ3k−3) = 2 and Im(γ3k−3) ≡ 3 (mod 5) neither 1 + 2i or 2 + i divides
γ3k−3, so γ3k−3 and γ3k−8 are also relatively prime.

Thus ℓ is a prime labeling of the (n, 3)-firecracker tree. �

4. Future work and open problems

We conclude with a few open problems and directions for future research.

(1) A binary tree is a rooted tree in which each node has at most two children. There are many special classes of
binary trees, such as full binary trees, perfect binary trees, or complete binary trees. Investigate Gaussian prime
labelings of these families of trees.

(2) Investigate Gaussian prime labelings of general (n, k)-firecracker trees.
(3) Investigate Gaussian prime labelings of families of non-tree graphs.
(4) In a recent paper [4], the second and third authors showed that trees on at most 73 vertices admit Gaussian prime

labelings. The approach outlined in that paper pushed the limits of what one could possibly hope to do by hand.
Is it possible to computationally verify the conjecture for trees on more vertices?

(5) Investigate other inherent properties of the spiral ordering on the Gaussian integers. In what ways is it similar to
the properties of the order on the natural numbers and in what ways is it different?
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