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a b s t r a c t

The increasing availability of operational limited area ensemble prediction systems (LEPS) opens up new
opportunities for the application of weather forecasts in agriculture and water resource management.
This study aims to evaluate the performances of probabilistic daily reference crop evapotranspira-
tion (ET0) forecasts with lead times up to 5 days and a spatial resolution of 7 km, computed by using
COSMO-LEPS outputs (provided by the European Consortium for small–scale modelling, COSMO), in a
region of southern Italy known for its complex topography in proximity to the Mediterranean coast-
line. ET0 was estimated by means of three different estimation methods, i.e. the Hargreaves-Samani (HS),
Priestley-Taylor (PT) and FAO Penman-Monteith (PM) equations, in order to assess the size of the weather
forecast errors with models of different accuracies. Forecasts were verified with ground-based data from
18 automatic weather stations, and for two irrigation seasons. Performances were assessed with both
deterministic indices, including BIAS, RMSE, correlation coefficients and coefficients of variation of the

16-member ensemble forecasts, and probabilistic metrics, such as the Brier skill score, reliability dia-
grams and relative operating characteristic. ET0 forecasts with PM equation were robust and reliable,
with slight sensitivity to the forecast lead time. High performances were also achieved with HS and PT
equations, except for locations close to the coastline, where large systematic errors affect the numerical
weather forecasts.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

Predicting evapotranspiration is fundamental in hydrological
pplications addressing water resources and irrigation manage-
ent issues. Evapotranspiration is often retrieved as a function of

he daily reference crop evapotranspiration (ET0), which is evapo-
ranspiration from a well-watered hypothetical reference crop. An
nternationally recognized standard method for computing ET0 is
he FAO-56 Penman-Monteith (ET0-PM) equation (Allen et al., 1998).
T0-PM is considered the best method for estimating daily ET0 in all

limates, because the FAO-56 Penman-Monteith (PM) equation fol-
ows a physically based approach incorporating both physiological
nd aerodynamic parameters and thus does not require any local
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calibration (e.g., Garcia et al., 2004). ET0-PM entails the availability
of a complete set of meteorological data, including air tempera-
ture, wind speed, solar radiation and relative humidity. These data
are often unavailable in many regions of the world or are available
with large uncertainty, since they are estimated by spatial interpo-
lation of sparse meteorological ground stations. Other equations
have been proposed for estimating ET0 with a reduced number
of meteorological data, but with additional empirical parameters
that, where possible, are calibrated at local scale. Allen et al. (1998)
proposed the Hargreaves-Samani (HS) equation for estimating ET0
(hereinafter referred to as ET0-HS) solely from temperature data
(Hargreaves and Samani, 1985). The Priestley-Taylor (PT) equa-
tion (Priestley and Taylor, 1972) has also been suggested as a valid
alternative for estimating ET0 (hereinafter referred to as ET0-PT ) for
locations where only temperature and radiation data are available

(e.g. Pereira, 2004).

One practical aspect is that ET0, whatever equation is used for
computing it, is only a function of weather variables and thus ET0
can be regarded as a diagnostic meteorological variable. Forecast
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erformance of numerical weather prediction (NWP) models have
onsiderably improved in the 21st century, making their output

 valuable source for estimating ET0 maps, alternative to the spa-
ial interpolation of spatially coarse ground-based weather datasets
WMO,  2012).

Recent studies have focussed on assessing the performance of
T0 estimates obtained with output data of regional weather mod-
ls, also known as limited area models (LAM), which exploit the
rediction of global circulation models (GCM) for identifying the

nitial and boundary conditions of a small region where the mete-
rological phenomena are explicitly resolved with finer spatial
esolution. Nesting NWP  models with finer scale into coarser mod-
ls is equivalent to dynamically downscaling the output of the
oarser model, consistently with the physical and empirical laws
umerically resolved for describing the main meteorological phe-
omena.

Cai et al. (2007, 2009) employed weather forecast messages
roduced by the China Meteorological Administration for estimat-

ng daily ET0-PM . Ishak et al. (2010) applied the regional model
M5, nested with ERA-40 reanalysis data provided by the Euro-

ean Centre for Medium-Range Weather Forecast (ECMWF) global
odel, and found that ET0-PM was overestimated by 27–46%. Silva

t al. (2010), also applying MM5  outputs, estimated daily ET0-PM
n Central Chile with a root mean square error (RMSE) between
.99 mm day−1 and 1.54 mm day−1. They managed to reduce the
MSE by 10–20% after bias correcting raw NWP  model outputs.
r-Raki et al. (2010), to overcome the scarcity of ground data

n a semi-arid region of Central Morocco, employed the tem-
erature fields produced by the ALADIN regional NWP  model
nested with the ARPEGE global model) and, by applying an uncal-
brated HS equation, estimated monthly ET0 maps with an average
MSE of 16 mm.  Srivastava et al. (2013) compared ET0-PM esti-
ates in southeast England with weather data obtained by nesting

he Weather Research and Forecasting regional NWP  model with
eanalysis data, respectively provided by ECMWF  ERA-interim and
he National Centers for Environmental Prediction (NCEP). The
tudy suggested that ET0-PM estimates obtained by dynamically
ownscaling ECMWF  reanalysis data outperform those obtained
ith NCEP reanalysis data.

Other recent studies evaluated the possibility to exploit opera-
ional numerical weather model outputs for real-time forecasting
T0 in the short-medium range, i.e. with a lead time up to 1–2
eeks. Perera et al. (2014) applied output data provided by the
CCESS-G global model output operated by the Australian Bureau
f Meteorology with a spatial resolution of 80 km,  to estimate
T0-PM with lead times up to nine days. The study showed good
orecast performances with average RMSE less than 1 mm day−1

or lead time up to four days, after removing systematic bias of the
umerical weather output data with respect to the ground weather
tations.

In the last two decades, ensemble prediction systems (EPS)
ave become increasingly popular in operational decision-making
rocesses. Unlike traditional deterministic forecasts where the
umerical weather prediction model is run only once, in EPS the
WP model is run several times from very slightly different ini-

ial conditions and perturbed model parameters, to produce an
nsemble of forecasts that are used to account for uncertainty in
nitial atmospheric conditions and NWP  model errors (Buizza et al.,
999).

Tian and Martinez (2012a,b) employed Global Forecast System
GFS; Hamill et al., 2006) ensemble reanalysis data provided by
CEP to generate 1–15 day probabilistic ET0 forecasts and then sta-
istically downscale the forecasts by means of the analog approach
Hamill and Whitaker, 2006) in the southwestern United States.
he GFS data set consisted of 15 members with a spatial reso-

ution of about 200 km.  Since the GFS dataset did not include all
nagement 178 (2016) 106–118 107

meteorological data required for estimating ET0-PM , ET0 forecasts
were produced by using both the PM equation with alternative
approximations of some of its main variables as well as the Thorn-
thwaite equation (Thornthwaite, 1948). The statistical downscaling
method was  calibrated and verified with a set of ET0-PM produced
with a 32 km grid reanalysis dataset provided by the North Ameri-
can Regional Reanalysis dataset (NARR; Mesinger et al., 2006). The
results showed that most of the forecasts were skilful in the first
five lead days.

Tian and Martinez (2014) replicated the experiment with a sec-
ond GEFS reanalysis dataset, which was operationally available
from 2012 (Hamill et al., 2013), with 11 ensemble members and
a spatial resolution of 100 km.  Tian and Martinez (2014), compared
with the previous experiment (Tian and Martinez, 2012a,b), man-
aged to improve the skill of the probabilistic ET0-PM forecasts as
well as the accuracy in estimating the soil water deficit for irriga-
tion scheduling in the first five lead days, thanks to the availability
of a complete meteorological dataset produced by a more advanced
NWP  model at higher spatial resolution.

Compared with the dynamic downscaling, statistical downscal-
ing as the analog method has an advantage in requiring much less
computational resources. However, simultaneous ground observa-
tions and forecast reanalysis data are required for a long period
of time (e.g., about 25 years) in order to achieve a good calibra-
tion and verification of the statistical techniques. Such datasets
are available with difficulty: indeed, Tian and Martinez (2012a,b,
2014) resorted to model data generated at higher resolution as
a surrogate for ground observations. No studies evidenced that
statistical downscaling of forecasts performs better than dynamic
downscaling of forecasts. Statistical downscaling is also exposed to
limitations in tracking the effects of changing climatic conditions as
well as weather conditions that are not represented by the sample
data set employed for its calibration.

In recent years, limited area ensemble prediction systems (LEPS)
have been developed as dynamic regional downscaling of global
ensemble prediction systems. The development of operational LEPS
was mainly motivated by the need to support decision makers with
forecasts of high-impact weather events and particularly precipi-
tation fields, at higher resolution and greater reliability than what
could be achieved with single deterministic regional forecasts. The
operational availability of LEPS opens up new opportunities for the
application of weather forecasts in agriculture and water resource
management, since high resolution probabilistic forecasting allows
water irrigation managers to set-up agrometeorological advisory
services based on a more reliable risk analysis.

One of the first examples is the limited area ensemble prediction
system, developed by the Consortium for small-scale modelling
(COSMO-LEPS), which is now operationally used by several coun-
tries in Europe (Montani et al., 2011; Marsigli et al., 2014).
COSMO-LEPS is nested on selected members of ECMWF EPS and
is designed to combine the advantages of the probabilistic EPS
approach with the high–resolution details gained in the mesoscale
integrations (Montani et al., 2011).

This study aimed to evaluate the performance of probabilis-
tic reference evapotranspiration forecasts based on numerical
weather predictions produced by COSMO-LEPS. To our knowledge
this is the first study explicitly examining the probabilistic per-
formance of numerical weather predictions produced by dynamic
downscaling of global ensemble forecasts for evapotranspiration
studies.

The performance analysis focused on two  irrigation seasons in
southern Italy where a simultaneous set of meteorological data

from 18 ground automatic weather stations and COSMO-LEPS fore-
casts was collected within a research programme to develop an
advanced irrigation advisory service (Vuolo et al., 2015). ET0 fore-
casts with lead times up to five days were computed with the PM
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Fig. 1. Relief map  of the study area along with AWS  stations.

quation and with uncalibrated HS and PT equations. The fore-
ast performances are presented and discussed herein, using both
eterministic and probabilistic indices.

. Data

.1. Study area

The study area was the region of Campania, about 14,000 km2 of
and in southern Italy, between the Tyrrhenian Sea and the South-
rn Apennines (Fig. 1). Weather forecasting is a challenging task
n this region, as in other coastal regions of the central Mediter-
anean basin, where weather patterns are strongly influenced by
he complex topography close to the coastline (e.g. Buzzi et al.,
994; Furcolo et al., 2016).

Under the Köppen-Geiger climate classification, most of the

egion is characterised by dry-summer subtropical climates, which
re often described as being a “Mediterranean climate”. The coastal
one presents warm summers, while the adjacent inland zones are
ubject to hot summers. The eastern border zone of the region, close

able 1
ist of automatic weather stations.

No. Name Eleva

1 Agerola METEO 848 

2 Ariano Irpino METEO 631 

3 Benevento METEO 236 

4 Cellole METEO 9 

5 Conza della Campania METEO 770 

6 Lago Patria METEO 1 

7 Montella METEO 515 

8 Montesano Marcellana METEO 552 

9 Nisida METEO 88 

10 Postiglione METEO 660 

11 Rocca d’Evandro METEO 62 

12 S.Bartolomeo METEO 750 

13 San Marco Evangelista METEO 31 

14 S.Salvatore Telesino METEO 167 

15 Salerno METEO 13 

16 Torre Orsaia METEO 413 

17 Alife 117 

18 Battipaglia 64 
nagement 178 (2016) 106–118

to the Apennines range, has a continental climate, as frequently
occurs at higher elevations adjacent to areas with a Mediterranean
climate (Peel et al., 2007).

The mean monthly temperature ranges from 25 ◦C to 30 ◦C
in summer and between 11 ◦C and 17 ◦C in winter. The mean
annual precipitation ranges from 800 to 1100 mm:  the coastal
and central mountainous areas have higher precipitation than the
north-eastern side of the region. The maximum monthly precip-
itation values are recorded during November and December, the
minimum during July and August.

Field irrigation starts no earlier than April and lasts till the end of
September, although the actual time span of the irrigation season
is influenced by the weather fluctuations and specific agricultural
practices.

2.2. Meteorological data

2.2.1. Observed ground-based data
Meteorological data from 18 ground-based automatic weather

stations (AWS) distributed across the region were collected (Fig. 1).
These stations are part of the reference weather monitoring net-
work of the Regional Meteorological Service. The AWS  network
complies with the EUMETNET technical specifications (De Leonibus
and Vecchi, 1999): each station is equipped with redundant sen-
sors to provide measurements with high accuracy and precision
standards.

Table 1 reports a complete list of the AWSs along with their
coordinates and elevations, ranging from 1 m a.s.l. to 848 m a.s.l.
The AWS  sites were chosen to achieve a good representation of the
climatic variability within the region, including the coastal areas,
the central hilly areas on the west side of the Apennines, as well as
the inland side of the region.

These AWSs have been operating since 2007. The following data
recorded from April to September were considered for the forecast
verifications: air temperature and humidity at 2 m;  global incoming
solar radiation; wind speed at 10 m;  barometric pressure. Perfor-
mance analyses focused on irrigation seasons for the years 2013
and 2014 which did not experience extreme weather conditions.
Table 2 summarises some average statistics of the observed data
from April to September for 2013 and 2014.

2.2.2. NWP  forecast data

The numerical weather prediction outputs used for forecast-

ing daily ET0 are those given by COSMO-LEPS, which is a limited
area ensemble prediction system, implemented by the HydroMe-
teoClimate Regional Service of Emilia-Romagna, located in Bologna,

tion (m)  Latitude (◦) Longitude (◦)

40◦ 38′ 49′′ 14◦ 32′ 28′′

41◦ 11′ 49′′ 15◦ 8′ 10′′

41◦ 6′ 54′′ 14◦ 49′ 30′′

41◦ 11′ 46′′ 13◦ 50′ 17′′

40◦ 51′ 43′′ 15◦ 16′ 55′′

40 56′ 31′′ 14◦ 1′ 19′′

40◦ 50′ 17′′ 15◦ 2′ 20′′

40◦ 15′ 22′′ 15◦ 39′ 50′′

40◦ 47′ 38′′ 14◦ 9′ 50′′

40◦ 33′ 43′′ 15◦ 14′ 13′′

41◦ 25′ 30′′ 13◦ 52′ 48′′

41◦ 25′ 19′′ 15◦ 2′ 28′′

41◦ 1′ 12′′ 14◦ 20′ 38′′

41◦ 14′ 49′′ 14◦ 28′ 23′′

40◦ 38′ 38′′ 14◦ 50′ 13′′

40◦ 7′ 55′′ 15◦ 27′ 32′′

41◦ 20′ 20′′ 14◦ 20′ 2′′

40◦ 36′ 40′′ 14◦ 58′ 34′′
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Fig. 2. Location of the AWS  stations (red triangles) and COSMO-LEPS grid points (blue squ
is  referred to the web version of this article.)

Table 2
Statistics of the weather variable datasets over the region based on data collected
during two irrigation seasons (2013 and 2014).

Min  Max  Mean Standard deviation

T (◦C) −0.6 40.5 19.9 4.3
RS  (W m−2) 20.2 403.5 243.3 71.4
WS  (m s−1) 0.3 13.2 2.4 0.9
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wave radiation. As suggested by Allen et al. (1998) for the reference
RH  (%) 28.3 100 75.5 10.7

taly (ARPA–SIMC). COSMO-LEPS was developed within the Con-
ortium for small–scale modelling (COSMO), whose associates
re Germany, Greece, Italy, Poland, Romania and Switzerland. It
as the first mesoscale ensemble application to be run on a

aily basis in Europe. COSMO-LEPS is based on 16 integrations
f the non–hydrostatic mesoscale model COSMO, and combines
he advantages of the probabilistic approach by global ensemble
ystems with the high–resolution details gained in the mesoscale
ntegrations (Montani et al., 2011). The current model configuration
as been in operation since 2009. Since December 2011, COSMO-
EPS has run twice a day, at 00:00 UTC and 12:00 UTC. The model
as a forecast range of 132 h, with data available at three-hour

ntervals, and a spatial resolution of 7.5 km.  The locations of the
OSMO-LEPS grid points overlaid with the reference AWS  sites are
hown in Fig. 2.

In this study, the relevant weather variables to calculate ET0
ere extracted from grib files released as output of the 00:00 UTC

un: atmospheric pressure reduced to mean sea level, net short
ave radiation, albedo, wind speed at 10 m,  temperature and rela-
ive humidity at 2 m.
The forecast dataset consists of variable ensemble output pro-

uced by the operational chain of the COSMO-LEPS from April 1st
ares). (For interpretation of the references to color in this figure legend, the reader

to September 30th in 2013 and 2014, for a total of 366 days, with
lead times from one day to five days.

3. Methods

3.1. Computation of the daily reference evapotranspiration ET0

The PM equation is that recommended by the Food and Agricul-
ture Organization (FAO), in Paper No. 56, as the standard method for
computing reference evapotranspiration ET0. It applies the energy
balance and mass transfer principles to estimate evapotranspira-
tion from a uniform grass reference surface. Specific parameters are
employed to model the surface and aerodynamic resistance from
the vegetation (Allen et al., 1998). The PM equation is expressed as
follows:

ET0−PM = 0.408� (Rn − G) + � 900
T+273u2 (es − ea)

� + � (1 + 0.34u2)
(1)

where ET0-PM is the daily reference evapotranspiration in
(mm  day−1), Rn is the net radiation at the crop surface
(MJ  m−2 day−1), G is the soil heat flux density (MJ  m−2 day−1), T
is the daily mean air temperature at 2 m height (◦C), u2 is the
wind speed at 2 m height above ground (m s−1), es is the satura-
tion vapour pressure (kPa), ea is the actual vapour pressure (kPa),
� is the slope of the vapour pressure curve (kPa ◦C−1) and � is the
psychometric constant (kPa ◦C−1).

The net radiation (Rn) was  calculated as the difference between
the incoming net shortwave radiation and the outgoing net long-
crop, the incoming net shortwave radiation was  calculated by
coupling the measured or predicted incoming shortwave solar radi-
ation with an albedo of 0.23. The outgoing net longwave radiation
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as estimated from the daily maximum and minimum air temper-
ture and relative shortwave radiation, which is computed as the
atio of the incoming shortwave solar radiation and the clear-sky
adiation. The soil heat flux density (G) is computed as a fraction of
n as suggested by Allen et al. (1998) for the reference crop.

Daily mean air temperature was computed as the average of
aily maximum and minimum air temperature, instead of comput-

ng it by averaging the data at the lowest available time-resolution,
hich would lead to underestimating the daily ET0-PM , as a result of

he non-linear relationship between the saturation vapour pressure
nd temperature (Allen et al., 1998).

Daily wind speed was computed as the average of the predicted
r observed wind data at the highest available temporal resolu-
ion. Wind speed (u2) values, both forecasted and measured at
0 m height above ground, were adjusted at 2 m above ground
y employing the logarithmic equation of the wind speed profile
uggested by Allen et al. (1998). The actual vapour pressure was
omputed as a function of the mean air relative humidity.

The PM equation implies the availability of a complete weather
ataset, which is normally feasible in a limited numbers of loca-
ions. This was one of the main motivations of previous studies
xploring the applicability of numerical weather prediction outputs
s a proxy of ground weather data, as mentioned in the intro-
uction (e.g. Cai et al., 2007, 2009; Ishak et al., 2010; Silva et al.,
010; Er-Raki et al., 2010; Srivastava et al., 2013). Related to this,
nother aspect that is worth taking into consideration is that all
orecasted weather variables involved in the ET0-PM estimation are
ffected by forecast errors, which all contribute to downgrade the
T0-PM forecasts (Perera et al., 2014). Thus, in this study we  also
valuated simpler and uncalibrated methods for estimating ref-
rence evapotranspiration, which employs a number of uncertain
eather forecast variables smaller than those required for comput-

ng ET0-PM . The motivation for assessing the forecast performances
ith different evapotranspiration methods arises from the pur-

ose of investigating how the uncertainty associated with the input
eather variables propagates into the estimated ET0. Since each

orecasted weather variable brings its own uncertainty into the
T0 equation, we sought to assess to what extent the application
f equations based on a reduced number of weather variables for
omputing ET0 could compensate the effect of the reduced accu-
acy deriving from simpler uncalibrated ET0 estimation methods
Droogers and Allen, 2002; Cai et al., 2007; Bormann, 2011).

In this study we considered a temperature-based model as the
S equation and a radiation-based model as the PT equation. The HS
quation is that suggested by Allen et al. (1998) in the FAO guide-
ines for estimating ET0, when only temperature data are available,
nd is given as:

T0−HS = KHS (T + 17.8)
√
Tmax − Tmin (0.408Ra) (2)

here ET0-HS is the daily reference evapotranspiration in
mm  day−1), Ra is the extraterrestrial radiation (MJ m−2 day−1),
max and Tmin are respectively the daily maximum and minimum
emperature (◦C), and KHS is an empirical coefficient, assumed to
e equal to 0.0023 as suggested by Allen et al. (1998). The formula
nly needs temperature data, since the extraterrestrial radiation is

 function of latitude and time of year. The HS equation has been
idely used thanks to its simplicity and acceptable results. The term

Tmax − Tmin) indirectly estimates the effect of the daily radiation, as
t is related to humidity and cloudiness (e.g. Shahidian et al., 2012).

Finally, the PT equation was considered:

T0−PT = ˛
0.408� (Rn − G) +  ̌ (3)
� + �

here ET0-PT is the daily reference evapotranspiration in
mm  day−1), and � and  ̌ are empirical coefficients. Wind speed
nd relative humidity data are not needed, since potential evap-
nagement 178 (2016) 106–118

otranspiration is estimated in terms of energy fluxes without an
aerodynamic component. Parameters � and � are assumed to be
equal to 1.26 and 0, respectively, as found by the authors for
“advection-free” saturated surfaces and theoretically explained by
Lhomme  (1997). ET0-PT mainly depends on solar radiation, but tem-
perature data are also needed for computing Rn, G and �.

The empirical parameters of Eqs. (2) and (3) can also be specif-
ically calibrated, accounting for the local weather and terrain
characteristics, as done in previous studies (e.g. Xu and Singh,
2000; Er-Raki et al., 2010; Shahidian et al., 2012). In this study, we
used the values recommended for the most general case since, as
explained above, our interest was to evaluate the relative impact of
the weather forecast uncertainty on the estimated ET0 values with
methods of different levels of accuracy, without any preliminary
bias correction.

3.2. Assessment of forecast performances

The COSMO-LEPS forecasted meteorological outputs and ET0
estimated using the outputs in question were verified with the cor-
responding ground-based observations. The PM equation was used
to compute the reference evapotranspiration with ground-based
data (hereinafter referred to as ET0g-PM). ET0g-PM are hereinafter
also denoted as “observed ET0” and are taken as benchmark val-
ues to evaluate the performances of the daily ET0 forecasts. ET0g-PM
values were compared with those forecasted with lead times from
one to five days, respectively computed with the PM,  HS and PT
equations (Eqs. (1)–(3)).

From an operational perspective, two  alternative interpolation
strategies for estimating ET0 forecasts at the AWS  nodes can be
followed: i) interpolating forecasted weather data prior to comput-
ing ET0 values at each node; ii) interpolating ET0 values computed
at the COSMO-LEPS grid nodes. These strategies can lead to dif-
ferent results, since the ET0 equations employed are non-linear.
We preferred the first strategy as we  suppose that this better pre-
serves the spatial structure of the weather input variables and
their cross-correlation (Van Schaeybroeck and Vannitsem, 2015).
A triangle-based bi-linear interpolation method was  employed,
which consists in interpolating the three grid points closest to the
examined site.

The forecast performances were assessed with both determinis-
tic and probabilistic metrics. Deterministic metrics are well-suited
for single-valued forecast verifications. Probabilistic metrics are
used to verify the forecast probabilities (given by the forecast
ensembles) with the observed frequencies. In the case of prob-
abilistic forecasts, deterministic metrics of forecast performance
cannot provide a comprehensive assessment of the forecast qual-
ity, which instead can be evaluated only through estimation of the
joint distribution of forecasts and observations (Wilks, 2011).

3.2.1. Deterministic metrics
Statistical performance indices are computed for all lead times

by comparing the median value, P̃i, of the ensemble of the predicted
variables retrieved from the COSMO-LEPS forecasts on the generic i-
th day, with the predicted variable retrieved from the ground-based
weather stations, Oi. We  chose the median value as representative
of the ensemble forecasts, instead of the mean value, since outliers
occasionally make the ensemble distribution strongly asymmetric
and thus the mean results become biased.

The first index is the BIAS, which was used as an indicator of
accuracy of the ET0 forecasts:∑n ( )

BIAS = i=1 P̃i − Oi

n
(4)

where n denotes the number of examined days, in this study equal
to 366.
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The second deterministic performance indicator is the root
ean square error, RMSE, which gives insight into both accuracy

nd precision of the ET0 forecasts:

MSE =

√∑n
i=1

(
P̃i − Oi

)2

n − 1
(5)

The correlation coefficient, R, was used to measure the linear
elationship between the forecasted and observed ET0:

 =
Cov

(
O, P̃

)
√

Var (O) Var
(
P̃
) (6)

here Cov
(
O, P̃

)
is the sample covariance between the ensem-

le forecast medians and their corresponding observed values, and
ar (O) and Var

(
P̃
)

are respectively the sample variances of the
bserved and forecast medians.

As indicator of the prediction uncertainty due to the ensem-
le spread, we computed the coefficient of variation, CV, of the
orecasted ET0:

V = 1
n

∑n

i=1

⎧⎪⎨
⎪⎩

1

P̃i

⎡
⎢⎣

√∑m
j=1

(
Pi,j − P̄i

)2

m − 1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ (7)

here m = 16 is the number of members in each ensemble, P̄i is the
ean of the ensembles on the i-th day, and Pi,j is the j-th member

alue on the i-th day.
Another deterministic index was employed to compare the

T0 prediction BIAS due to the weather forecast errors with the
rediction BIAS due to the simplification of the reference evapo-
ranspiration estimation method, i.e. ET0-HS or ET0-PT as compared
ith ET0-PM . Let ET0g-HS,i and ET0g-PT,i be the reference evapotran-

piration estimated with HS and PT equations, respectively, using
he data observed with the AWS  on the i-th day as input weather
ariables. Let ET0−HS,i and ET0−PT,i be the corresponding medians
f the forecasted values on the i-th day for a generic lead time. The
ollowing absolute relative bias indices are then computed:

BIASHS = |
∑n

i=1

(
ET0−HS,i − ET0g−HS,i

)
∑n

i=1

(
ET0g−HS,i − ET0g−PM,i

) | (8a)

BIASPT = |
∑n

i=1

(
ET0−PT,i − ET0g−PT,i

)
∑n

i=1

(
ET0g−PT,i − ET0g−PM,i

) | (8b)

The terms at the denominators of the above indices quantify
he BIAS of the simplified uncalibrated ET0 prediction method. The
erms at the numerators quantify the BIAS due to the numerical
eather forecast errors. The above indices are greater than one if

he weather forecast errors dominate the ET0 model error.

.2.2. Probabilistic metrics
For a generic AWS  location, let FP(p) be the cumulative distri-

ution function of the forecasts, given by the ensembles, and let
 denote a selected threshold value (in the following, the median
alue of the observations). Similarly to RMSE in the deterministic
ase, the Brier score, BS, measures the mean squared probability
rror (Murphy, 1973) as follows:

S (t) =
∑n

i=1

(
FPi (t) − 1

{
Oi ≤ t

})2

(9)

n

here 1 {·} is  a step function that is equal to 1 if the condition {·} is
et  and zero otherwise. The Brier score ranges from 0 to 1. Values

f BS equal to 0 indicate a perfect score.
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The Brier skill score, BSS, measures the improvement of the
probabilistic forecast relative to a reference forecast:

BSS (t) = 1 − BS
BSreference

(10)

where BSreference is the Brier score of the reference method. In this
study, we take as reference probabilistic forecast the one defined by
the unconditional distribution of the observations, which is com-
puted by the relative frequencies of the n observations Oi in the
verification data set. This distribution is usually called the sample
climatological distribution, or simply the sample climatology (Wilks,
2011). The Brier skill score ranges from −∞ to 1 and values of BSS
equal to 1 indicate perfect skill.

In addition to BS and BSS, reliability and the relative operat-
ing characteristic (ROC) diagrams were computed to investigate
the forecast quality. The reliability diagram plots the observed
frequency of an event (defined by the threshold t) against its fore-
casted probability. The range of forecast probabilities is divided into
k bins. Then, on the x-axis, we  plot the average probability of the
forecasts that falls in the k-th bin while, on the y-axis, the fraction
of the corresponding observations that are below the threshold.
Reliability is a measure of systematic and conditional bias. Perfect
reliability is achieved along the 45◦ diagonal line on the reliability
diagram when the observed frequency of the given event within
each bin equals the average of the corresponding forecast proba-
bilities. The deviation from the diagonal gives the conditional bias. A
curve that lies above the diagonal line indicates under-forecasting:
the forecasted probabilities related to a given event are too low
if compared with the observed frequency of the event; vice versa,
points below the diagonal line indicate over-forecasting. The flatter
the curve in the reliability diagram, the less resolution it has. Reso-
lution is the ability to distinguish one type of outcome from another.
By definition, forecasts from the sample climatology have no reso-
lution and this condition is shown, for comparison, on the reliability
diagram by means of a horizontal line. On the same diagram, it is
also possible to show the sharpness of the forecast, a measure of the
forecast confidence, by means of a histogram representing the fre-
quency of forecasts in each probability bin. A deterministic forecast
is infinitely sharp while forecasts from sample climatology have no
sharpness.

The ROC diagram is a discrimination-based forecast verification
metric (Wilks, 2011), which measures the ability to discriminate
between two possible outcomes, not sensitive to bias (i.e. reliabil-
ity). ROC plots the probability of detection (hit rate), POD, of an
event (defined by the threshold t) against the probability of false
detection (false alarm), POFD, of the same event. The 45◦ diagonal
line on the ROC diagram represents the line of no skill while high
skill is achieved with a curve located in the upper left corner of the
plot. The ROC is conditioned on the observations (i.e., given that an
event occurred, it shows the corresponding forecast). It is therefore
a good companion to the reliability diagram, which is conditioned
on the forecasts (Wilks, 2011).

POD (y-axis) and POFD (x-axis) are calculated as follows, having
chosen some probability thresholds pt among the interval [0,1]:

POD (t, pt) =
∑n

i=11
{

1 − FPi (t) > pt |Oi > t
}

∑n
i=11

{
Oi > t

} (11a)

POFD (t, pt) =
∑n

i=11
{

1 − FPi (t) > pt |Oi ≤ t
}

∑n
i=11

{
Oi ≤ t

} (11b)

4. Results and discussion
The forecast performance of daily ET0 is obviously influenced
by the forecast performance of the weather variables employed as
input to the ET0. Thus we  first report the forecast performance of
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hese variables and then those of the ET0 predictions. The forecast
erformances of weather variables were evaluated with the deter-
inistic metrics introduced in Section 3.2.1. We  do not present any

robabilistic metrics of the raw weather variables for the sake of
onciseness. The performance of the ET0 forecasts is instead illus-
rated with both deterministic and probabilistic metrics.

.1. Forecast performances of weather variables with
eterministic metrics

We  verified the daily forecast, with lead time up to five days, in
he irrigation seasons from April to September in two years (2013
nd 2014), of the following weather variables: T (defined as the
ean between the daily Tmax and Tmin), solar radiation (RS), wind

peed (WS) and relative humidity (RH). We  did not show any results
oncerning the atmospheric pressure since we found almost perfect
greement between observations and forecasts. Unlike previous
tudies (e.g. Perera et al., 2014), we did not apply any prelimi-
ary bias corrections to the weather forecast outputs, beside their
i-linear interpolation at the AWS  sites, as outlined above.

The values of BIAS and RMSE for the 18 AWS  sites and varying
ead times are shown below in Figs. 3 and 4, respectively.

As highlighted by Perera et al. (2014), the ground measurements
rrors may  also contribute to reduce the forecast performances.
owever, we verified that for all weather variables the measure-
ent errors due to the ground sensor accuracies were significantly

ess than the corresponding forecast uncertainties. This suggested
hat the effects of measurement errors on the forecast evaluations
ere negligible.

.1.1. Air temperature
Air temperature is the only weather variable needed in the com-

utation of ET0-HS but it is also needed for ET0-PT since Tmax and
min are required to compute the net long wave radiation and satu-
ation vapour pressure. Tmax and Tmin are also required to calculate
he vapour pressure deficit in Eq. (1). Here, for the sake of concise-
ess, we provide forecast performances only with reference to T,

efined as the mean between daily maximum air temperature and
aily minimum air temperature.

Figs. 3 and 4 show that the forecast performances for T do not
ignificantly decline with increasing lead time for all locations.

Fig. 3. BIAS of forecasted vs. observed daily weather
nagement 178 (2016) 106–118

Moreover, Fig. 3 highlights that there is a broad variation of fore-
cast performances among the AWS  sites. The NWP  model has no
systematic tendency to overforecast or underforecast T. Rather, we
found T is overforecasted in half the AWS  sites and underforecasted
in the other half. BIAS values range between −2.1 ◦C and 2.3 ◦C.

At AWSs 9 and 15, T is dramatically underpredicted. These two
sites are close to the coastline (Fig. 1), where the COSMO-LEPS,
with the bilinear interpolation method adopted for estimating the
weather forecasts at the AWS  sites, is unable to resolve the local
weather effects associated with the proximity to sea and thus the
forecasts are subject to systematic biases. The higher overpredic-
tion of T is found in correspondence to AWS  1, which is located close
to the coastline, like AWSs 9 and 15, but on a cliff at an elevation
of 848 m.  Here, the COSMO-LEPS model with the bilinear interpo-
lation of the values forecasted at the numerical grid is unable to
resolve the small scale variability due to steep elevation gradients
close to the coastline.

The RMSE ranges between 0.9 ◦C and 2.7 ◦C, with an average
value over the region of 1.6 ◦C. These RMSE values indicate very
good performances compared with the results of other studies,
where these RMSE values for T were achieved only after bias-
correcting the NWP  outputs (e.g. Silva et al., 2010).

4.1.2. Solar radiation
The forecast performances for daily incoming solar radiation,

RS,  show a clear decline with increasing lead time. The BIAS val-
ues range from −26.8 W m−2 to 19.3 W m−2, the RMSE values range
from 34.7 W m−2 to 64.1 W m−2. The RMSE values at a 5-day lead
time are 20% higher than the RMSE values at a lead time of 1 day.
Strong negative BIAS values were observed at AWS  sites close to the
coastline (i.e., AWSs 6, 9 and 15), while strong positive BIAS values
were found in inland areas (i.e. AWSs 7, 8, 10 and 11). In addition,
high RMSE values were found at AWSs 1, 2, 12 and 16.

These forecast errors were probably produced by factors (such as
the topography), which influence the local global incident radiation
(direct and diffuse) and are not properly resolved by NWP  model.
4.1.3. Wind speed
The forecast performances related to daily mean wind speed

experience great spatial variability in the region of interest. For
WS, the BIAS values range between −2.4 m s−1 and 1.2 m s−1. The

 variables for all 18 AWS  sites and lead times.
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eather variables for all 18 AWS  sites and lead times.
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Fig. 4. RMSE of forecasted vs. observed daily w

MSE values goes from 0.4 m s−1 to 2.9 m s−1. At AWS  sites 5 and 10
e found the highest RMSE and BIAS in the region. In these sites,

he highest WS  values were observed during the year, enhanced
y local terrain features not resolved by the COSMO-LEPS model,
hich tends to dramatically underforecast the wind speed. WS  was

nstead overforecasted at AWSs 7 and 8, where local terrain fea-
ures mitigate the wind speed with respect to the dominant wind
atterns predicted for the surrounding area.

.1.4. Air humidity
The air humidity is underforecasted at most of the AWS  sites,

xcept for three that are subject to slight overforecasting (i.e. AWSs
5, 17 and 18). The BIAS values range between −17.1% and 1.1%,
he RMSE values range between 6.4% and 20.5%. The worst perfor-

ances were collected at AWSs 1, 5 and 12.

.2. Forecast performances of reference evapotranspiration with
eterministic metrics

In the examined two irrigation seasons (2013 and 2014), the
ifference between the daily ET0 calculated using weather fore-
asts and the daily ET0-gPM appears to be stochastically independent
f the time of year. Thus we computed the performance indices
ggregated for the entire irrigation seasons, avoiding performance
ssessment within smaller time-spans (e.g. monthly), as the differ-
nces were not significant.

The observed long–term monthly mean of ET0g-PM computed
t the 18 AWS  sites in Campania region from April to September
s shown in Fig. 5. The monthly mean ET0g-PM ranges from
.3 mm day−1 to 5.5 mm day−1. The highest values are reached in

uly, when the maximum daily air temperatures are registered. The
nterquartile spread among the examined AWS  peaks in July and
ugust, and reaches its lowest point in May. The maximum spread

occurring in July) of the monthly mean ET0g-PM among the AWS
tations is about 1.2 mm  day−1.

Fig. 6a–f shows the scatter between the observed and the

edian of the forecasted daily ET0 at all AWS  sites for the two

xtreme lead times (i.e. 1 day on the left and 5 days on the right)
nd for the three different evapotranspiration equations. The lin-
ar trends between observed and forecasted change marginally
Fig. 5. Observed long-term monthly mean ET0 computed for the 18 AWS  sites in
Campania.

with the increasing lead time, while the scatter increases markedly.
Thus, the accuracy of the forecast appears to be more sensitive to
the lead time than its precision.

For low values of observed ET0 (<2 mm day−1), the forecasts tend
to overpredict ET0 for all lead times and equations considered. The
PT and PM methods overpredict ET0, while HS exhibits some points
with largely underpredicted ET0. These points correspond to AWSs
6, 9 and 15, as clarified below.

Figs. 7 and 8 show the BIAS and RMSE, respectively, for each AWS
site (row) and lead time (column). The values of the BIAS range:

i) from −1.96 mm day−1 to 0.46 mm day−1 for the daily predicted
ET0-HS , with an average value over space and lead time of
−0.16 mm day−1;

ii) from −0.35 mm day−1 to 0.76 mm day−1 for the daily predicted
ET0-PT , with an average value over space and lead time of
0.33 mm day−1;
iii) from −0.43 mm day−1 to 0.72 mm day−1 for the daily predicted
ET0-PM with an average value over space and lead time of
0.123 mm day−1.
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F nd 5-d
l  refer

i

ig. 6. Daily observed ET0-PM vs daily predicted ET0 at all AWS  stations for 1-day a
ine. (For interpretation of the references to color in this figure legend, the reader is

The values of the RMSE range:

i) from 0.57 mm day−1 to 2.17 mm day−1 for the daily predicted
ET0-HS , with an average value over space and lead time equal to
0.90 mm day−1;

ii) from 0.55 mm day−1 to 1.24 mm day−1 for the daily predicted
ET0-PT , with an average value over space and lead time of

0.81 mm day−1;

ii) from 0.48 mm day−1 to 1.17 mm day−1 for the daily predicted
ET0-PM with an average value over space and lead time of
0.71 mm day−1;
ay lead times and for different evapotranspiration models. The red line is the 45◦

red to the web version of this article.)

Fig. 9 shows, at each AWS  site and for each lead time, the value
of rBIASHS and rBIASPT as in Eqs. (8a-b), to highlight the main source
of error when simplified evapotranspiration methods (i.e. HS and
PT) are used instead of the PM equation. Values of rBIAS greater
than one suggest that the forecast error is greater and relatively
large improvements can be achieved with the same ET0 predic-
tion method if the raw forecasts are post-processed for removing

systematic prediction errors, which are mainly due to the limited
capacity of the NWP  model to resolve the effects of small scale
variability.
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Fig. 7. BIAS of forecasted vs. observed daily ET0 for all 18 AWS  sites and lead times.
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improvement by using its observed value is the largest), followed by
relative humidity and wind speed. For temperature, the improve-
ment by using observed values is negligible, which is also the
ig. 8. RMSE of forecasted vs. observed daily ET0 for all 18 AWS  sites and lead times.

Overall, based on Figs. 7–9, the following considerations can be
rawn.Except for AWS  6, 9 and 15, the prediction performances
btained with the simple HS equation are comparable with those
btained by previous studies, which employed the PM equation
ith bias-corrected NWP  outputs for similar lead times (e.g., Silva

t al., 2010; Perera et al., 2014). The forecast BIAS at AWS  6, 9 and
5 is mainly due to the temperature forecast errors, which were
utlined in the previous section and in Fig. 3. At AWS  1, 5, 10 and
2 the forecast BIAS instead appears to be mainly due to model
implification. Since the HS method does not explicitly account for
elative humidity, it can overestimate ET0 in humid regions, and
nderestimate it in areas of high winds and high vapour pressure
eficits. For these sites, a specific calibration of KHS is particularly
ecommended (Allen et al., 1998).

ET0-PT BIAS is always positive, except for AWS  15, where both
emperature and radiation are underestimated. The highest RMSE
alues are observed at AWS  1, 5, 10 and 12 due to the errors in
orecasted temperature and solar radiation. As indicated by Fig. 9,
t these AWS  sites, model error and forecast errors play a similar
ole. For all other stations, ET0-PT exhibits absolute BIAS smaller

han 0.5 mm  day−1 and RMSE smaller than 0.75 mm day−1, which
re excellent forecast performances compared with previous anal-
gous studies.
nagement 178 (2016) 106–118 115

ET0-PM forecasts present a pattern of BIAS and RMSE similar
to that of ET0-PT but with smaller absolute values: the only neg-
ative BIAS are observed at AWS  9, 15 and 17; the highest RMSE
are observed at AWS  1, 5, 10 and 12. AWS  12 exhibits absolute
BIAS exceeding 0.5 mm day−1 for lead times greater than one day
and RMSE greater than 1 mm  day−1 for lead times exceeding three
days.

The impact of the BIAS on the forecasted air temperature at AWS
6, 9 and 15 is mitigated with equations PM and PT, where other
weather variables, different from the air temperature, play a more
important role and are less affected by proximity to the sea.

Fig. 10a-b depicts the coefficients of variation (CV) and the cor-
relation coefficient, respectively, across all 18 AWS  sites for varying
lead times. On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to
the most extreme data values not considered outliers, and outliers
are plotted individually. The points are drawn as outliers if they
are larger than q3 + 1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1),
where q1 and q3 are the 25th and 75th percentiles, respectively.
The circle mark represents the mean value among the AWS  sites.

The values of the CV increase with lead times as a result of the
increasing ensemble spread. The CV also increases as the number
of uncertain variables involved in the ET0 computation increases,
moving from HS to equations PT and PM.

The correlation (Fig. 10b) exhibits a marked decrease with
increasing lead time. The rate of the decreasing trend is larger for
ET0-PT , due to the higher sensitivity of the forecasted radiation to
the lead time. In any case, the correlation generally increases from
equation HS to PT and PM,  except for AWS  1, 5, 10 and 12 where the
ET0-PT correlation is smaller than ET0-HS for lead times exceeding
three days.

An insight into the impact of the forecast errors of different
weather variables, i.e. temperature, solar radiation, relative humid-
ity and wind speed, on the daily ET0 estimation is afforded by Fig. 11.
It shows the variation of forecast performances in terms of RMSE
when we substitute one weather variable forecast with its own
observed value. The substitution of the weather variable forecast
with the weather variable observation can be useful for highlighting
the sensitivity of the ET0 forecast to errors in the weather forecast
for that variable, as suggested by Perera et al. (2014).

Fig. 11 suggests that errors in solar radiation forecast have
the greatest influence on the ET0-PM forecast performance (the
Fig. 9. rBIAS of forecasted vs. observed daily ET0 for all 18 AWS  sites and lead times.
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Fig. 10. a) Coefficient of variation (CV) and b) correlation coefficient across all 18 AWS  sites of forecasted vs. observed daily ET0 (the circles represent the mean values).

F
p

r
t
u

o
s
t
e
r

4
p

t
T
a
(
F
t
3

E
u
t
c
w
w

Fig. 12. BSS across all 18 AWS  sites of forecasted vs. observed daily ET0 (the circles
ig. 11. Sensitivity of daily FAO Penman-Monteith ET0 forecasts to errors in weather
redicted variables.

eason why we have still good performances of ET0-PM forecasts in
hose sites where the errors in temperature forecasts lead to severe
nderestimation of the predicted ET0-HS .

The results in Fig. 11 are somewhat consistent with the findings
f Perera et al. (2014), who showed that forecast errors related to
olar radiation are the main source of errors in ET0 forecasts. On
he other hand, in latter’s findings, the sensitivity of ET0 forecasts to
rrors in the temperature forecasts seems to play a more important
ole.

.3. Forecast performances of reference evapotranspiration with
robabilistic metrics

The probabilistic metrics of the forecast performances to assess
he quality of the ensemble forecasts are reported in Figs. 12–14.
he metrics are all computed for a threshold t equal to the aver-
ge (among all the AWS  sites) median value of ET0g-PM (see Eqs.
9)–(11)). Boxplots of the BSS among all 18 AWS  sites are shown in
ig. 12 for increasing lead times. BSS declines with increasing lead
ime, but the reduction from lead day 1 to lead day 5 is smaller than
0% for all ET0 forecasting methods herein examined.

All ET0 forecasts are better than sample climatology, except for
T0-HS forecasts at AWS  6, 9 and 15, where anomalous BSS val-
es below zero were observed due to significant systematic bias in
emperature forecasts, as illustrated above. These BSS outliers also

aused a significant bias in the mean BSS (circle marks) of ET0-HS
ith respect to the median values (horizontal central line of the
hisker).
denote the mean values).

The median BSS of ET0-HS is greater than 0.45, while its p25
exceeds 0.37, for all lead times. ET0-PT presents the largest spreads
in BSS, symptomatic of a lower capacity to forecast solar radiation
at a large number of AWS. Its median value is always above 0.47 and
its 25th percentile is greater than 0.30. The median BSS of ET0-PM is
greater than 0.50 for all lead times, while its 25th percentile exceeds
0.45.

Overall, these BSS values are quite high compared with the find-
ings of Tian and Martinez (2012a, 2014), who presented the first
studies with a probabilistic verification of ET0 forecasts. Tian and
Martinez (2014) obtained the best BSS values by statistical bias-
correcting and downscaling GFS reanalysis forecasts to a spatial
resolution of 12 km2. In this case, the maximum BSS scores achieved
in the warm seasons at 1-day lead time were 0.20 for the middle
terciles thresholds and around 0.40 for the upper and lower terciles.
Moreover, in their study, BSS radically decreased towards zero for
increasing lead times up to five days.

Fig. 13a–c shows the reliability diagrams for the three exam-
ined methods: ET0-HS , ET0-PT and ET0-PM . In all cases, the forecasts
exhibit good sharpness as described by the histograms in the insets
(upper left corners) of Fig. 13a–c. As indicated by Fig. 13c, ET0-PM
ensures good reliability and resolution for all lead times. Slight
overforecasting occurs for lead times exceeding three days.

The correspondence between forecasted and observed fre-
quencies worsens when simpler methods such as PT and HS are

employed. The curves related to ET0-PT forecasts (Fig. 13b) indicate
overforecasting, except for a lead time of five days at high proba-
bilities. The case of ET0-HS forecasts (Fig. 13a) is the worst case with
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Fig. 13. Reliability diagrams for a) ET0-HS , b) ET0-PT and c) ET0-PM.
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Fig. 14. ROC diagrams for a

oor reliability and resolution, probably caused by those AWS  sites
ith negative BSS (i.e. AWS  6, 9 and 15).

Finally, Fig. 14a–c shows the ROC diagrams, respectively, for
he cases of ET0-HS , ET0-PT and ET0-PM . ROC diagrams clarify how
ell the probabilistic forecasts discriminate between events and

on-events. The dependence on lead time is very clear: the perfor-
ances on the ROC diagram decline with increasing lead time for all

he ET0 methods. Very slight differences are appreciable between
ig. 14b and c, which show, respectively, the ROC diagram for ET0-PT
orecasts and ET0-PM forecasts. The case of ET0-HS forecasts (Fig. 14a)
s that which performs worst. Yet it is still very satisfying compared

ith the results shown by Tian and Martinez (2012a, 2014).

. Conclusions

A more rational and efficient use of water in agriculture can be
chieved by supplying accurate forecasts of reference evapotran-
piration (ET0), which is one of the key factors for the assessment
f crop water requirements and irrigation needs. A probabilis-
ic approach is recognized as the most appropriate to cope with
he uncertainty of weather variability in the short-medium term.
lthough statistical downscaling techniques of global ensemble

orecasts have been proved to provide reliable forecasts (e.g. Tian
nd Martinez, 2014), their applicability is hindered by the need of
arge data sets of ground-based observations for their calibration.
he operational availability of weather forecasts by limited area
nsemble prediction systems (LEPS) offers new opportunities for
eveloping reliable advisory services for agricultural management,
articularly for rural areas where complete ground-based weather
ata are rare.

To our knowledge, this is the first study to verify the ability of

EPS outputs to forecast reference evapotranspiration in the short-
edium range. COSMO-LEPS forecasts with a spatial resolution of

 km and lead times up to five days were employed for forecasting
aily ET0 in southern Italy, in a region where weather forecasting
HS , b) ET0-PT and c) ET0-PM.

is quite challenging given its complex topography in proximity to
the Mediterranean coastline. The numerical weather outputs were
applied without any preliminary post-processing aimed at remov-
ing local systematic errors. Forecast performances were assessed
with three different empirical methods for estimating ET0, in order
to evaluate the size of the weather forecast errors with models of
different accuracies.

ET0 forecasts with the FAO Penman-Monteith (PM) equation
were skillful and reliable, with limited sensitivity to the forecast
lead time. Both deterministic and probabilistic scores were better
than those presented by analogous studies (e.g. Perera et al., 2014;
Tian and Martinez, 2014). Solar radiation forecast errors appear to
be the largest source of error for PM forecasts.

High skill scores were achieved also with the simpler and
uncalibrated Priestley-Taylor (PT) and Hargreaves-Samani (HS)
equations, except for a few locations close to the coastline. Forecasts
with the uncalibrated Hargreaves-Samani (HS) and Priestley-Taylor
(PT) equations were more vulnerable to local systematic errors
of the forecasted temperature and solar radiation, respectively.
In almost half of the 18 locations examined, systematic weather
forecast errors appear to affect ET0 forecasts errors more than the
application of an uncalibrated equation as an alternative solution
to the more complex PM equation. Systematic errors are mainly
due to limitations of the numerical weather model to resolve topo-
graphic effects on local weather conditions in areas with a complex
terrain, as occurs along coastlines surrounded by high mountains.

The performances herein presented are based on data from only
two irrigation seasons which did not experience extreme weather
conditions. Such conditions could enhance the effects of system-
atic errors of the forecasting system and thus reduce the accuracy
of ET0 forecasts, particularly if estimated with simpler HS and PT

estimation methods.

Since the installation of comprehensive new weather stations
is becoming common in modern precision farming, further studies
will be devoted to develop adaptive methods for removing system-
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tic biases with ground data in real time. Such methods could offer
pportunities to fully exploit the advances in ensemble numeri-
al weather forecasting by developing innovative advisory services
ased on the optimal combination of LEPS forecasts and ground-
ased data from newly installed automatic weather stations.
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