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Reducing pesticide use in agriculture is a major challenge to improve sustainability of cropping systems. It is crit-
ical to identify effective integrated farming strategies able to decrease substantially pesticide use. This study is
based on a unique French national network of 1012 arable commercial farms involved in a pesticide reduction
program. These farms displayed contrasting levels of pesticide use, and covered a large diversity of environmen-
tal characteristics and farming practices. Our objectivewas to identify profiles ofmanagement strategies showing
contrasting pesticide use levels in France. Two categories of factors potentially related to pesticide use were con-
sidered successively, namely factors describing production situations and factors describing management strat-
egies. Regression tree methods were applied to the dataset to identify combinations of factors associated with
low vs. high pesticide use levels. Results showed that, among the factors describing production situations, the
presence of livestock, climate conditions, and to a lesser extent soil characteristics were able to discriminate
groups of farms with contrasting pesticide use levels. Among the factors describing management strategies,
the crop sequence, the crop diversity, the pesticide spraying techniques, and soil tillage were frequently selected
for discriminating farms characterised by low vs. high pesticide use levels, whereas specific factors such as me-
chanical weeding, crop cultivars and sowing dateswere relatedwith pesticide use in some production situations
only. Across production situations, several contrasting strategies led to low levels of pesticide use. Besides, within
each considered production situation, different strategies appeared associated with low levels of pesticide use.
Our results reveal that a large diversity of strategies exists for controlling pests, weeds and diseases without
high levels of pesticide use.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

A substantial reduction of pesticide use is required to make agricul-
ture more sustainable (Matson et al., 1997). This objective will be
achieved only if farming practices go through major changes in order
to enhance the bio-physical regulation of pests (Wezel et al., 2014). In
this context, the concept of Integrated Pest Management (IPM) empha-
sises the combination of a wide range of technical levers alternative to
chemicals for pest management in order to achieve sustainable eco-
nomic benefits with the lowest risk to human health and the environ-
ment (Glass, 1975; Barzman et al., 2015; Lamichhane et al., 2015).
Many experiments based on IPM principles were carried out to assess
potentialities of innovative approaches able to reduce pesticide use
through the combination of alternative management options (e.g.
Reganold et al., 2001; Deike et al., 2008; Chikowo et al., 2009).
groécologie, Bâtiment Coste 17,

enet).
Innovative cropping systems tested in these experiments were based
both on preventive (e.g. diversified crop rotation, soil tillage strategy in-
cluding false seed bed techniques) and curative measures (e.g. biocon-
trol, mechanical weeding), with the objective to diversify perturbation
factors of pests lifecycle (Barzman et al., 2015). However, economic, en-
vironmental and social performances of cropping systems are strongly
influenced by bio-physical (e.g. climatic conditions, soil composition)
and socio-economic (e.g. presence of livestock, outlets for industrial
crops) local drivers (Bürger et al., 2012; Aouadi et al., 2015). These
local drivers are not easy to control by farmers, and their combination
defined a so-called concept of production situation (PS) (Aubertot and
Robin, 2013). In classical experimental approaches, experimental out-
puts partly reflect the constraints and opportunities defined by the spe-
cific PS, and the generic value of conclusions may be questioned (Doré
et al., 2011). Results from one experiment in one site might be valid
only in those production contexts that are close to the experimental
production context. The IPM-based management strategies that are
likely to best reconcile the various aspects of agricultural sustainability
might be different from one site to one another, but all combinations
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of management options cannot be tested experimentally in all types of
PS. As a complementary approach, networks of commercial farms may
create the opportunity to study real farms showing a diversity of farm-
ingmanagements in linewith the constraints and opportunities coming
from a wide range of PSs.

Launched in 2008, the French national plan Ecophyto has set a target
of a 50% decrease in pesticide use, initially planned to be reached by the
year 2018 (FrenchMinistry of Agriculture and Fisheries, 2008). Howev-
er, French agriculture is today far from achieving this goal, and the end
of the initial planwas recently postponed to 2025. To guide farmers and
help them to adoptmore sustainable practices, one pillar of this plan re-
lies on DEPHY, a national network of commercial demonstration farms.
This network involves two thousand farms, committed since 2011 in a
reduction of their pesticide reliance. It covers a large diversity of produc-
tion systems, ranging from arable cropping to vineyards, orchards, veg-
etables, etc. DEPHY is based on 200 farm advisors, who both provide a
local guidance to the farmers, and collect data. It produces a dataset
for enhancing knowledge on the management measures that make it
possible to reduce pesticide use. Each arable farm from the network is
a based on a specific management strategy (MS) characterised by both
the crop sequence and the sets of management techniques applied to
the different crops.

Our hypotheses were: (i) MSs leading to low pesticide use are based
on combinations of several management measures, (ii) those MSs are
different across PSs, and (iii) low pesticide use levels could be reached
through different MSs within a given PS. To test these hypotheses, we
carried out a detailed analysis of pesticide use variability with the Clas-
sification and Regression Tree method (CART), able to handle complex
interactions between explanatory variables. Themethodwas previously
used to study cropping systems. For example, it proved to be useful to
understand how soil characteristics and cropmanagementmay explain
variability inmaize productivity in farms fromwestern Kenya (Tittonell
et al., 2008). Here we used biophysical, socio-economic, and manage-
ment data collected over arable farms located in France. Regression
trees were fitted to the dataset to identify combinations of factors dis-
criminating farms according to their level of pesticide use, i.e. related
to low vs. high pesticide use. This approachwasfirst applied to pesticide
use averaged at the farm level, and then separately to pesticide use for
two major crops, namely winter wheat and maize, in order (i) to high-
light indirect links between the composition of the crops sequence and
pesticide use in wheat andmaize, respectively, and (ii) to highlight fur-
ther technical options related to pesticide use on these crops.

2. Material and methods

2.1. Data collected on the DEPHY demonstration farm network

In this studywe focused on the 1012 non-organic arable farms of the
DEPHY farmnetwork, accounting for N66,000 ha of arable area. For each
farm, themainMSwas described in detail between 2009 and 2011.We
collected data describing both the PS and theMS. A review of the scien-
tific literature was performed to identify a set of variables which may
potentially affect pesticide use intensity.

2.2. TFI

We used the Treatment Frequency Index (TFI) to quantify pesticide
use in each farm. The TFI (OECD, 2001) estimates the number of refer-
ence doses applied, for each pesticide, per hectare and per crop season.
TFI was expressed at the farm level by averaging the crop TFI according
to the proportion of each crop in the crop sequence:

TFI ¼
Xk
j¼1

Xn
i¼1

Di � Si
Dhi � St

 !
�ω j
where Di, Dhi, and Si, i = 1, …, n are, respectively, the applied dose,
the reference dose, and the treated surface area for the n spraying oper-
ations; St is the total plot area; andωj, j=1,…, k are the proportions of
each j crop in the crop sequence. The applied dose and the reference
dosewere both expressed for a given commercial product (that possibly
contains several active ingredients). As recommended by the French
Ministry of Agriculture for TFI computation, we selected the reference
dose as the lowest of the different registered doses specified across
the various possible targeted pests for each pesticide-crop combination.
All registered doses came from the E-phy online database provided by
the French Ministry of Agriculture (Ephy website, 2014). TFI is an indi-
cator that summarizes dependence on pesticides, which should be dis-
tinguished from the environmental impact of pesticides.

2.3. Variables characterizing production situations

We identified 46 variables describing PSs. According to the litera-
ture, these variables could have some effects on crop development or
pest pressure and therefore on pesticide use (details provided in Sup-
plementary data Table S1). Some of these variables corresponded to
bio-physical characteristics and described the effects of climate and
soil or field characteristics at each site. Maximum yields achieved on
winter wheat and maize during the previous years on each farm were
used as a proxy for yield potentials, i.e., maximum yield values that
could be obtained in a farm given its soil and climate characteristics. Cli-
mate variables were derived from the SAFRAN database (Quintana-
Seguí et al., 2008) providing ten years (2002−2011) of daily national
climatic data at the scale of 8 × 8 km spatialmeshes. The other variables
were related to the socio-economic background and described, for in-
stance, the access to particular localmarket opportunities for agricultur-
al outputs with high added-value (e.g. farms within the sugar beet
catchment area of sugar factories, etc.), the combination of arable
crops with livestock breeding in mixed farms, or the average field dis-
tance to the farm holding. Farms were considered to be associated
with livestock as soon as the crop sequence included at least one self-
consumed crop to feed livestock present on the farm.

2.4. Variables describing management strategies

278 variables were defined to describe the MSs (details provided in
Supplementary data Table S1). These variables characterised crop rota-
tion composition and diversity, soil tillage type and intensity, weed
management strategy, pesticide spraying strategy and fertilisation
rates. These variables were computed both separately for several crop
species (e.g. winter wheat, maize, grassland, oilseed rape, sugar beet)
and at the farm level using weighted average over the crop rotation,
with weights equal to the frequencies of the crops in the crop sequence.
Crop type diversity was assessed bymeasuring the frequency of cultiva-
tion of six different groups of species (Supplementary data Table S1).
Sowing period diversity was described by measuring the frequency of
occurrence of five different sowing periods over year.

2.5. Identification of combinations of variables discriminating low vs. high
pesticide use

2.5.1. CART (Classification and Regression Tree)
Weused a recursive partitioning approach based on the CARTmeth-

od (Breiman et al., 1984) to split our sample of 1012 TFI values using the
PS and MS variables into sub-samples that build a regression tree
explaining TFI variability. A split for a given node is a dichotomy leading
to two lower nodes with contrasting TFI values. A split involves (i) the
choice of themost discriminating variable among the set of explanatory
variables, and (ii) the choice of the best dichotomy on the variable pre-
viously selected, so that it permits the highest reduction in the within
node TFI variability. The final tree is composed of several branches,
where each branch corresponds to a combination of successive splits
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between the root (i.e. the starting group) and a terminal node (i.e. afinal
group). This method does not need any assumption on the form of the
relationship between the explanatory variables and the response vari-
able. Another advantage is that this method handles missing values in
the explanatory variables. In our dataset, missing data represented
less than 3% of available data for the description of PSs and 0.3% of avail-
able data for the description of MSs.

CARTwas first applied to partition our sample of 1012 TFIs using the
variables describing the PSs only. The terminal nodes of the resulting
tree were used to define different categories of PSs showing contrasting
TFI values. The minimum number of TFI values included in each termi-
nal node was set to 100.

Then, CARTwas applied a second time to TFI values from each termi-
nal node of the first tree (i.e. in each of the PS category). This second ap-
plication of CARTwas performed using the variables characterizingMSs.
One regression tree per PS category was generated, hence allowing the
identification of profiles ofMSs associatedwith contrasting values of TFI
for each category of PS.

This second series of regression trees was built without restriction
on the number of splits, i.e. on the length of branches, but were pruned
by minimising the cross-validated mean squared error (Moisen, 2008)
to avoid overfitting. This cost-complexity measure optimised the size
of the tree to reduce the risk of tree instability.

The recursive partitioningmethodwas implemented on TFI calculat-
ed at the farm level, but also on TFI values calculated for winter wheat
and maize separately. These two crops were the most cultivated in the
farm network (respectively 86% and 61% of farms included winter
wheat and maize).

2.5.2. Random Forest
Although the CARTmethod is a powerful tool to analyse complex re-

lationships among a large set of variables, the instability of regression
trees remains one of the main limits of this approach (Marshall and
Kitsantas, 2012). Here, we used the Random Forest method to prioritise
explanatory variables according to their discriminatory power and their
importance in the splittingprocess quality. The ranking of variables gen-
erated by this method provides insights on the quality of the trees built
with the CART method.

The Random Forest method is a Machine-learning classification
method based on a high number of decision trees (Breiman, 2001).
The algorithm was implemented to generate randomly 1000 subsam-
ples (with replacement) from the full TFI sample and to build a decision
tree for each subsample. The resulting set of 1000 trees (the forest) was
then used to calculate two criteria, namely (i) the average contribution
of each explanatory variable to reduce the impurity of terminal nodes,
and (ii) the risk of misclassification associated with the permutation
of values for each explanatory variable. These two criteria were used
to rank the explanatory variables according to their ability to increase
nodes purity or to their importance for discriminating low vs. high TFI
values. The resulting ranking was used to identify variables with robust
discriminative power.

2.5.3. Description of PS categories and MS profiles
Explanatory variables might be correlated, so the selection of vari-

ables by the CART method might hide the effects of combined variables
that are not selected. Multiple comparisons between PS categories and
MS profiles were therefore performed using all explanatory variables
by multiple rank comparisons with the Benjamini & Hochberg correc-
tion on p-value (Benjamini and Hochberg, 1995) to get additional infor-
mation that were not directly visible on the trees. This was useful to
identify all the combined variables that significantly discriminated the
terminal nodes previously produced by the CART method. All the ex-
planatory variables presented below in the ‘Results’ section to discrim-
inate PS and MS profiles reflected significant differences between
clusters (see Supplementary data Table S4). Statistical significance was
based on type 1 error rate of 5%.
2.6. Softwares and procedures

Databases were handled with SAS 9.4 ®. Statistical analyses were
carried out with the software R version 3.1.2 (R Development Core
Team, 2014). Regression trees and Random Forest were built respec-
tively with the rpart (Therneau and Atkinson, 1997) and Random Forest
(Liaw and Wiener, 2002) packages. Multiple comparisons were per-
formed using the ‘Kruskal’ function from the agricolae package
(Conover, 1999).
3. Results

3.1. Analysing TFI at the farm level

3.1.1. First partitioning: identification of PS categories
Over the network, average TFI at the farm level was 3.3. The most

important variables describing the PS thatwere identifiedwith the Ran-
dom Forest method were (i) the combination of arable crops with live-
stock breeding, (ii) the local market opportunities for industrial crop
outlets (e.g. sugar beet, potato, seed maize), and (iii) climatic variables
such as solar radiation, potential evapotranspiration (PET), precipita-
tions, relative air humidity, and wind speed (Supplementary data
Table S2).

The variables selected by the CART method (Supplementary data
Fig. S3) were those with high rankings according to the Random Forest
method, and this revealed that the CART outputs were robust. Other
variables were identified by multiple comparison methods, and there-
fore could be used to complement the description of the output PS cat-
egories (Supplementary data Table S4). The six categories of PS
identified from the CART regression tree were characterised by average
TFI values ranging from 1.7 to 5.5 (Table 1). The variability of TFI within
each PS was large (Fig. 1). For example, in PS6, the TFI values varied
from 0.8 to 16.7. The first splitting variable selected by CART was the
combination with livestock or not. The categories PS1 to PS3were asso-
ciated with livestock, enabling the cultivation of forage crops, whereas
PS4 to PS6 corresponded to farms based on cash crops only. The next
variables selected by CARTwere related to the climate. Decreasing aver-
age annual temperatures, global annual radiation and annual PET were
observed from PS1 to PS3 (average annual temperature varying from
12.0 °C in PS1 to 10.5 °C in PS3, global annual radiation from
470 kJ·cm−2 to 419 kJ·cm−2, and annual PET from 757 mm in PS1 to
632 mm in PS3), and from PS4 to PS6 (average annual temperature
ranging from 12.7 °C in PS4 to 10.9 °C in PS6, global annual radiation
from 459 kJ·cm−2 to 403 kJ·cm−2, and annual PET from 781 mm to
626mm). The opposite trendwas identified for relative air humidity, in-
creasing fromPS1 to PS3 (respectively from78% to 82%) and fromPS4 to
PS6 (respectively from76% to 82%). In addition, averaged annual precip-
itation appeared to be higher in PS3 than in PS1 (880 mm vs. 837 mm)
and higher in PS6 than in PS4 and PS5 (827mmvs. 776 and 749 respec-
tively). The access to irrigation was more frequent in PS1 and PS4 than
in the other PS categories (26% of farms with access to irrigation in
PS1, 39% in PS4 vs. a range from3% to 9% in other categories of PS). Fields
with high yield potential were more frequent in PSs without livestock
than in others (+11%), along with a lower frequency of sandy soils
(−10%) and a significantly higher pH (average pH ranging from 7.2 to
7.4 in PS4, PS5 and PS6 vs. ranging from 6.4 to 6.8 in PS1, PS2, PS3).

Not surprisingly (considering the weight of climatic variables in dis-
criminating PS categories), the six categories of PS were geographically
not evenly distributed across the national territory (Fig. 2). PSs corre-
sponding to sites with livestock and mixed farming were distributed
over a central region around Paris, and PSs corresponding to high TFIs
tended to be located in the northern part of the country. However,
sites located in the same county could be classified in different PS cate-
gories, and then different PS categories could be represented in a given
county.



Table 1
Details of production situations identified with the recursive partitioning of TFI at the farm level.
The variable ‘presence of livestock’ is the proportion of farms associated with livestock within the PS. For average TFI, significant differences between PS are given with significance letters
resulting from the multiple rank comparisons.

Production
situation

Average
TFI

Main locations Presence of
livestock

Climate conditions Main crops

PS1 1.7 a Central-southern France 100% High temperatures and dry
climate

Straw cereals, grassland, maize

PS2 2.3 b North-western France 100% Medium temperatures Straw cereals, maize, grassland
PS3 3.3 c Northern France 100% Low temperatures and wet climate Straw cereals, maize, oilseed rape
PS4 3.2 c Central and southern

France
0% High temperatures and dry

climate
Straw cereals, maize, sunflower

PS5 4.2 d Central and northern France 0% Medium temperatures Straw cereals, oilseed rape
PS6 5.5 e Northern France 0% Low temperatures and wet climate Straw cereals, oilseed rape, sugarbeet & potato
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In PSs associated with livestock, the proportion of temporary grass-
lands in the cultivated area decreased from PS1 to PS3 (27% of cropped
area in PS1, 15% in PS2 and 8% in PS3), and the opposite trendwas noted
for winter wheat (35% in PS3, 28% in PS2 and 20% for PS1), with also
more oilseed rape in PS3 (13% in PS3 vs. 4% in PS1 and PS2). In PSs with-
out livestock, maize was mostly grown in PS4 (29% of cropped area in
PS4 vs. 8% in PS5 and 4% in PS6) and straw cereals and oilseed rape
weremainly associated with PS5 and PS6 (58% and 53% of straw cereals
in PS5 and PS6 respectively vs. 41% in PS4; 20% and 13% of oilseed rape
in PS5 and PS6 vs. 8% in PS4). Sugar beet, potato, and field vegetable
were mostly grown in PS6, a PS category predominantly located in
northern France and characterised by deep silt soils with high yield po-
tential. Focusing on technical management, inversion tillage was more
frequent in farms associated with livestock (between 77% and 78% of
farms with livestock included inversion tillage vs. 64% to 68% in farms
where livestock was absent). Conversely, the frequency of tillage oper-
ations was higher in farms without livestock (ranging from 2.2 to 2.4
tillage operations vs. from1.5 to 1.9 tillage operations in farmswith live-
stock). Pesticide application strategies in PS1 and PS4 were more fre-
quently based on full dose applications on straw cereals than in other
PS categories (full dose pesticide applications represented 50% of pesti-
cide applications on straw cereals in PS1 and 44% in PS4 vs. they varied
from 31% to 35% in other PSs). N fertilisation rates in winter wheat also
Fig. 1. Violin plots representing the distribution of the Treatment Frequency Index within each
Maize TFI.
varied across PS categories, withmore N inputs in PS3 to PS6 (from 176
to 179 kg N·ha−1·year−1) as compared to PS1 and PS2 (146 kg
N·ha−1·year−1), consistently with higher yield potential in PSs with-
out livestock breeding.

3.1.2. Second data partitioning: identification of profiles of MSs in each cat-
egory of production situation

Over the six previously identified PS categories, we identified 54
profiles of MSs (Fig. 3). Across all PS, results of Random Forest showed
that several variables describing the crop sequence (proportions of
grassland, straw cereal, oilseed rape, potato and seedmaize) had strong
influence on TFI. Variables describing the spraying strategy (proportion
of reduced doses), the fertilisation rates and the tillage strategy also fre-
quently appeared at the top of the Random Forest ranking (see Supple-
mentary data Table S2).

Two MS were identified in PS1 (Fig. 3a; Supplementary data Fig. S3,
Supplementary data Table S4), MS1 (average TFI = 1.0, N = 54) and
MS2 (average TFI = 2.3, N = 71). Farms from MS1 were associated
with (i) a higher proportion of temporary grassland than in farms
from MS2 (57% vs. 5% respectively on average), (ii) a higher crop type
diversity (2.8 types of crops on average vs. 2.5 respectively), (iii) a
higher diversity in sowing periods (on average 2.6 different periods
for the profile MS1 vs. 2.4 for MS2). Although the frequency of tillage
PS. Dashed lines indicate the median TFI. a. TFI computed at the farm level b. Wheat TFI. c.

Image of Fig. 1


Fig. 2. Map of sites in the DEPHY network, coloured according to their PS category
identified with the recursive partitioning of TFI at the farm level. : PS1; : PS2; :
PS3; : PS4; : PS5; : PS6. Counties (French ‘departments’) are delimited with the
grey lines.
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operations was higher in MS2 (1.9 tillage operations/year–1) than in
MS1 (1.0), inversion tillage was more represented in MS1 (85% of
Fig. 3. Distribution of the TFIs within the profiles of MS identified with CART in each category o
median TFI.
farms included inversion tillage at least once over the crop rotation)
than in MS2 (73% of farms). The proportion of farms implementing oc-
casional inversion tillage (i.e. inversion tillage less frequent than every
two years) was higher in MS1 (54%) than in MS2 (14%). The N
fertilisation level appeared significantly lower in farms from MS1
(131 kg N·ha−1 on average) than in MS2 (169 kg N·ha−1), but K
fertilisation rates were higher in MS1 (105 kg K·ha−1 vs.
84 kg K·ha−1 in MS2).

In PS2, we identified 21 profiles of MS (Fig. 3b; Supplementary data
Fig. S3, Supplementary data Table S4),with average TFI ranging from0.3
(MS1,N=16) to 6.6 (MS21, N=1).MS21 displayed only one farm that
was discriminated from the others because of a substantially higher
proportion of field vegetables (38% of cropped area). The presence of
temporary grasslands was higher in MS1–MS4 (from 41% to 73%) than
in other MS (from 0% to 3.3%, excluding MS21), with more sugar beets
and field vegetables in more pesticide-reliant profiles. As visible on
the regression tree, mechanical weeding appeared more frequent in
MS5 and MS6 (0.7 operation·ha−1·year−1) than in most other MSs
(from 0 to 0.2 operation·ha−1·year−1), and itwas coupledwith the ab-
sence of pesticide application at full dose inMS5. Strawcerealswere sig-
nificantly less cultivated in MS7 than in MS8–MS12 (25% vs. 53% to 56%
respectively), MS7 being characterised by a high proportion of maize
(69% of cropped area on average). Pesticide use was significantly
lower in MS7 than in MS9–MS12, but not than MS8. MS8 displayed a
high frequency of pesticide application at low doses, which was partic-
ularly visible on wheat, representing 99% of pesticide applications.
MS1–MS4 tended to display a lower frequency of tillage operations
(ranging from 0.9 to 1.5 tillage operations/year–1) compared to other
profile of MS (ranging from1.6 to 2.7 tillage operations/year), but they
were also associated with a high proportion of farms resorting to inver-
sion tillage (between 79% and 91% of farms using inversion tillage).
f PS (violin plots). a. PS1 b. PS2 c. PS3 d. PS4 e. PS5 f. PS6. Dashed lines or dots indicate the

Unlabelled image
Unlabelled image
Image of Fig. 3
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In PS3, we identified 17 profiles of MS (Fig. 3c; Supplementary data
Fig. S3, Supplementary data Table S4),with average TFI ranging from1.0
(MS1, N = 14) to 10.4 (MS17, N = 1). Profiles MS16 and MS17
displayed high proportions of potato and sugar beet (representing to-
gether N33% of cropped area), associated with field vegetables in the
case of MS17 (22% of cropped area). Temporary grasslands were signif-
icantlymore cultivated inMS1 andMS2 than in otherMSs (50% and 35%
vs. from 0% to 6.5% respectively). As visible on the regression tree (Sup-
plementary data Fig. S3), MS3–MS9 were distinguished from MS10–
MS15 because all farms from MS3–MS9 and MS10–MS15 applied re-
spectively less and N30% of total pesticides at full dose. Interestingly,
MS3 and MS5 were both distinguished from adjacent MS profiles by a
lower frequency of inter-season cover crops.

In PS4, we identified 7 profiles of MS (Fig. 3d; Supplementary data
Fig. S3, Supplementary data Table S4), with average TFI ranging from
2.3 (MS1, N = 58) to 15 (MS7, N = 1). Once again, the only farm
from the profile MS7 was discriminated due to a very high proportion
of field vegetables (50%). Other profiles of MS composed with few
farms were created because they displayed a high proportion of seed
maize (72% in MS2 and 81% in MS4). Farms fromMS3 had significantly
more straw cereals and oilseed rape than farms fromMS1 (respectively,
straw cereals: 47% vs. 26%; oilseed rape: 10% vs. 1.6%),MS1 being essen-
tially composed of farms with a high proportion of maize (57%). The
crop type and sowing period diversity were also significantly higher in
MS3 than in MS1 (respectively 2.7 vs. 1.7 different types of crop, 2.8
vs. 1.7 different sowing periods). The share of farms resorting to inver-
sion tillage was higher in MS1 than in MS3 (78% of farms in MS1 and
65% in MS3).

In PS5, we identified 7 profiles of MS (Fig. 3e; Supplementary data
Fig. S3, Supplementary data Table S4), with average TFI ranging from
2.5 (MS1, N=18) to 13 (MS7, N= 1). MS7 displayed a higher propor-
tion of potato than otherMSs (20%vs. from0% to 1% in otherMSs), along
with a high proportion of sugar beet (10%). ProfilesMS1–MS4 displayed
lower proportions of winter crops, particularly oilseed rape, than MS5–
MS6 (ranging from 10% to 16% in MS1–MS4 whereas it reached 35% in
MS5–MS6). Comparing MS1–MS3 to MS5–MS6, (i) the proportion of
summer crops were higher in MS1–MS3 (from 12% to 22% vs. close to
1% inMS5–MS6), and (ii) the diversity of crop types and sowing periods
was higher in MS1–MS3 (crop type: from 2.7 to 2.9 different crop types
vs. 2 in MS5–MS6; sowing date: from 3 to 3.1 different sowing periods
vs. 2.3 in MS5–MS6). Mechanical weeding was significantly more fre-
quent in MS1 than in other profiles (0.2 in MS1 vs. from 0 to 0.1 in
otherMSs), and it was coupledwith a higher frequency of low dose pes-
ticide applications (71% vs. from37% to 55% respectively).Winterwheat
cultivar diversitywas higher inMS1 than inMS5 (2.7 varieties vs. 1.3 re-
spectively) and wheat disease resistance was higher in MS1 than in
MS5–MS6 (resistancemark value: 5.2 vs. 4.7 respectively). The frequen-
cy of tillage operationswas higher inMS4 (3.0 tillage operations/year-1)
than in MS2–MS3 (2.2), MS6 (2.1) and MS7 (1.7), along with a higher
resort to inversion tillage (80% of farms resorted to inversion tillage in
MS4 vs. from 57% to 67% in MS1–MS3 and MS5–MS6).

Two profiles of MS were identified in PS6 (Fig. 3f; Supplementary
data Fig. S3, Supplementary data Table S4), MS1 (average TFI = 4.5,
N = 85) and MS2 (average TFI = 8.2, N = 31). Compared to MS1,
MS2 was characterised by a higher proportion of field vegetables (4%
in MS1 vs. 14% in MS2), potato (0% in MS1 vs. 20% in MS2) and sugar
beet (5% inMS1 vs. 13% inMS2), but a lower proportion of straw cereals
(57% in MS1 vs 42% in MS2), oilseed rape (17% in MS1 vs. 2% in MS2)
and grain legumes (5% in MS1 vs. 1% in MS2). Crop type diversity was
higher in MS1 than in MS2 (2.7 vs. 2.1 types of crop respectively). In
line with the high presence of row crops, mechanical weeding was
more frequent in MS2 than in MS1 (0.1 operation·ha−1·year−1 in
MS1 vs. 0.4 in MS2), but pesticide applications at low doses were
more associated with MS1 (50% of pesticide applications) than MS2
(42% of pesticide applications). N fertilisation rates were lower in MS1
(154 vs. 183 kg N·ha−1 inMS1 andMS2 respectively).We also detected
a significant difference of irrigation level between the two profiles ofMS
(120 mm·year−1 in MS1 vs. 257 mm·year−1 in MS2). 60% of farms
from MS1 performed inversion tillage whereas it reached 84% in MS2.
We noticed however that the proportion of farms implementing occa-
sional inversion tillage (frequency under 0.5) was higher in MS1 (22%
of farms in MS1 vs. 10% in MS2).

3.2. Analysing TFI on winter wheat

3.2.1. First partitioning: identification of production situations
Winter wheat was cultivated in 873 out of the 1012 farms of the na-

tional network,with TFI=3.7 on average on this crop. The RandomFor-
estmethod identified the variables ‘surface area of the cropping system’,
climatic variables such as ‘solar radiation’, ‘potential evapotranspiration’
and ‘relative air humidity’, and ‘association with livestock’ as the main
discriminating variables for wheat TFI (Supplementary data Table S2).

We discriminated five productions situations with average TFI rang-
ing from 2.7 to 4.9 and increasing from PS1 to PS5 (Table 2), except be-
tween PS3 and PS4, where pesticide reliance was not significantly
different (Fig. 1; Supplementary data Fig. S3, Supplementary data
Table S4). Association with livestock was less represented in PS1 and
PS5 (b35% of farms) whereas the distribution was more equitable in
other categories of PS (between 50% and 60% of farms with livestock
in PS2, PS3 and PS4). Averaged temperatures were high in PS1–PS2
(12.7 °C), intermediate in PS3 (T = 11.4 °C) and low in PS4–PS5 (T =
11 °C), in line with the geographic distribution of the PS (Fig. 4) from
southern to northern France. In the same way, PET was gradually de-
creasing from PS1 to PS5, with PS4 not significantly different from
PS5, along with a decrease in annual global radiation. Logically, the rel-
ative air humidity followed the opposite pattern and increased fromPS1
to PS5 (see Supplementary data Table S4).

A higher risk of drought stress coming from high temperatures,
lower precipitations and an uneven distribution of precipitation (fre-
quency of rainy days per year) was noticed in PS1. The access to irriga-
tion systems was however more represented in PS1 (31% of farms with
access to irrigation in PS1 vs. from 4% to 13% in PS2 to PS5). Soil pHwas
lower in PS2 and PS3 than in other categories (6.7 in both PSs vs 7.0 to
7.3 in other PSs). The average surface area of the cropping system was
related to the size of the farm, and was higher in PS5 than in other PSs
(large-scale farms specialised on grain production). The proportion of
farms associated with a high yield potential was higher in PS4 (58% of
farms) and PS5 (64% of farms) than in other categories (ranging from
38% to 45%), and the available water capacity was significantly lower
in PS2 than in PS3–PS5 (100 mm in PS2 vs. 123, 150 and 146 mm in
PS3, PS4 and PS5 respectively).

Sugar beetwasmore cultivated in northern arable land fromPS4 and
PS5 (respectively 4.6% and 4.8% of cropping area vs. between 0 and 1.1%
in other PSs). The proportions of strawcereals,mainlywinterwheat and
barley, and of oilseed rape decreased progressively from PS5 to PS1
(proportions of straw cereal varied from 57% in PS5 to 45–46% in PS1
and PS2, proportions of oilseed rape varied from 18% in PS5 to 8% in
PS1 and PS2). The proportions of summer crops, such asmaize and sun-
flower, exceeded 30% in PS1 andPS2,whereas it ranged from12% to 22%
in other PSs. The cropping area devoted to temporary grasslands also
tended to be higher in PS1 (9%) and PS2 (12%) than in PS4 (4%) and
PS5 (1%). The proportion of farms using inversion tillage ranged from
64% to 74% across all PSs. The frequency of soil tillage operations at
the farm level was similar among PS categories. Full dose pesticide ap-
plications were significantly more frequent in PS1 than in other PSs,
representing 49% of pesticide applications at the farm level.

3.2.2. Second partitioning: identification of profiles of MSs in each category
of production situation

Over the five PSs previously identified, we discriminated 13 profiles
of MSs (Fig. 5). The Random Forest method selected pesticide dose re-
duction and variables linked to the fertilisation strategy, particularly



Table 2
Details of production situations identified with the recursive partitioning of TFI on winter wheat.
The variable ‘presence of livestock’ is the proportion of farms associated with livestock within the PS. For average TFI, significant differences between PS are given with significance letters
resulting from the multiple rank comparisons.

Production situation Average wheat TFI Main locations of farms Presence of livestock Climate conditions Main crops

PS1 2.7 a Southern France 35% High temperatures and dry climate Straw cereals, maize, sunflower
PS2 3.3 b Central eastern France 59% High temperatures and dry climate Straw cereals, maize, grassland
PS3 3.9 c Central northern France 55% Medium temperatures Straw cereals, maize, oilseed rape
PS4 3.9 c Northern France 52% Low temperatures and wet climate Straw cereals, maize, oilseed rape
PS5 4.9 d Northern France 27% Low temperatures and wet climate Straw cereals, oilseed rape
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the amount of nitrogen fertilizers, as the main discriminatory variables
across the PSs. Variables related to the crop sequence as well as vari-
ables describing wheat management (cultivar disease resistance and
sowing date) also discriminated wheat TFI according to the Random
Forest method (Supplementary data Table S2).

In PS1, we identified two profiles ofMS (Fig. 5a; Supplementary data
Fig. S3, Supplementary data Table S4), namely MS1 (average wheat
TFI = 1.3, N=11) andMS2 (average wheat TFI = 2.9, N=133). Com-
pared toMS2,MS1 displayed significantly (i) lower proportions of straw
cereal, particularly winter wheat (20% in MS1 vs. 34% in MS2), and oil-
seed rape (2% inMS1 vs. 8% inMS2), (ii) higher proportion of temporary
grassland (35% in MS1 vs. 7% in MS2), and (iii) higher proportion of
maize (28% inMS1 vs. 17% inMS2). Early sowing of winter crops tended
to be more represented in MS1 than in MS2 (respectively 29% vs. 6% of
winter crop area). Inversion tillage wasmore represented in farms from
MS1 (91% of farms resorting to inversion tillage) than fromMS2 (67%),
but soil tillage operations were more frequent in MS2 than in MS1 (on
average 2.1 tillage operations in MS2 vs. 1.4 in MS1). N fertilisation
rates on wheat were close in both MSs (171–173 kg N·ha−1).

In PS2, we highlighted three profiles of MS (Fig. 5b; Supplementary
data Fig. S3, Supplementary data Table S4), with average wheat TFI
ranging from 2.3 (MS1, N = 34) to 4.2 (MS3, N = 45). Farms from
MS1 included significantly (i) less straw cereals thanMS2 andMS3 (re-
spectively 21% in MS1 and 52% in MS2–MS3), particularly less winter
wheat (respectively 17%, 39% and 34%), (ii) less oilseed rape (1%, 11%
and 8% respectively), (iii) but more temporary grassland (45% in MS1,
2% in MS2 and 4% in MS3). Crop type diversity was higher in MS1
Fig. 4.Map of sites in the DEPHY network, coloured according to their PS category defined
from the segmentation of TFI in wheat ( : PS1; : PS2; : PS3; : PS4; : PS5). Counties
(French ‘departments’) are delimited with the grey lines.
than in MS2–MS3 (respectively 2.9, 2.7 and 2.5). Compared to MS1
and MS3, the profile MS2 was characterised by a higher frequency of
pesticides applied at low doses on winter wheat (65% of pesticides ap-
plied on wheat inMS2 vs. 47% inMS1 and 28% inMS3). Tillage frequen-
cy before winter wheat was lower in MS1 than in other MSs (1.1 tillage
operations·ha−1 in MS1 vs 1.6 in MS2 andMS3), but farms with inver-
sion tillage were slightly more frequent in MS1 than in MS2–MS3 (76%
of farms with inversion tillage in MS1 vs. 69% in MS2–MS3). N
fertilisation inputs on wheat were lower in MS1 than in MS2-MS3 (re-
spectively 143 kg N·ha−1 in MS1 vs. 164–165 in MS2–MS3).

In PS3, we identified two profiles ofMS (Fig. 5c; Supplementary data
Fig. S3, Supplementary data Table S4), MS1 (average wheat TFI = 3,
N=45) andMS2 (averagewheat TFI= 4.1,N=156). Although no sig-
nificant difference appeared on the proportions of the different crops
cultivated in farms from these MSs, we highlighted a significantly
higher crop type diversity as well as sowing period diversity in MS1
than in MS2 (crop type diversity: 2.9 types of crop in MS1 vs. 2.6
types of crop in MS2; sowing period diversity: 2.9 different sowing pe-
riods in MS1 vs 2.7 in MS2). Low pesticide doses on wheat were also
more frequent in MS1 (74% of pesticide applications on wheat) than
in MS2 (43% of pesticide applications). No significant difference ap-
peared between both profiles concerning N fertilisation on wheat, but
P fertilisation rates on wheat were higher in MS2 than in MS1
(25 kg P·ha−1 in MS2 vs. 12 kg P·ha−1 in MS1).

In PS4, we discriminated three profiles ofMS (Fig. 5d; Supplementa-
ry data Fig. S3, Supplementary data Table S4), with average wheat TFI
ranging from 2.3 (MS1, N = 41) to 5.4 (MS3, N = 31). In farms from
MS1, the proportions of straw cereal and oilseed rapewere significantly
lower than in farms from MS2 (straw cereal: 48% of cropped area and
53% respectively; oilseed rape: 8% of cropped area and 14% respective-
ly). In addition, the proportion of winter wheat appeared lower in
MS1 (34%) than in MS3 (41%). The proportion of maize was higher in
MS1 and MS2 than in MS3 (18–19% in MS1–MS2 vs. 3% in MS3).
Farms from MS3 were however more associated with high added
value crops such as potato, sugar beet, or field vegetables (e.g. potato:
19% in MS3 vs. 1% in MS1 and 0% in MS2). When focusing on wheat,
we highlighted significantly higher cultivar diversity in farms from
MS1 than inMS3 (respectively 2.4 varieties and 1.7 varieties). Although
wheat tolerance to lodging appeared higher in MS3 compared to MS1–
MS2 (lodging tolerance mark = 6.7 in MS3 vs 6.2 in MS1 and 6.3 in
MS2), average wheat disease resistance was higher in MS1–MS2 (aver-
age disease resistancemark=5 inMS1, 4.9 inMS2 and 4.7 inMS3). Pes-
ticidesweremore frequently applied at lowdoses onwheat inMS1 than
in MS2–MS3 (83% of pesticide applications in MS1 vs. 47% in MS2 and
55% in MS3). We detected higher N fertilisation inputs on wheat in
MS3 than in MS1 and MS2 (respectively 182, 154 and
169 kg N·ha−1). Although we found no significant difference between
MSs for tillage strategy before wheat, the proportion of farms resorting
to inversion tillage at least once over the crop sequence increased from
MS1 to MS3 (respectively 66%, 74%, 84%).

In PS5, we identified three profiles of MS (Fig. 5e; Supplementary
data Fig. S3, Supplementary data Table S4), with average wheat TFI
ranging from4.1 (MS1,N=49) to 7.7 (MS3,N=11). Although the pro-
portion of winter wheat was significantly higher in farms from MS1
than from MS2 and MS3 (respectively 40%, 37% and 30% of cropped

Unlabelled image


Fig. 5. Distribution of the wheat TFIs within the profiles of MS identified with CART in each category of PS (violin plots). a. PS1 b. PS2 c. PS3 d. PS4 e. PS5. Dashed lines or dots indicate the
median TFI.
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area), the proportion of straw cereal was lower in MS1 than inMS2 and
MS3 (respectively 52%, 59% and 70%). Winter barley wasmore cultivat-
ed inMS3 andMS2 than inMS1 (respectively 25%, 14% and 6%), and oil-
seed rape was also more represented in MS3 (27% of cropped area in
MS3 vs. 18% inMS2 and 15% inMS1). Summer crops represented on av-
erage 12% to 14% of cropped area in MS1–MS2, while they were absent
in MS3. Grain legumes accounted for 8% of cropped area in MS1, while
they represented only 1% in MS2–MS3. Crop type diversity and sowing
period diversity were significantly higher in farms fromMS1 than from
MS2 and MS3 (crop type diversity: 3.2 crop types in MS1 vs. 2 in MS2–
MS3; sowing period diversity: 3.2 different sowing periods in MS1 vs.
2.7 in MS2–MS3). Wheat cultivar diversity appeared higher in MS1
and MS2 than in MS3 (2 varieties in MS1, 1.7 in MS2 and 1 in MS3),
but wheat tolerance to lodging was higher in farms from MS3 (lodging
tolerancemark= 6.9 inMS3 vs. 6.4 inMS1 andMS2). Tillage frequency
computed either at the farm level or before wheat was higher in MS3
than in MS1 and MS2 (on average 3.5 tillage operations on wheat vs.
1.8 in MS1–MS2)·The frequency of tillage operations was higher in
MS3 than in other profiles of MS, whichwas particularly visible onwin-
terwheat (on average 3.5 tillage operations inMS3 vs. 1.8 inMS1–MS2).
However, the proportion of farmswith at least one inversion tillage over
the crop sequencewas substantially higher inMS1 andMS2 than inMS3
(respectively 71%, 65% and 27% of farms). N fertilisation on wheat was
Table 3
The variable ‘presence of livestock’ is the proportion of farms associated with livestock within th
resulting from the multiple rank comparisons.

Production
Situation

Average maize
TFI

Main Locations of farms Presence of
livestock

PS1 1.4 a North western France 100%

PS2 1.8 b Central and northern
France

100%

PS3 2.0 b Northern France 0%
PS4 2.7 c Southern France 41%
significantly higher in MS3 than in MS1 (respectively 190 kg N·ha−1

and 171 kg N·ha−1).

3.3. Analysing TFI on maize

3.3.1. First partitioning: Identification of production situations
Maize was cultivated in 613 out of 1012 farms from the demonstra-

tion farm network, with TFI = 1.9 on average on this crop. The Random
Forestmethod highlighted average annual temperature, average annual
PET, annual precipitations and the number of rainy days as themost dis-
criminating variables for pesticide reliance on maize. The access to out-
lets for high added value crops such as seed maize was also a
discriminative factor of TFI (Supplementary data Table S2).

We discriminated four categories of PSs with average TFI on maize
ranging from 1.4 to 2.7 (Table 3). Intermediate situations PS2 and PS3
were not significantly different on their average pesticide reliance
(Fig. 1; Supplementary data Fig. S3, Supplementary data Table S4). Her-
bicide TFI on maize was lower in PS1 than in other PSs (1.4 in PS1 vs.
1.6–1.7 in other PSs).

PS1 and PS2 only included mixed farms that were associated with
livestock, whereas PS3 encompassed only grain farms and PS4 a mix
of both (41% of crop-livestock farms). Yield potential tended to be
higher in PS3 (76% of sites with high yield potential) and PS4 (69%)
e PS. For average TFI, significant differences between PS are given with significance letters

Climate conditions Main crops

Low summer temperatures Straw cereals, maize,
grassland

Low summer temperatures and wet climate Straw cereals, maize,
grassland

Medium summer temperatures Straw cereals, maize
High summer temperatures and dry
climate

Maize, straw cereal

Image of Fig. 5


Fig. 6. Map of sites in the DEPHY network, coloured according to their PS category
identified with the recursive partitioning of maize TFI. ( : PS1; : PS2; : PS3; : PS4).
Counties (French ‘departments’) are delimited with the grey lines.
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comparedwith PS2 (53%) and PS1 (48%). Climatic variables discriminat-
ed PSs, that were therefore geographically distributed (Fig. 6). Summer
temperatures were higher in PS3 (16.3 °C) and PS4 (17.8 °C) as com-
pared with PS1 (15.9 °C) and PS2 (15.5 °C), and both annual solar radi-
ation and potential evapotranspirationwere higher in PS4 than in other
PSs. The number of dayswith average temperature exceeding 30 °Cwas
substantially higher in PS4 (15 days/year–1) than in PS1 (5 days/year–1),
PS2 (4 days/year–1) and PS3 (7 days/year–1). Total precipitations were
the highest in PS2 with 1033 mm per year on average. Although the
amount of precipitations was significantly higher in PS4 (862 mm)
than in PS3 (779 mm) and PS1 (782 mm), the distribution of precipita-
tions over the year wasmore uneven in PS4 (118 rainy days per year in
PS4 vs. 129 and 128 in PS1 and PS3 respectively), which was offset by a
higher frequency of irrigation (58% of farms including irrigation system
in PS4 vs. 19% in PS3, 3% in PS2 and 8% in PS1). The soil pH was signifi-
cantly lower in PS1 and PS2 (6.4 and 6.5 respectively vs. 7.1 in PS3 and
6.9 in PS4), but they displayed higher rates of soil organic matter (3.1%
in PS1 and 4% in PS2 vs. 2.9 and 2.4 in PS3 and PS4 respectively).

Winter crops were more represented in PS1, PS2 and PS3 than in
PS4, with higher proportions of straw cereals, particularly winter
wheat (respectively 31%, 26%, 34% and 19% of winter wheat in the
crop sequence on average) and winter barley in PS2 (11%). Oilseed
rape was also more cultivated in PS2 (7%) and PS3 (8%) than in PS4
(3%). Crop type diversity was significantly lower in PS4, with a higher
proportion of summer crops, with maize as a preponderant crop (53%
in PS4 while respectively 32%, 30% and 36% in PS1, PS2 and PS3), partic-
ularly seed maize (on average 6% of cropped area). Temporary grass-
lands were more cultivated in PS1 and PS2 (16% and 17% of cropped
area respectively vs. 0% in PS3 and 4% in PS4). The frequency of inver-
sion tillage was comparable between PSs (from 74% to 77% of farms
resorting to inversion tillage), except for PS2, where this frequency
was higher (88% of farms). The frequency of tillage operations before
maize was lower in PS2 (2.3 tillage operations.ha−1·year−1) than in
PS1 (2.8) and PS3 (3.0). In line with a high proportion of summer row
crops, the frequency of mechanical weeding at the farm level tended
to be higher in PS4, but when considering this frequency on maize,
this difference was no longer significant.
Pesticide spraying strategies were more frequently based on full
doses applications in PS4 (47% of total TFI) than in PS1 (29% of total
TFI), PS2 and PS3 being intermediate (39% and 37%, respectively).

At the farm level, averaged N fertilisation rates were significantly
higher in PS2 (176 kg N·ha−1) and PS4 (184 kg N·ha−1) than in PS1
(154 kg N·ha−1). On maize, averaged N fertilisation rates were higher
in PS2 (240 kg N·ha−1) and PS4 (213 kg N·ha−1) than in PS3
(184 kg N·ha−1). For K, fertilisation rates were higher in PS1 and PS2
than in PS3 and PS4 at the farm level (respectively 95 kg K·ha−1 and
101 kg K·ha−1 vs. 56 kg K·ha−1 and 71 kg K·ha−1). Organic fertilizers
represented an important part of N fertilisers applied in PS1 and PS2
(51% and 43% respectively vs. 17%–18% in PS3 and PS4).

3.3.2. Second partitioning: identification of profiles of MSs in each category
of production situation

Across the four categories of PS, we discriminated 15 profiles of MS
with contrasting levels of pesticide use on maize (Fig. 7). The Random
Forest method allowed to identify the main variables discriminating
maize TFIs (Supplementary data Table S2), namely the pesticide dose
reduction, the proportion of pre-emergence herbicide applications, the
proportion ofmaize and seedmaize in the crop sequence, the frequency
of mechanical weeding, tillage operations and inversion tillage, as well
as variables related to the fertilisation strategy, particularly the propor-
tion of organic fertilizers.

In PS1, we discriminated five profiles of MS (Fig. 7a; Supplementary
data Fig. S3, Supplementary data Table S4),with averagemaize TFI rang-
ing from 0.67 (MS1, N= 39) to 2 (MS5, N= 82). Farms from MS1 and
MS2 displayed a high frequency of low dose pesticide applications on
maize (on average 99–100% of pesticide applications) compared with
MS3–MS5 (between 18% and 44% of pesticide applications, see Supple-
mentary data Fig. S3). The frequency of mechanical weeding on maize
discriminated farms from MS1 and MS3 compared to MS2, MS4 and
MS5 (1.4 operations·ha−1 in MS1, 1.5 in MS3, between 0 and 0.2 in
MS2, MS4 and MS5). Groups of MSs did not contrast with each other
on the type of crops they cultivated, except a higher proportion of sum-
mer crops in MS3 (45% vs. from 26% to 32% in other MS), a higher pro-
portion of temporary grasslands in MS1 than in MS2 and MS4
(respectively 27%, 13% and 14%), and a lower proportion of maize in
MS1 (25% vs. from 32% to 38% in other profiles of MS). Fertilisation
rates on maize tended to be higher in MS4 than in other MSs (e.g. for
N fertilisation, 238 kg N·ha−1 in MS4 vs. from 170 to 197 in MS1–
MS3). Inversion tillage before maize was less frequent in MS2 than in
MS1, MS3 and MS5 (on average 0.45 inversion tillage
operations·year−1 in MS2 vs. between 0.67 and 0.75 in MS1, MS3 and
MS5). At the farm level, tillage operations were more frequent in MS3
than in other profiles of MS, except MS5 (2.3 operations per year in
MS3 vs. 1.8 in MS1, MS2 and MS4).

Two profiles of MS were identified in PS2 (Fig. 7b; Supplementary
data Fig. S3, Supplementary data Table S4), MS1 (N = 63, average
maize TFI=1.5) andMS2 (N=49, averagemaize TFI=2.2). Compared
to farms from MS2, farms from MS1 were characterised by lower pro-
portions of grassland (10% in MS1 and 26% in MS2), higher proportions
of straw cereals, particularly winter wheat (30% in MS1 and 21% in
MS2), and higher proportions of oilseed rape (10% in MS1 and 4% in
MS2). Pesticide application strategies on maize were more frequently
based on low doses in MS1 than in MS2 (respectively 73% and 27% of
pesticide applications), along with a lower occurrence of pre-
emergence herbicides on maize (34% of herbicide applications in MS1,
47% in MS2). The frequency of tillage operations was significantly
higher in MS1 (1.8 operations/year–1) than in MS2 (1.5), with a high
proportion of farms with at least one inversion tillage operation during
the crop rotation in both cases (89% of farms with inversion tillage in
MS1, and 86% in MS2).

In PS3, we identified three profiles of MS (Fig. 7c; Supplementary
data Fig. S3, Supplementary data Table S4),with averagemaize TFI rang-
ing from 1.5 (MS1, N = 59) to 3.1 (MS3, N = 25). Compared to farms
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Fig. 7.Distribution of themaize TFIs within the profiles of MS identifiedwith CART in each category of PS (violin plots). a. PS1 b. PS2 c. PS3 d. PS4. Dashed lines or dots indicate themedian
TFI.
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from MS1 and MS2, farms from MS3 displayed higher proportions of
summer crops, particularly maize (62% vs. 28% in MS1 and MS2),
lower proportions of straw cereals (27% vs. 47–49% in MS1 and MS2),
and more particularly winter wheat (22% in MS3, 36% in MS1 and 41%
in MS2), lower proportions of grain legumes (0% in MS3 vs. 5–6% in
MS1–MS2). Crop type diversity and sowing period diversity were also
lower in MS3 than in MS1 and MS2 (crop type diversity: 2.1 different
types of crop in MS3, 2.8 in MS1 and 2.9 in MS2; sowing period diversi-
ty: 2.2 different sowing periods inMS3, 3.1 inMS1 and 3.2 inMS2). Low
doses of pesticide applications on maize were more frequent in farms
from MS1 than in other profiles of MS (77% of pesticide applications in
MS1, 39% in MS2, 28% in MS3). Organic fertilisation was frequent in
MS1 andMS2 (20% of total N fertilisation inMS1, 27% inMS2 and no or-
ganic fertilisation in MS3). Irrigation on maize was higher in MS3 than
in MS1 and MS2 (on average 56 mm in MS3, 17 mm in MS1 and
9 mm in MS2). Although inversion tillage before maize was less fre-
quent in MS2 than in MS3, the proportion of farms with at least one in-
version tillage during the crop rotation was actually higher in MS2
(91%) than in MS3 (84%) and MS1 (69%).

In PS4, we discriminated five profiles of MS (Fig. 7d; Supplementary
data Fig. S3, Supplementary data Table S4),with averagemaize TFI rang-
ing from1.6 (MS1,N=40) to 7.1 (MS5,N=5).MS4 andMS5displayed
high proportions of seed maize (Supplementary data Fig. S3) as com-
pared to other profiles of MS (37% in MS4, 64% in MS5, and close to 0%
in MS1–MS3). In addition, mechanical weeding and tillage operation
frequency on maize were higher in MS4–MS5 than in MS1–MS3 (me-
chanical weeding: on average 1 operation·year−1 in MS4, 0.9 in MS5,
and between 0.3 and 0.4 in MS1–MS3; tillage frequency:
3.4 operations·year−1 in MS4, 5.1 in MS5, and between 2.0 and 2.4 in
MS1–MS3). Irrigation on maize was also higher in MS4–MS5, with on
average 221 mm in MS4, 301 mm in MS5, vs. from 66 mm to 101 mm
in MS1–MS3. Grain legumes were more represented in MS4 (4% of
cropped area) than inMS5 (0%). The frequency of pesticide applications
with low doses on maize decreased fromMS1 to MS3 (70% of pesticide
applications on maize in MS1, 34% in MS2, 23% in MS3). Compared to
other profiles of MS, the proportion of farms with inversion tillage
was lower in MS1 (55% of farms with inversion tillage) than in other
profiles (from76% of farmswith inversion tillage inMS3 to 89% inMS4).

4. Discussion

Our analysis of the great diversity of farms in the DEPHY network
showed that low levels of pesticide use were relatedwith combinations
of management options, that we called management strategies. This is
consistent with a previous study showing that a significant part of pes-
ticide use variability was explained by crop management (Bürger et al.,
2012).We validated our first hypothesis, aswe found thatMSs associat-
edwith low pesticide use actually varied as a function of the agricultural
context, thatwe could classified in a range of PS categories. As an exam-
ple in the case of TFI analysis at the farm level in the context of farms
with livestock in the warm central-southern regions (PS1), MSs from
the profile with the lowest pesticide use (MS1, 59% lower pesticide
use than MS2) resulted from the combination of high proportions of
grasslands, a high diversity in crop types and sowing periods, low
rates of N fertilisation, occasional inversion tillage and a low frequency
of tillage operations, both in linewith themultiannual nature of tempo-
rary grassland. Conversely in the context of farms widely cultivating
maize in warm regions from central and southern France (PS4), MSs
from the profilewith the lowest pesticide use (MS1, 30% lower pesticide
use thanMS3) resulted from the combination of poorly diversified crop
sequences, but a high resort to soil tillage operations such as inversion
tillage, shallow tillage, or mechanical weeding. Table 4 presents the
main management details of two farms from these contrasting profiles
of strategy.

We also validated our second hypothesis: we found that, within a
given category of PS, not one but several profiles of MSmay be associat-
ed with a low pesticide use. For instance, the case of maize in farms as-
sociated with livestock in western France was illustrative (PS1). Two
profiles of MS associated with more than 20% lower pesticide use than
the mean TFI in the PS were identified (MS1 and MS3, Supplementary
data Fig. S3). Both were associated with a significantly higher resort to
mechanical weeding, but the first one (MS1) was associated with a

Image of Fig. 7


Table 4
Management details of two contrasting farms, both with low pesticide use.
PS1: Context of farms with livestock in the warm regions from central-southern France.
PS4: Context of farmswidely cultivatingmaize inwarm regions from central and southern
France.
Crop type diversity measures the number of crop types (over 6 crop types) that are each
cultivated onmore than 10% of cropped area. Sowing period diversity measures the num-
ber of sowing periods for crops (over 5 sowing periods) that each represented on more
than 10% of cropped area.

Production situation PS1 PS4

Management strategy MS1 MS1
Location Central eastern France South-western

France
TFI 0.8 2.0
Herbicide TFI 0.6 1.5
Biocontrol TFI 0.3 0.0
Crop sequence Silage maize-winter

wheat-alfalfa (3 years)-silage
maize

Grain maize
(monoculture)

Length of the crop
sequence (years)

6 1

Crop type diversity 3 1
Sowing period diversity 3 1
Tillage strategy Frequent inversion tillage

(0.5 b frequency b 1)
Annual inversion
tillage (frequency =
1)

Mechanical weeding
(Annual frequency)

0 1

Reduced dose (Proportion
of pesticide applications)

77 32

Nitrogen inputs (kg
N·ha−1)

120 153

Irrigation (mm) 0 160
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higher frequency of reduced dose, a lower proportion of summer crops,
particularly maize, and a lower frequency of tillage operations than the
second strategy (MS3).

These results suggest that reducing pesticide use and associated en-
vironmental impacts would probably rely on various solutions,
reflecting the diversity in production situations to which management
strategies must be adapted. However, despite the great diversity of
strategies associated with reduced reliance on pesticide, some factors
and management options were identified as recurrent factors related
to pesticide use, factors that should be further considered when ad-
dressing the issue of the reduction of pesticide use. The potential ex-
planatory power of these factors on pesticide use will be discussed in
the following sections.

4.1. Climate and soil

Climate and soil variables appeared as key factors discriminating PSs
based on pesticide use. For TFI analysed at farm level and on winter
wheat, warmer climates were associated with PSs showing lower aver-
age pesticide use, whereas we found the opposite trend on maize. The
direct influence of climate on pest pressure was already studied
(Rotem, 2012), andmay explain a part of TFI variabilitywe observed be-
tween wheat PSs (e.g. some wheat diseases are favoured by mild and
humid climates). Pesticide use could also be directly influenced by soil
characteristics (soil type, available water capacity, pH, organic matter
content), which varied from a PS category to another (Garbeva et al.,
2004). In addition of having a direct effect on pest pressure, pedo-
climatic factors also determine the type of crops that are grown and af-
fect therefore indirectly the level of pesticide use, some crops being typ-
ically highly reliant on pesticides while other, in particular more rustic
crops, are easily grown with lower amounts of pesticides.

4.2. Mixed farming, a major discriminative factor of pesticide reliance

We highlighted that farms with livestock were less reliant on pesti-
cide than others. The presence of livestock provides extra outlets for
forage crops, and farms mixing crops and livestock have thus more op-
portunities to diversify crop sequenceswith forage crops (including for-
age maize, temporary grasslands, triticale and other ‘rustic’ cereals).
Forage crops usually require little amounts of pesticides (Clark, 2004;
Lemaire et al., 2014; see also Supplementary data Fig. S5), and might
have other agronomical value, such as contributing to weed control at
the cropping system level (Meiss et al., 2010).

Our results hence support the potential role of mixed farming and
livestock in a re-greening agriculture (Janzen, 2011; Asai et al., 2014),
and we encourage further debate around (i) the energy efficiency and
land use efficiency associated with livestock breeding (Pimentel and
Pimentel, 2003; Smith et al., 2010; Wilkinson, 2011), and (ii) the com-
plementarity between crop cultivation and livestock in mixed crop-
livestock systems as a way to increase farm robustness (Herrero et al.,
2010).

4.3. Crop sequence

Over most MSs, we found that the type of crop cultivated was a
strong discriminative factor of pesticide reliance. Of course, high pro-
portions of crops typically associated with low TFIs, such as temporary
grasslands (most often in connection with local livestock, see the dis-
cussion above), maize and sunflower (Supplementary data Fig. S5),
were associatedwith the least pesticide-reliant profiles ofMSs,whereas
oilseed rape, sugar beet, potato and field vegetablesweremore frequent
in profiles ofMSswith the highest pesticide reliance. Pesticide use at the
farm level is consequently directly influenced by the proportion of crops
with low vs. high intrinsic pesticide reliance. This direct effect of the
crop sequence composition on farmTFI is very strong andpartlymasked
the effects of the crop sequence on pest pressure in each crop, although
it might influence the need for pesticide applications. This is precisely
the reasonwhy, after identifying themainmajor effects ofmanagement
strategies on TFI computed at the farm level, we refined the analysis by
performing recursive partitioning of TFI computed for the two major
crops separately (wheat and maize), using both variables describing
thewheat andmaizemanagement and variables describing the strategy
at the farm level. Those supplementary analyses succeeded in identify-
ing more precise combinations of management options associated
with low vs. high pesticide use in wheat or maize. Interestingly, these
identified strategies combined aspects of wheat/maize management
and aspects of cropping system management, reflecting the
multiannual and cumulative effects of crop sequence and management
on pest pressure (see the discussion thereafter).

In winter wheat, fungicide and herbicide applications represented
respectively 39% and 43% of total wheat TFI. MSs with low pesticide re-
liance were frequently associated with (i) high proportions of tempo-
rary grasslands and/or summer crops (such as maize), (ii) low
proportions of winter crops and straw cereals, (iii) a high diversity in
crop types and/or sowing periods. These characteristics are all related
to a higher disruption of pest biological cycle. In situationswithmild cli-
mate in central western France (PS2), farms from MS1 displayed the
lowest pesticide use and also the highest proportion of temporary grass-
land. In this PS, the proportion of temporary grassland in the crop se-
quence appeared indeed negatively correlated to wheat total TFI,
herbicide and fungicide TFI, suggesting the potential of this multiannual
crop for an improved control of pathogens and weeds in winter wheat.
On maize, contrary to wheat, the diversification of the crop sequence
was not as frequently related to pesticide use. The situations without
livestock from northern France (PS3) were the only category of PS
where a higher crop type and sowing period diversity discriminated
strategies with low pesticide use. Even more illustrative in situations
with livestock from central northern France (PS2), a relatively high pro-
portion of temporary grassland was associated with the most pesticide
reliant profile of MS.

Our study therefore suggests that the strategy of diversifying crops
to reduce pesticide use might have contrasting efficiency as a function
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of the PS and farm characteristics. Nevertheless, beyond these restric-
tive comments, we also showed that crop diversificationwas frequently
associatedwith farms displaying lowpesticide use, andmay constitute a
promising lever to further reduce pesticide reliance over many situa-
tions. The necessity of relocating agricultural productions to increase
farm and regional biodiversity is today considered as a critical step for
the agroecological transition (Duru et al., 2015). Since the 50s, the pro-
gressive regional specialization was probably the source of an increase
in the production efficiency of farms in line with possible economies
of scale (e.g. collection and storage of harvested crops) or technical sim-
plifications. Conversely, this specialization entailed the geographical
concentration of certain crops (Dessaint et al., 2014), sometime
known as highly pesticide-reliant, as it is already observed in France
for sugar beet or potato, consequently increasing pesticide pressure on
a narrow cropping area. In addition, by reducing crop diversity and
the frequency of the same crop, it boosted a unique selective pressure
on pests, hence an increase in potential damages on crops caused by
pest and a more frequent need for curative measures such as pesticide
for controlling pests. Distributing more evenly the commercial crops
would not only (i) contribute to the reduction of pesticide reliance
(see also Lechenet et al., 2014), but moreover (ii) increase farm robust-
ness for productivity and profitability (Davis et al., 2012). However, it
would also make farm management and supply chains organisation
more complex compared with the current situation, a critical point al-
ready source of lock-in hampering the crop diversification process
(Meynard et al., 2013).

4.4. Soil tillage

Inversion tillage is often reported in the literature to affect weeds
and pathogens dynamics by deep burial of weed seeds (Ball, 1992;
Cardina et al., 2002) and crop residues (Bockus and Shroyer, 1998) re-
spectively. In our study, we showed that the relation between tillage
strategy and pesticide use depended on the PS, and may be positively
or negatively related to the level of pesticide use fromone context to an-
other. For example in the analysis of TFI at the farm level, we found that
lowpesticide reliant strategiesweremore associatedwith inversion till-
age than otherMSs inmixed farmswith livestock inwestern and south-
ern France (PS1 and PS2), whereas the opposite was highlighted in
farms of northern France without livestock but producing industrial
crops with high added value (PS6). However, both in PS1 and PS6, we
found, among farms with inversion tillage, a higher proportion of
farms with occasional inversion tillage in low pesticide reliant MSs. In
addition, we highlighted that MS with low pesticide use in wheat in
southern France (PS1 and PS2) were associated with a higher propor-
tion of farms including inversion tillage at least once over the crop rota-
tion, although no significant difference appeared between MS on the
frequency of inversion tillage just before winter wheat. This result un-
derlines the necessity to consider the effects of inversion tillage at the
cropping system level rather than at the single crop management
level. The interactions between the crop sequence and the frequency
of ploughing at the cropping system level has been addressed previous-
ly for weed management, and it might be useful to make use of such
synergies when designing strategies able to reduce the germinating po-
tential of the weed seed bank (Munier-Jolain et al., 2005).

4.5. Low doses for pesticide applications

Reduced doses for pesticide applications were often part of strate-
gies associated with low pesticide use. In winter wheat in central-
northern France (PS3 and PS4), pesticide applications at lowdose repre-
sented more than 70% of total pesticide applications in the two profiles
of MS with the lowest pesticide use. In maize in western France (PS1),
all pesticide applications were performed at reduced dose in the profile
of MS with the lowest level of pesticide use on maize, along with a high
frequency of mechanical weeding. The complementarity between low
application doses of herbicide and mechanical weeding was already re-
ported as an efficient strategy forweed control inmaize, with a decrease
in herbicide use that may reach 75% compared with a fully herbicide
based system (Mulder and Doll, 1993). Herbicide dose reduction is
still often reported as increasing the risk of rapid evolution of weed re-
sistance, therefore questioning the sustainability of this strategy. This
issue was particularly addressed in recent studies, highlighting a higher
risk to select phenotypic resistance at low herbicide use rates, due to
non-target-site mechanism (Neve and Powles, 2005). However, to our
knowledge, little is known about the risk for selecting resistance when
low doses are consistently associated with various other management
measures for pest and weed perturbation, as implemented by numer-
ous farmers fromour network, and also already suggested for the design
of innovative IPM strategies (Barzman et al., 2015). Further studies are
needed to investigate the efficacy of long term pest control when low
doses of pesticides are applied in combination with diversified crop se-
quence as well as a range of prophylactic and curativemeasures for pest
control that are alternative to pesticide use.

4.6. Additional discriminative factors of pesticide use identified in particular
PSs

Over the range of situations in our network, other technical aspects
discriminated punctually MSs with low pesticide use. In maize of west-
ern France (PS1), mechanical weeding was a major feature of strategies
with the lowest pesticide use. In this PS, the correlation was strongly
negative between herbicide TFI onmaize and the frequency of mechan-
ical weeding operations. Conversely, in maize of southern France, me-
chanical weeding was mostly associated with MSs displaying the
highest pesticide use and the highest proportion of seed maize, and no
correlation appeared between herbicide TFI on maize and mechanical
weeding. Such a discrepancy of results confirmed the necessity to dis-
tinguish PSs and to analyse each technique as part of a strategical com-
bination of technical options.

In wheat, the cultivar disease resistance emerged, in certain PSs, as a
factor related to the level of pesticide reliance. In northern France, fun-
gicide use was negatively correlated with the disease resistance mark
of cultivars (PS4), and wheat cultivar diversity also appeared higher in
systemswith low pesticide use (PS4 and PS5). Increasing cultivar diver-
sity was already reported as contributing to the dilution of selection
pressure on pathogens (Hajjar et al., 2008) as well as a promising way
to improve weed control (Pakeman et al., 2015).

4.7. Residual variability in pesticide reliance

The iterative regression trees defining PSs and MSs accounted for
73%, 36% and 63% of the total variability in farm TFI, wheat TFI and
maize TFI respectively, showing that a significant share of pesticide
use remained uncaught by our models. It suggested that explanatory
variables we used did not describe all the differences in PSs and MSs
with enough accuracy. In particular, we lacked additional socio-
economic data to better characterise the constraints and opportunities
defined by the PS. For instance, the proximity of the farm to advisory
services would provide interesting information on the possibility for a
farmer to benefit from management advice. Further information about
farm characteristics (e.g. available workforce) may also contribute to
explain further differences in pesticide use level. Concerning MSs, pre-
cise data on the farmer's decision-making would be very helpful to get
a more accurate description of the farmer strategy. For instance, some
farmersmight accept a number of weeds or a fewminor pest symptoms
supposed to have negligible economic impacts, while others target
weed-free fields and the best possible crop health status. This variability
in decision-makers' perception facing a similar situation is known to be
a significant driver of the variability observed in crop protection strate-
gies, which may affect directly the level of pesticide use (Norton, 1976;
Mumford, 1981). However, data characterising decision are often
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subjective and then hard to be collected or described rigorously at the
scale of such a large farm network. We currently work on a new infor-
mation system able to collect data on decisional aspects in each farm
from the network. This would improve the characterisation of pest con-
trol objectives in line with risk aversion, and would make it possible to
quantify the relative weight of tactical decision making for pesticide
treatments on the level of pesticide use, as compared to prophylactic
strategical measures for pest management.

4.8. Conclusion and outlook

In this study, we benefited from a unique dataset collected at the
scale of the national territory, covering a wide diversity of production
situations and offering a large sample of farms with contrasting man-
agement strategies. Using partitioning methods, we first identified sev-
eral types of production situation associated with a first level of
variability in pesticide use. Using once again partitioning methods, we
secondly identified, in each production situation, various profiles of
managements strategies associated with low vs. high pesticide use, i.e.
explaining a second level of variability in pesticide use. We showed
that MSs with low pesticide use were different from a production situ-
ation to another, confirming the importance to consider the production
context when addressing the question of drivers to reduce pesticide re-
liance. In a given production situation, we found that several profiles of
management strategies displayed low levels of pesticide use, suggesting
that there is not only one but several ways to be low reliant on pesti-
cides. Although we highlighted the diversity of strategical options as a
function of the situation, some management measures, such as the
crop diversification, the soil tillage strategy and the pesticide dose re-
duction appeared as rather transverse discriminative factors, i.e., they
were associated with low pesticide use across diverse situations. Me-
chanical weeding, wheat cultivar and sowing date were conversely
more punctual discriminative factors as they contributed to discrimi-
nate strategies with high vs. low TFI in only one or two of our categories
of production situation. The analysis of TFI variability could still be re-
fined by collecting additional variables to better characterise factors
from production situation and management strategy, in particular by
getting information on farmer's decision-making.

The objective of this paper was not to provide ready-made recipes
for pesticide reduction fitting each situation, but we hope we provided
a generic overview of the main combinations of factors associated
with low vs. high pesticide use. As compared to previous IPM experi-
ments, this study (i) considers management strategies that are surely
adoptable by the farmers in the real life (as they were indeed observed
in the real life), (ii) considers the diversity of management strategies
that are possible within the IPM paradigm, and (iii) considers the diver-
sity of production contexts that might influence the management strat-
egies. This work may be useful for policy makers to help them to adapt
local regulations and incentives targeting the development of IPM and
the reduction of pesticide use, taking into account the specificities of
the local agricultural context. For instance, policies supporting crop di-
versification might be crucial in some areas specialised in cereals and
oilseed rape production, while the promotion of mechanical weeding
appears a major lever in areas where maize is the main crop.

This study identified management strategies with limited reliance
on pesticide. The further important question to address is the question
of the economic and environmental performances of these cropping
systems with low pesticide use. Do they tend to show lower vs. higher
economic profitability than systems with high pesticide reliance? Do
they tend to have lower vs. higher energy efficiency? Do they tend to re-
duce the pollution by pesticide residues and the associated toxicity as
expected? Do they require a higher workload at the farm level? Do
the relationships between TFI and the various components of agricul-
tural sustainability vary as a function of the production context? Those
questions will be addressed in a suite of articles based on the same net-
work of demonstration farms.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.agsy.2016.08.005.
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