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Empirical mode decomposition (EMD) is an algorithm to split composite signals into narrow subbands
termed intrinsic mode functions (IMFs) to obtain a meaningful instantaneous frequency. However,
numerical experiments are still the dominant approach adopted to investigate the EMD algorithm. In this
paper, the concrete form of IMFs is first discussed. Two simple criteria do not need to count the number
of extrema and zero-crossings which are used to define IMFs are presented to identify IMFs. These
criteria show that narrow-band signals with non-zero extrema, frequency modulation (FM) signals,
and monocomponent signals are all IMFs. The EMD resolution is then analyzed from the digital signal
processing perspective. Based on B-spline interpolation, the filtering characteristics of iterative
B-spline filters developed to describe IMFs are analyzed. For the first time, a theoretical proof is
presented to demonstrate that the EMD method cannot obtain narrow-band IMFs. Nevertheless, a
theoretical proof is given to show that the frequency resolution of EMD can be improved in some extent
with more sifting iterations.

� 2016 Elsevier GmbH. All rights reserved.
1. Introduction

In order to obtain a meaningful instantaneous frequency,
empirical mode decomposition (EMD) introduced by Huang
et al. [1] is designed as an adaptive method to decompose com-
posite signals into narrow subbands. Each subband signal is called
an intrinsic mode function (IMF) which represents the oscillation
modes imbedded in the data. IMFs need satisfy two conditions
[1]: (1) In the whole dataset, the number of extrema and the
number of zero-crossings must either equal or differ at most by
one, (2) at any point, the mean value of the upper envelope
defined by the local maxima and the lower envelope defined by
the local minima is zero. A function that only satisfies the condi-
tion (1) is called a weak-IMF [2]. IMF based on the local charac-
teristic time scale of signals is the main conceptual innovation
for the EMD method.

It is clear from the definition that an IMF can be monocompo-
nent signals or narrow-band signals. If different time scale oscilla-
tions are considered as different modes, a composite signal
involves more than one oscillatory mode. Separating the different
modes into different IMFs is the inherent demand of EMD. It is
pointed out in [3] that the instantaneous frequency has meaning
only for monocomponent signals, where there is only one
frequency or a narrow range of frequencies varying as a function
of time. Whether the instantaneous frequency of an IMF extracted
by EMD has meaning or not largely depends on the frequency
resolution of the EMD method.

As far as the frequency resolution is concerned, EMD cannot
separate the components whose frequencies lie within the same
octave [4]. Specifically, it has shown that EMD acts as a dyadic filter
bank by the numerical experiments with white noise [5] and frac-
tional Gaussian noise [6]. Based on numerical experiments and
theoretical analysis on a composite two-tones signal from Fourier
domain, Rilling et al. [7] pointed out that the resolution properties
of the EMD method is determined by the relationship of amplitude
and frequency between different components of signals. Fortu-
nately, the frequency resolution capabilities of EMD can be
improved by the masking signal technique [8,9].

Although the EMD method has attracted much attention for its
ability of dealing with nonstationary signals, it is still a method
based on experience. Numerical experiments are the main ways
to investigate the EMD method. There are some problems such
as the criterion for judging IMFs need to be resolved for the EMD
method. It is pointed out in [10] that the condition (1) involved
in definition of IMFs is redundant for some functions, though it
does not provide convincing evidences. Moreover, counting the
number of zero-crossings of signals will increase the complexity
of the EMD algorithm, let alone it is difficult to perform. Hence,
it is not the practical method to judge IMFs from the definition.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeue.2016.06.008&domain=pdf
http://dx.doi.org/10.1016/j.aeue.2016.06.008
mailto:yyl070805@163.com
http://dx.doi.org/10.1016/j.aeue.2016.06.008
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue


1236 Y. Yanli, D. Jiahao / Int. J. Electron. Commun. (AEÜ) 70 (2016) 1235–1240
It is obvious that splines are critical to the EMD method though
some improved EMD methods do not use spline interpolation such
as the optimization based EMD proposed by Huang et al. [11].
Although the cubic spline interpolation is adopted by Huang
et al. [1], it is pointed out in [12] that any polynomial spline can
be constructed from a weighted sum of shifted B-splines. From
the digital signal processing point of view, the extrema-based
EMD sifting process can be regarded as a process of extrema sam-
pling and signal reconstruction [13,14]. Our previous work [15],
based on cubic B-spline interpolations, has shown that the process
of forming the upper and lower envelopes of signals involves three
steps: extrema sampling, interpolation, and filtering by a cubic
B-spline filter. Furthermore, a general analytical expression of IMFs
extracted by EMD from signals is presented in [15,16]. In this
paper, we aim to provide criteria by which to judge IMFs and
further analyze the frequency resolution of EMD from the signal
processing perspective.
2. The EMD sifting process

As a data-driven method, the EMD algorithm does not have pre-
determined basis functions. An iteration procedure termed sifting
is adopted by EMD to extract IMFs. After decomposed by the
EMD algorithm, the signal xðnÞ can be expressed as [1]

xðnÞ ¼
Xn

i¼1

ciðnÞ þ rðnÞ ð1Þ

where ciðnÞ denotes an IMF component, and rðnÞ can be either a
monotonic trend or a constant. The process of extracting an IMF
by the EMD algorithm can be summarized as follows [1].

A1. Identify all the local extrema of the signal xðnÞ.
A2. Interpolate between maxima by a spline to form the upper

envelope euilðnÞ. Correspondingly, interpolate between min-
ima by a spline to form the lower envelope edilðnÞ.

A3. Calculate the mean of the upper and lower envelopes
milðnÞ ¼ ðeuilðnÞ þ edilðnÞÞ=2.

A4. Compute hilðnÞ ¼ xðnÞ �milðnÞ.
A5. Repeat the above steps until hilðnÞ is an IMF, then set

ciðnÞ ¼ hilðnÞ.
A6. Calculate the residue riðnÞ ¼ xðnÞ �P

iciðnÞ. Iterate on riðnÞ
to obtain the next IMF.

The first four steps of the EMD algorithm are known as one
times sifting. Generally speaking, more than one time sifting itera-
tions are needed to extract an IMF. The sifting serves two purposes
[1]: to eliminate riding waves, and to make the wave-profiles more
symmetric. In order to obtain an IMF, many times sifting iterations
sometimes need to be performed. However, too much sifting iter-
ations could make the resulting IMF becomes a pure frequency
modulated signal of constant amplitude [1]. Hence, a stopping
criterion is needed to limit the sifting times.

The first criterion which is a Cauchy-like criterion is proposed
by Huang et al. [1], but it is unrelated to the definition of IMF
[17]. Some other methods such as the bandwidth criterion [18],
the 3-threshold criterion [19], the energy difference tracking
method [20], and partial differential equations based approach
[21] are also designed as the stopping criterion. However, there
is not a method which is accepted as a popular stopping criterion
leading to high efficiency of the EMD algorithm.
3. The concrete form of IMFs

In this section, we provide two simple criteria to identify IMFs
by using the original definition of IMFs given by Huang et al. in
[1]. These criteria do not need to count the number of extrema
and zero-crossings which are used to define IMFs. Here, we con-
sider the continuous functions.

Proposition 1. For a continuous function xðtÞ, if the condition (2)
in IMFs definition is satisfied and the upper envelope euðtÞ > 0
holds, then xðtÞ is an IMF.
Proof. The condition (2) in definition IMFs can be expressed as

euðtÞ þ edðtÞ ¼ 0: ð2Þ
For the continuous function xðtÞ, there exists a local minimum
between two consecutive local maxima and a local maximum
between two adjacent local minima [22]. Then, we consider two
consecutive extrema, one maximum xðtaÞ and one minimum xðtbÞ,
and suppose that ta < tb. The upper (resp. lower) envelope is con-
structed by interpolating between two adjacent local maxima (resp.
minima) using a cubic spline in the original EMD algorithm [1].
Thus, we have

euðtaÞ ¼ xðtaÞ;
edðtbÞ ¼ xðtbÞ:

�
ð3Þ

Combining with (2), we obtain

xðtaÞ � xðtbÞ ¼ euðtaÞ � edðtbÞ
¼ �euðtaÞ � euðtbÞ < 0:

ð4Þ

Eq. (4) implies that xðtÞ at least has one zero-crossing in the interval
½ta; tb�.

With no loss of generality, we suppose that xðtÞ has two zero-
crossings in the interval ½ta; tb�, and let

xðtiÞ ¼ 0; i ¼ 1;2; ð5Þ
where ta < t1 < t2 < tb. We can be sure that xðtÞ � 0 for any
t 2 ½t1; t2�. Otherwise, xðtÞ will at least have one local extremum in
½t1; t2�, which is a contradiction. If we consider xðtÞ ¼ 0 in the inter-
val ½t1; t2� as one zero-crossing, then we can say that xðtÞ only has
one zero-crossing in ½ta; tb� .

Based on the above analysis, we can conclude that there is only
one zero-crossing between any two consecutive extrema if (2) and
euðtÞ > 0 hold. With this result in hand, we can immediately get
that each extremum except the last one is followed by a zero-
crossing. Then, it is easy to know that the condition (1) is also
satisfied. Hence, Proposition 1 is proved. h
Proposition 2. For a continuous function xðtÞ, if the condition (2)
in IMFs definition is satisfied and the value of no local extrema
of xðtÞ is equal to zero, then xðtÞ is an IMF.
Proof. It is obvious that euðtÞ P edðtÞ. If the condition (2) in IMFs
definition is satisfied, we then get

euðtÞ P 0;
edðtÞ 6 0

�
ð6Þ

For two consecutive extrema, one maximum xðtaÞ–0 and one min-
imum xðtbÞ–0, we have

xðtaÞ ¼ euðtaÞ > 0;
xðtbÞ ¼ edðtbÞ < 0:

�
ð7Þ

Similar to the analysis in the proof of Proposition 1, we can con-
clude that the condition (1) in IMFs definition is also fulfilled. There-
fore, Proposition 2 is established. h

The above two criteria show that the condition (2) in IMFs def-
inition is critical to IMFs. Only the condition (1) in IMFs definition
is not enough to define an IMF. A weak-IMF can have dissymmetric



0 1 2 3 4 5 6 7 8 9 10

-100

-50

0

50

100

150

t/s

M
ag

ni
tu

de

maximum minimum source singal the mean of envelopes

Fig. 1. Illustration a weak-IMF is not an IMF.
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upper and lower envelopes. An example shown in Fig. 1 demon-
strates that the signal is a weak-IMF but it is not an IMF. Therefore,
the aggregate of weak-IMFs is bigger than that of IMFs.

For a narrow-band signal xðtÞ, we can construct the analytic
signal

sðtÞ ¼ xðtÞ þ jx̂ðtÞ ¼ jsðtÞjej/ðtÞ ð8Þ
where x̂ðtÞ denotes the Hilbert transform of the xðtÞ and
/ðtÞ ¼ arctanðx̂ðtÞ=xðtÞÞ. Then the upper envelope of xðtÞ can be
expressed as

euðtÞ ¼ jsðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ x̂2ðtÞ

q
: ð9Þ

The lower envelope can be written as [10]

edðtÞ ¼ �jsðtÞj: ð10Þ
By Proposition 2, we can conclude that a narrow-band signal

with non-zero extrema is an IMF. In addition, by applying Proposi-
tion 1, we obtain that monocomponent signals with constant
amplitude and frequency modulation (FM) signals are also IMFs.
Does EMD can obtain narrow-band IMFs? The answer is presented
in next section.

4. Analysis on the EMD resolution

In order to analyze the EMD algorithm from the digital signal
processing perspective, we consider digital signals. We first
describe IMFs by using a finite order B-spline. Then, we discuss
the frequency characteristics of iterative B-spline filters designed
to express IMFs. Based on the expression of IMFs, we analyze the
frequency resolution of the EMD method from theoretical points
of view. It is worthy to mention that these analyses are under
the uniform assumption on the extrema.

4.1. Model for IMFs based on finite order B-splines

According to the EMD method, we can get

ciðnÞ ¼ ri�1ðnÞ �
X
l

milðnÞ: ð11Þ

Moreover, we can know that milðnÞ represents the mean of the
envelope of hi;l�1ðnÞ if let hi;0ðnÞ ¼ ri�1ðnÞ. Let CiðejxÞ and RiðejxÞ be
the Fourier transform of ciðnÞ and riðnÞ, respectively. Then, a general
analytical expression of IMFs based on B-spline interpolation can be
written as [15]

CiðejxÞ ¼ Ri�1ðejxÞQL
kpðejxÞ �

XL

l¼1

Ha
i;lðejxÞ~QL�l

kp ðejxÞ ð12Þ
where k denotes the order of B-spline, p represents the extrema
decimation factor and ha

i;lðnÞ represents the images of hi;lðnÞ. In

(12), Ql
kpðejxÞ denotes the frequency response of the iterative

B-spline filter ql
kpðnÞ, and ~Ql

kpðejxÞ denotes the frequency response

of the anti-noise B-spline filter ~ql
kpðnÞ.

The expression of Ql
kpðejxÞ is written as

Ql
kpðejxÞ ¼ ½1� �Gk

pðejxÞ�
l ð13Þ

where �Gk
pðejxÞ denotes frequency response of the B-spline filter

�gk
pðnÞ. The expression of ~Ql

kpðejxÞ is written as

~Ql
kpðejxÞ ¼ Ql

kpðejxÞ�Gk
pðejxÞ: ð14Þ

For cubic B-spline interpolation, i.e., k ¼ 3, the expression of
�g3
pðnÞ is presented in [15]. Here, the expression of B-spline

filters for general B-spline interpolation is derived briefly as
follows.

Let bkðtÞ denote the B-spline of order k, and then it can be
defined as [12]

bkðtÞ ¼ b0 � b0 � � � � � b0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}kþ1timesðtÞ ð15Þ

where the asterisk denotes the convolution operator and [23].

b0ðtÞ ¼
1; jtj < 1=2
1
2 ; jtj ¼ 1=2
0; otherwise:

8><
>: ð16Þ

We can let bkðnÞ represent the discrete B-spline and

bk
pðnÞ ¼ bkðt=pÞ t ¼ nj denote the discrete B-spline expanded by the

factor p. The Fourier transform of bkðnÞ is [23]

BkðxÞ ¼ sinc
x
2p

� �h ikþ1
: ð17Þ

The discrete signal xðnÞ up-sampled by an integer p is defined
as

½x�"pðnÞ :¼
xðn0Þ; n ¼ pn0

0; otherwise:

�
ð18Þ

The up-sampled signal xpðnÞ can be represented by B-spline as [12]

xpðnÞ ¼ bk
p � ½x�"p � ½ðbk

1Þ
�1�"pðnÞ: ð19Þ

If let

gk
pðnÞ ¼ bk

p � ½ðbk
1Þ

�1�"pðnÞ; ð20Þ
then we get

xpðnÞ ¼ gk
p � ½x�"pðnÞ: ð21Þ

Eq. (21) implies that the B-spline interpolation is equivalent to an
interpolator followed by a B-spline filter.

The z-transform of ðbk
1Þ

�1ðn0Þ and bk
pðnÞ are respectively given by

[12,24]

ðbk
1Þ

�1ðn0Þ $ 1=Bk
1ðzÞ; ð22Þ

Bk
pðzÞ ¼

zðkþ1Þðp�1Þ=2

pk

1� z�p

1� z�1

� �kþ1

Bk
1ðzÞ: ð23Þ

By applying the Fourier transform on both sides of (20) and
deducing with a few simple mathematical manipulations, we find
that
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Gk
pðejxÞ ¼

ejxðkþ1Þðp�1Þ=2

pk

1� e�jxp

1� e�jx

� �kþ1
Bk
1ðejxÞ

Bk
1ðejxpÞ

¼ p
sincðpx2pÞ
sincðx2pÞ

� �kþ1

� B
k
1ðejxÞ

Bk
1ðejxpÞ

ð24Þ

where sincðtÞ ¼ sinðptÞ=ðptÞ and Gk
pðejxÞ represents the frequency

response of gk
pðnÞ. We can let

�Gk
pðejxÞ ¼ Gk

pðejxÞ=p: ð25Þ

Eq. (12) shows that the IMF ciðnÞ can be regarded as equivalent
to filtering the residue signal ri�1ðnÞwith an iterative B-spline filter
along with some noise. Hence, the characteristics of the iterative B-
spline filter help to analyze the frequency resolution of EMD.

4.2. The frequency characteristics of iterative B-spline filters

Theorem 1. For a finite order B-spline, the iterative B-spline filter

Ql
kpðejxÞ satisfies

jQl
kpðejxÞj ! 1; x! 2p=p: ð26Þ
Proof. According to Poisson equation, by using (17), BkðejxÞ can be
rewritten as [25]

BkðejxÞ ¼
X½k=2�

n¼�½k=2�
bkðnÞe�jnx

¼
X1
n¼�1

½sincðf � nÞ�kþ1

: ð27Þ

Then, we have

BkðejpxÞ ¼
X1
n¼�1

½sincðpf � nÞ�kþ1
: ð28Þ

It is obvious that sincðf � nÞ ¼ ð�1Þn sinðpf Þ=ðpf � pnÞ [25]. By

using (24), Ql
kpðejxÞ can be rewritten as

Ql
kpðejxÞ ¼ ½1� �Gk

pðejxÞ�
l

¼ 1� sincðpf Þ
sincðf Þ

h ikþ1
� Bk1ðejxÞ
Bk1ðejxpÞ

� 	l

¼ 1� sinðppf Þ
psinðpf Þ

h ikþ1
P1

n¼�1
ð�1Þn sinðpf Þ

ðpf�pnÞ

h ikþ1

P1
n¼�1

ð�1Þn sinðppf Þ
ðppf�pnÞ

h ikþ1

2
64

3
75

l

¼ 1� 1
p

h ikþ1
P1

n¼�1
ð�1Þn
ðf�nÞ

h ikþ1

P1
n¼�1

ð�1Þn
ðpf�nÞ

h ikþ1

2
64

3
75

l

¼ 1�
1þ
P�1

n¼�1
ð�1Þn
1�n=f

h ikþ1

þ
P1

n¼1
ð�1Þn
1�n=f

h ikþ1

1þ
P�1

n¼�1
ð�1Þn
1�n=pf

h ikþ1

þ
P1

n¼1
ð�1Þn
1�n=pf

h ikþ1

2
64

3
75

l

ð29Þ

where f ¼ x=ð2pÞ. If we let

ukðf Þ ¼

X1
n¼1

1

1�n
f

� �kþ1 þ 1

1þn
f

� �kþ1

0
B@

1
CA; k odd

X1
n¼1

ð�1Þkþ1 1

1�n
f

� �kþ1 þ 1

1þn
f

� �kþ1

0
B@

1
CA; k even

8>>>>>>>><
>>>>>>>>:

; ð30Þ
then we have

Ql
kpðejxÞ ¼ 1� 1þukðf Þ

1þukðpf Þ

h il
¼ 1�ukðf Þ=ukðpf Þ

1þ1=ukðpf Þ

h il : ð31Þ

From (30), we can find

1
ð1�n=f Þkþ1 þ 1

ð1þn=f Þkþ1 > 0; k odd

1
ð1�n=f Þkþ1 þ 1

ð1þn=f Þkþ1

¼ ð�f Þkþ1

ðn�f Þkþ1 þ f kþ1

ðnþf Þkþ1 < 0: k even

8>>><
>>>:

ð32Þ

Then, we get

ukðf Þ > 0; f 2 ð0;1Þ: ð33Þ
Hence, we have

1=ukðpf Þ > 0; f 2 ð0;1=pÞ: ð34Þ
It is proved in [25] that

jukðf Þj < 4

ð1=f � 1Þkþ1 ; f 2 ð0;1Þ: ð35Þ

According to (30), we have,

1=ukðpf Þ ! 0; f ! 1=p ð36Þ
and

ukðf Þ < 4

ðp� 1Þkþ1 ; f ! 1=p ð37Þ

By combining (31), (36) and (37), we get that the iterative B-spline

filter Ql
kpðejxÞ converges to 1 as x tends to 2p=p, which brings the

desired result. h
Theorem 2. For a finite order B-spline, when l ! 1, the iterative

B-spline filter Ql
kpðejxÞ satisfies

lim
l!1

Ql
kpðejxÞ ¼

1; x ¼ 2p=p
0; x 2 ð0;2p=pÞ

�
: ð38Þ
Proof. The expression of Ql
kpðejxÞ is shown in (31). By using (33),

we have

ukðf Þ > �1; f 2 ð0;1Þ: ð39Þ
Combining (33) with (34) gives

�ukðf Þ
ukðpf Þ <

1
ukðpf Þ ; f 2 ð0;1=pÞ: ð40Þ

From (40), we find that

1� ukðf Þ
ukðpf Þ < 1þ 1

ukðpf Þ ; f 2 ð0;1=pÞ: ð41Þ

We then get

jQl
kpðejxÞj < 1; x 2 ð0;2p=pÞ: ð42Þ

Hence, combining (33) with Theorem 1, we get the desired result
described by (38). h

Theorem 1 and Theorem 2 show that Ql
kpðejxÞ x 2 ð0;2p=p�

have a good frequency selectivity when l ! 1. Using the non-
ideal low-pass characteristics of the finite order B-spline filter,

the iterative B-spline filter Ql
kpðejxÞ can obtain a better filtering per-

formance. Theorem 2 implies that the EMDmethod can obtain very
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narrow oscillation mode functions. Does it is really true? This
problem can be answered through analyzing the frequency resolu-
tion of EMD.
4.3. Frequency resolution of EMD

Theorem 1 implies that the amplitude-frequency characteristics
of iterative B-spline filters are affected by the sifting times. There-
fore, for the spline with finite order, the frequency resolution of
EMD is not only determined by the extrema rate, but also affected
by the sifting times.

However, the noise generated in the sifting process will influ-
ence the frequency resolution of EMD. The second term in (12) rep-
resents new components in the IMF subbands. It is already
reported in [26] that EMD sifting process will generate new fre-
quency components. Moreover, it is pointed out in [15] that the
reason caused new components in IMF subbands is the sub-
Nyquist extrema sampling and the cubic B-spline filter which is
far from an ideal low-pass filter.

In fact, the IMF subbands do not contain noise in some special
cases. A special case is the extrema decimation factor equals to 2
[15]. In most cases, the frequency resolution of EMD is affected
by the characteristics of iterative B-spline filters and anti-noise
B-spline filters.

Based on (12), the process of extracting an IMF by EMD can be
depicted by Fig. 2. It is shown in [15] the noise generated in the
EMD sifting process can be suppressed by the mean of envelopes.
Hence, ha

i;lðnÞ is the noise remained after reducing the mean of
the envelopes from signals. It cannot be denied that the new com-
ponents have a little influence to the EMD results in most cases.
Otherwise, the EMD cannot be used to many applications.

In fact, it is difficult to trace new components in the EMD sifting.
Here, we only consider a simple case assumes that ha

i;lðnÞ is the
same for each sifting times. Then, the IMF expressed by (12) can
be rewritten as

CiðejxÞ ¼ Ri�1ðejxÞ QL
kpðejxÞ � Ha

i ðejxÞ
XL

l¼1

~QL�l
kp ðejxÞ

¼ Ri�1ðejxÞQL
kpðejxÞ � Ha

i ðejxÞQ̂ L
kpðejxÞ

ð43Þ

where

Q̂ L
kpðejxÞ ¼

XL

l¼1

~QL�l
kp ðejxÞ ¼

XL

l¼1

1� �Gk
pðejxÞ

h iL�l
�Gk
pðejxÞ: ð44Þ

It is clear from (43) that Q̂ L
kpðejxÞ is used to remove noise which

generates in the course of extracting IMFs. So, Q̂ L
kpðejxÞ is called the
Fig. 2. Schematic illustration of extracting an IMF by the EMD algorithm for p > 2.
IMF anti-noise filter. The IMF anti-noise filter cannot remove low

frequency noise because Q̂1
kpðejxÞ ¼ Gk

pðejxÞ is a low pass filter.
It is obvious that

QL
kpðejxÞ þ Q̂ L

kpðejxÞ ¼ ½1� �Gk
pðejxÞ�

L

þ
XL

l¼1

½1� �Gk
pðejxÞ�

L�l�Gk
pðejxÞ ¼ 1:

ð45Þ

Eq. (45) shows that the amplitude characteristics of iterative
B-spline filters and IMF anti-noise filters are complementary.
Hence, the IMF extracted by EMD in the case of p > 2 is not a
narrow-band signal. A simple example is shown in Fig. 3. The
EMD results shown in Fig. 3 are obtained from a multi-
component signal with white Gaussian noise by using the masking
signal technology in the case of p ¼ 4 and 1000 times sifting itera-
tions. It is obvious from Fig. 3 that it does not have a stop band in
IMF c1ðnÞ and it only has a little high frequency component in the
residue r1ðnÞ.

The frequency responses of IMF anti-noise filters are shown in
Fig. 4. It is shown in Fig. 4 that the anti-noise ability of IMF anti-
noise filters decreases with more sifting iterations. The IMF anti-
noise filter becomes band stop filters from low-pass filters as the
sifting times increasing for p ¼ 3. Moreover, it has a pass band in
the high frequency band as the sifting times increasing for p ¼ 4
and p ¼ 5. This is the reason that the IMF subband shown in
Fig. 3 has some noise in high frequency band.

It is reported in [7] that EMD can decompose a two-tones signal
correctly when the extrema rate is equal to the frequency of the
high-frequency component and it is twice greater than the fre-
quency of the low-frequency component. Nevertheless, Fig. 4
implies that baseband images still can introduce new components,
as demonstrated in Fig. 5. Therefore, the second term in (12) must
equal to zero to guarantee that the IMF subband does not have new
components. It is difficult to extract IMF without new components
only relying on the EMD algorithm. We only can say that the fre-
quency resolution of EMD can be improved with more sifting iter-
ations in some extent. The anti-noise ability of the EMD algorithm
decreases with increasing the sifting times. The noise generated in
sifting process causes EMD cannot obtain narrow-band IMFs.
Fig. 3. Illustration of the IMF extracted by EMD from a signal with white Gaussian
noise. The top panel is the spectrum of the original signal (U). The middle panel is
the spectrum of the IMF (C1). The bottom panel is the spectrum of the residue (R).
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Fig. 4. Magnitude response of IMF anti-noise filters with respect to frequency while
varying the sifting times. (a) p = 3. (b) p = 4. (c) p = 5.
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Fig. 5. Illustration of new components caused by baseband images. The left top
panel is the original signal (U) and the bottom is the IMFs (C1 and C2). The right
panels are the spectrum of the left corresponding panel. Each IMF is obtained by
sifting 1000 times.
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5. Conclusion

We have proposed two practical criteria to identify IMFs based
on the definition. One criterion is only based on the envelopes of
signals and the other is associated with the envelopes and extrema
of signals. These criteria provide a proof for the EMD sifting stop-
ping criterion which does not count the number of the zero-
crossings and extrema of signals. By using these criteria, we deduce
that narrow-band signals with non-zero extrema, FM signals, and
monocomponent signals are all IMFs.

We have further analyzed the frequency resolution of EMD from
a digital signal processing perspective based on the B-spline inter-
polation. We have shown that the filtering characteristics of itera-
tive B-spline filters have been improved as increasing iterations.
Based on analysis on the characteristics of iterative B-spline filters,
we have proved theoretically that the frequency resolution of EMD
can be improved with more sifting times without considering the
influence of noise generated in the EMD sifting process. We have
then shown that the noise generated in the course of extracting
IMFs will affect the frequency resolution of EMD. The EMD method
cannot obtain narrow-band IMFs considering the influence of
noise. More sifting iteration only can in some extent to improve
the frequency resolution of EMD. In the practical application, it
needs to limit the excessive EMD sifting iterations.
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