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Given an arbitrary finite set of data F = {f1, . . . , fm} ⊂ L2(Rd) we prove the 
existence and show how to construct a “small shift invariant space” that is “closest” 
to the data F over certain class of closed subspaces of L2(Rd). The approximating 
subspace is required to have extra-invariance properties, that is to be invariant 
under translations by a prefixed additive subgroup of Rd containing Zd. This is 
important for example in situations where we need to deal with jitter error of the 
data. Here small means that our solution subspace should be generated by the 
integer translates of a small number of generators. An expression for the error in 
terms of the data is provided and we construct a Parseval frame for the optimal 
space.
We also consider the problem of approximating F from generalized Paley–Wiener 
spaces of Rd that are generated by the integer translates of a finite number of 
functions. That is finitely generated shift invariant spaces that are translation 
invariant. We characterize these spaces in terms of multi-tile sets of Rd, and 
show the connections with recent results on Riesz basis of exponentials on 
bounded sets of Rd. Finally we study the discrete case for our approximation
problem.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert space, C a class of closed subspaces of H and F = {f1, . . . , fm} a finite set of elements
in H.

In this article we study the existence and show how to construct an optimal subspace S in the class
C that minimizes the distance to the given data F , in the sense that S minimizes the functional π(F , S)
over C. The functional is defined as
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π(F ,S) =
m∑
j=1

‖fj − PSfj‖2, (1)

where PS denotes the orthogonal projection on the subspace S.
The motivation to find an optimal subspace in C is, that in many situations one wants to choose a model 

for a certain class of data. Instead of imposing some conditions on the data to fit some known model, the 
idea is to define a large class of subspaces convenient for the application at hand, and find from there the 
one that “best fits” the data under study.

The signals that need to be modeled are ideally low dimensional but living in a high dimensional space. 
However, since in applications they are often corrupted by noise, they become high dimensional, however 
they are close to a low dimensional subspace, which is the space one seeks.

When the Hilbert space is L2(Rd) it is natural to consider as a model for our data the class of shift 
invariant spaces (SIS), that is, closed subspaces of L2(Rd) that are invariant under translations by integers. 
These spaces have been used in approximation theory, harmonic analysis, wavelet theory, sampling theory 
and signal processing (see, e.g., [5,15,18,20] and the references therein).

Often, in applications, it is assumed that the signals under study belong to some shift invariant space V
generated by the translations of a finite set of functions Φ = {ϕ1, . . . , ϕm}, i.e., V = S(Φ) = span{Tkϕi: k ∈
Z
d, i = 1, . . . , m}. The choice of the particular finitely generated shift invariant space typically is not deduced 

from a set of signals. For example in sampling theory, a classical assumption is that the signals to be sampled 
are band-limited, that is, they belong to the shift invariant space V generated by ϕ(x) = sinc(x). However, 
the band-limited assumption is not very realistic in many applications. Thus, it is natural to search for a 
finitely generated shift invariant space that is nearest to a set of some observed data.

In this paper we study the case when H = L2(Rd), and the approximating subspaces are shift invariant 
spaces that have extra-invariance, that is: If M is a subgroup of Rd such that Zd ⊂ M we will say that 
S(ϕ1, . . . , ϕm) is M extra-invariant if

span{Tkϕj : j = 1, . . . ,m, k ∈ Z
d} = span{Tαϕj : j = 1, . . . ,m, α ∈ M}.

Therefore, the space S(ϕ1, . . . , ϕm) is invariant under translates other than the integers, even though it 
is generated by the integer translates of a finite set of functions. Such spaces with extra-invariance are 
important in applications specially in those where the jitter error is an issue.

We first consider the case when the subgroup M is a proper subgroup of Rd that contains Zd. For 
that case we obtain one of the main contributions of this paper. We prove that for any finite set of data 
F = {f1, . . . , fm} ⊂ L2(Rd), for any proper subgroup M containing Zd and for any � ∈ N there always 
exists a SIS V of length at most � with extra-invariance M whose distance (in the sense of (1)) to the data 
F is the smallest possible among all the SIS of length smaller or equal than � that are M extra-invariant. 
(Here, the length of a SIS is the cardinal of the smallest set of generators.)

We construct a solution V and provide a set of generators whose integer translates form a tight frame 
of V . An expression for the exact value of the error E(F , V ) between the data and the optimal subspace is 
also obtained using the eigenvalues of some special matrix.

Next, we consider the approximation problem for the class of generalized Paley–Wiener spaces. Given a 
measurable set Ω ⊂ R

d (not necessarily bounded), the generalized Paley–Wiener space PWΩ associate to 
Ω is the subspace of L2(Rd) corresponding to the functions whose Fourier transform vanished outside Ω. 
A generalized Paley–Wiener space is always invariant under translations by the whole group Rd. In particular 
is a SIS of L2(Rd) that not necessarily need to be finitely generated. Under the hypothesis that PWΩ has 
a Riesz basis of integer translates, we proved that PWΩ is finitely generated if and only if Ω is a multi-tile
(see Proposition 4.3). That is Ω is a multi-tile if and only if PWΩ has extra-invariance M = R

d.
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We study our approximation problem for those generalized Paley–Wiener spaces. We describe for this 
case how to construct a set of generators and show an interesting connection with recent results about bases 
of exponentials. This completes all the cases of extra-invariance when M is not a proper subgroup.

Finally we consider a similar problem when the Hilbert space is �2(Zd) and C is a conveniently chosen 
class of subspaces. We obtain for this case equivalent results to the ones for L2(Rd). The approximation 
problem for the discrete case is related with the continuous case in a very interesting way that is described 
in Section 5.

1.1. Previous work

Let us now mention some previous related work. The problem of approximation of a set of data by 
shift invariant spaces (without the extra-invariance restriction) started in [2] where the authors proved the 
existence of a minimizer for (1) over the class of low dimensional subspaces in a Hilbert space H and also 
over the class of shift invariant spaces in L2(Rd).

In [4] the case of multiple subspaces was considered in the finitely dimensional case. That is, the authors 
found a union of low dimensional subspaces that best fits a given set of data in Rd and provided an algorithm 
to find it. In 2011, using dimensional reduction techniques, this algorithm was improved (see [1]).

Further, in [7] the authors found necessary and sufficient conditions for the existence of optimal subspaces 
in the general context of Hilbert spaces. However they did not provide a way to construct them.

The first result for approximation of a finite set of data using shift invariant spaces with extra-invariance 
constrains appears in [6], where the authors consider principal shift invariant spaces in one variable and 
they assume that the space has a generator with orthogonal integer translates, which is a key element in 
their proof. So the techniques of this particular case do not apply to our general case.

1.2. Organization of the paper

The paper is organized as follows. In Section 2 we set the definitions and results that we need about shift 
invariant spaces, extra-invariance and the approximation problem for the case of shift invariant spaces in 
L2(Rd).

The main results of the paper are stated and proved in Sections 3, 4 and 5. In Section 3 we present the 
M extra-invariant case for shift invariant spaces, in Section 4 the case of Paley–Wiener spaces and finally 
we consider a discrete case, in Section 5.

2. Preliminaries

We begin with a review of the basic results and definitions that will be needed in subsequent sections. 
The known results are generally stated without proofs, but we provide references where the proofs can be 
found. Also, we introduce some of our notational conventions. For the definitions of Riesz bases and frames 
in Hilbert spaces we refer the reader to [11,16] and the references therein.

2.1. Shift invariant spaces

The structure of these spaces has been deeply analyzed (see for example [9,12,13,17,21]).

Definition 2.1. A closed subspace V ⊂ L2(Rd) is said to be a shift invariant space if

f ∈ V =⇒ Tkf ∈ V, for any k ∈ Z
d,

where Tk is the translation by the vector k ∈ Z
d, i.e. Tkf(x) = f(x − k).
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For any subset Φ ⊂ L2(Rd) we define

S(Φ) = span{Tkϕ:ϕ ∈ Φ, k ∈ Z
d} and E(Φ) = {Tkϕ:ϕ ∈ Φ, k ∈ Z

d}.

We call S(Φ) the shift invariant space (SIS) generated by Φ. If V = S(Φ) for some finite set Φ we say 
that V is a finitely generated SIS, and a principal SIS if V can be generated by the integer translates of a 
single function.

For a finitely generated SIS V ⊂ L2(Rd) we define the length of V as

�(V ) = min{n ∈ N:∃ ϕ1, . . . , ϕn ∈ V with V = S(ϕ1, . . . , ϕn)}.

In addition to the construction of a set of generators of the optimal space for the problems considered in 
this paper, it will be important to estimate the error of these approximations. In order to compute these 
errors we need to consider what is called the Gramian GΦ for a family of functions Φ ⊂ L2(Rd).

More precisely, given Φ = {ϕ1, . . . , ϕm} a finite collection of functions in L2(Rd), the Gramian GΦ of Φ
is the m ×m matrix of Zd-periodic functions

[GΦ(ω)]ij =
∑
k∈Zd

ϕ̂i(ω + k) ϕ̂j(ω + k). (2)

The Gramian of Φ is determined a.e. by its values at any measurable set of representatives U of the quotient 
R

d/Zd and satisfies GΦ(ω)∗ = GΦ(ω) for a.e. ω ∈ U . We will take U = [−1/2, 1/2)d.
For a finitely generated SIS V , we can express the length of V in terms of the Gramian as follows (see 

[9,12,22])

�(V ) = essup
ω∈U

[rk(GΦ(ω))] (3)

where rk(B) denotes the rank of a matrix B and Φ is a generator set for V .
One important property of the Gramian is given by the following lemma concerning the measurability 

of the eigenvalues and the existence of measurable eigenvectors of a non-negative matrix with measurable 
entries.

Lemma 2.2. (See Lemma 2.3.5 of [21].) Let G(ω) be an m ×m self-adjoint matrix of measurable functions 
defined on a measurable subset E ⊂ R

d with eigenvalues λ1(ω) ≥ · · · ≥ λm(ω). Then the eigenvalues λi, 
i = 1, . . . , m, are measurable functions on E and there exists an m ×m matrix of measurable functions U(ω)
on E such that U(ω)U∗(ω) = I a.e. ω ∈ E and such that

G(ω) = U(ω)Λ(ω)U∗(ω), a.e. ω ∈ E,

where Λ(ω) := diag(λ1(ω), . . . , λm(ω)).

In [17], Helson introduced range functions and used this notion to completely characterize shift invariant 
spaces. Later on, several authors have used this framework to describe and characterize frames and bases 
of these spaces. See for example [9,10,12,13,21]. We will mention the required definitions and some known 
results that we need later for giving the proofs of our results. We refer to [9,12,13,21] for a complete 
description and the proofs.
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Definition 2.3. Let f ∈ L2(Rd) and fix U ⊂ R
d to be a measurable set of representatives of the quotient 

R
d/Zd. For ω ∈ U , the fiber τf(ω) of f at ω is the sequence

τf(ω) = {f̂(ω + k)}k∈Zd .

Here f̂ denotes the Fourier transform of the function f , that is f̂(ω) =
∫
Rd e

−2πiωxf(x) dx when f ∈
L1(Rd). We observe that if f ∈ L2(Rd), then the fiber τf(ω) belongs to �2(Zd) for almost every ω ∈ U .

If V is a finitely generated SIS and ω ∈ U we define the fiber space associated to V and ω as follows

JV (ω) = {τf(ω): f ∈ V },

where the closure is taken in the norm of �2(Zd).
With the above definitions we have:

Lemma 2.4. (See Proposition 5.6 of [8].) Let V = S(Φ) be a finitely generated SIS. Then

dim(JV (ω)) = rk (GΦ(ω)), a.e. ω ∈ U .

Lemma 2.5. If f ∈ L2(Rd), then

(i) the sequence τf(ω) = {f̂(ω + k)}k∈Zd is a well-defined sequence in �2(Zd) a.e. ω ∈ U .
(ii) ‖τf(ω)‖�2 is a measurable function of ω and

‖f‖2 = ‖f̂‖2 =
∫
U

‖τf(ω)‖2
�2 dω.

Lemma 2.6. Let V be a finitely generated SIS in L2(Rd). Then we have

(i) JV (ω) is a closed subspace of �2(Zd) for a.e. ω ∈ U .
(ii) V = {f ∈ L2(Rd): τf(ω) ∈ JV (ω) for a.e. ω ∈ U}.
(iii) For each f ∈ L2(Rd) we have that ‖τ(PV f)(ω)‖�2 is a measurable function of the variable ω and

τ(PV f)(ω) = PJV (ω)(τf(ω)).

(iv) Let ϕ1, . . . , ϕm ∈ L2(Rd). We have that
(a) {ϕ1, . . . , ϕm} is a set of generators of V , if and only if {τϕ1(ω), . . . , τϕm(ω)} spans JV (ω) for a.e. 

ω ∈ U .
(b) The integer translations of ϕ1, . . . , ϕm are a frame (resp. Riesz basis) of V , if and only if 

τϕ1(ω), . . . , τϕm(ω) are a frame (resp. Riesz basis) of JV (ω) with the same frame (resp. Riesz) 
bounds, for a.e. ω ∈ U .

2.2. Optimality for the class of SIS in L2(Rd)

In [2] the authors give a solution for the case where the approximation class is the class of SIS in L2(Rd). 
For this, they reduce the optimization problem into an uncountable set of finite dimensional problems in 
the Hilbert space H = �2(Zd).

Theorem 2.7. (See Theorem 2.3 of [2].) Let F = {f1, . . . , fm} be a set of functions in L2(Rd). Let 
λ1(ω) ≥ · · · ≥ λm(ω) be the eigenvalues of the Gramian GF (ω). Then, there exists V ∗ ∈ V� =
{V : V is a SIS of length at most �} such that
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m∑
i=1

‖fi − PV ∗fi‖2 ≤
m∑
i=1

‖fi − PV fi‖2, ∀V ∈ V�.

Moreover, we have that

(1) The eigenvalues λi(ω), 1 ≤ i ≤ m are Zd-periodic, measurable functions in L2(U) and the approximation 
error is given by,

E(F , �) =
m∑

i=�+1

∫
U

λi(ω) dω.

(2) Let θi(ω) = λ−1
i (ω) if λi(ω) is different from zero, and zero otherwise. Then, there exists a choice of 

measurable left eigenvectors Y 1(ω), . . . , Y �(ω) with Y i = (yi1, . . . , yim)t, i = 1, . . . , �, associated with the 
first � largest eigenvalues of GF(ω) such that the functions defined by

ϕ̂i(ω) = θi(ω)
m∑
j=1

yij(ω)f̂j(ω), i = 1, . . . , �, ω ∈ R
d

are in L2(Rd). Furthermore, the corresponding set of functions Φ = {ϕ1, . . . , ϕ�} is a generator set for 
the optimal subspace V ∗ and the set {ϕi(· − k), k ∈ Z

d, i = 1, . . . , �} is a Parseval frame for V ∗.

2.3. Extra invariance

We will need some definitions and known results concerning extra-invariance for shift invariant spaces. 
These are described in this subsection.

Definition 2.8. Let V ⊂ L2(Rd) be a SIS. We define the invariance set as follows

M := {x ∈ R
d:Txf ∈ V, ∀f ∈ V }.

In [3] (see also [8]), the authors proved that the invariance set of a shift invariance space V ⊂ L2(Rd) is 
a closed additive subgroup of Rd that contains Zd. For instance, in the case of the line the invariant set of 
a shift invariant space could be Z, 1nZ for some n ∈ N or R.

Definition 2.9. Let Φ ⊂ L2(Rd). We will say that V = S(Φ) is M extra-invariant if Tmf ∈ V for all m ∈ M

and for all f ∈ V .
If M = R

d then the space V is translation invariant but generated by the integer translates of the set Φ.

One example of a translation invariant space in R is the Paley–Wiener space of functions that are 
bandlimited to [−1/2, 1/2] defined by

PW = {f ∈ L2(R): supp (f̂) ⊂ [−1/2, 1/2]}.

It is easy to prove that for a measurable set Ω ⊂ R
d, the space

VΩ := {f ∈ L2(Rd): supp(f̂) ⊂ Ω} (4)

is translation invariant. Moreover, Wiener’s theorem (see [17]) proves that any closed translation invariant 
subspace of L2(Rd) is of the form (4).
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If V is a shift invariant space of length � and M is an additive subgroup of Rd containing Zd, we will say 
that V has extra-invariance M if V is M -invariant. Note that in this case, if Φ is a set of generators of V , 
i.e. V = S(Φ), then

S(Φ) = span{Tkϕ:ϕ ∈ Φ, k ∈ Z
d} = span{Tαϕ:ϕ ∈ Φ, α ∈ M}.

In [3] the authors characterize those shift invariant spaces V ⊂ L2(R) that have extra-invariance. They 
show that either V is translation invariant, or there exists a maximum positive integer n such that V is 
1
nZ-invariant.

The d-dimensional case is consider in [8]. There, a characterization of the extra-invariance of V when M
is not all Rd is obtained. Given M a closed subgroup of Rd containing Zd and M∗ = {x ∈ R

d: 〈x, m〉 ∈ Z

∀m ∈ M}, the authors construct a special partition {Bσ}σ∈N of Rd, where each Bσ is an M∗-periodic set 
and the index set N is a section of the quotient Zd/M∗. More precisely, for each σ ∈ N ,

Bσ = Ω + σ + M∗ =
⋃

m∗∈M∗

(Ω + σ) + m∗, (5)

where Ω is a section of the quotient Rd/Zd. We refer to [8] for more details.
Using this partition, for each σ ∈ N , they define the subspaces associated to a given SIS V

Vσ = {f ∈ L2(Rd): f̂ = χBσ
ĝ, with g ∈ V }. (6)

Given f ∈ L2(Rd) define for σ ∈ N , the function fσ by f̂σ = f̂χBσ
.

The authors give a characterization of the M -invariance of V in terms of the subspaces Vσ. More specif-
ically they prove that

Theorem 2.10. If V ⊂ L2(Rd) is a SIS and M is a closed subgroup of Rd containing Zd, then the following 
are equivalent.

(i) V is M -invariant,
(ii) Vσ ⊂ V for all σ ∈ N ,
(iii) JVσ

(ω) ⊂ JV (ω) for almost every ω and each σ ∈ N ,
(iv) if V = S(Φ) then τϕσ(ω) ∈ JV (ω) a.e. ω ∈ U for all ϕ ∈ Φ and all σ ∈ N .

3. Optimality for the class of SIS with extra-invariance

Here we consider the approximation problem for the class of finitely generated SIS with extra-invariance 
under a given proper subgroup M of Rd.

Let us start introducing some notation. Let m, � ∈ N, M be a closed proper subgroup of Rd containing 
Z
d and F = {f1, . . . , fm} ⊂ L2(Rd). Define

V�
M = {V : V is a SIS of length at most � and V is M -invariant}. (7)

Let N = {σ1, . . . , σκ} be a section of the quotient Zd/M∗ and {Bσ : σ ∈ N} the partition defined in (5).
For each σ ∈ N , we consider Fσ = {fσ

1 , . . . , f
σ
m} ⊂ L2(Rd) where, fσ

j is such that f̂σ
j = f̂jχBσ

for 
j = 1, . . . , m. Also, let F̃ = {fσ1

1 , . . . , fσ1
m , . . . . . . , fσκ

1 , . . . , fσκ
m }.

For each ω ∈ U let GF̃ (ω) be the associated Gramian matrix of the vectors in F̃ with eigenvalues

λ1(ω) ≥ · · · ≥ λmκ(ω) ≥ 0.

Using Lemma 2.2, we have that these eigenvalues are measurable functions.
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Since fσs
i is orthogonal to fσt

i if s �= t, the Gramian GF̃ (ω) is a diagonal block matrix with blocks 
Gσ(ω), σ ∈ N . Here Gσ(ω) is the m × m Gramian associated to the data Fσ. On the other hand, using 
Lemma 2.2 we have that

Gσ(ω) = Uσ(ω)Λσ(ω)U∗
σ(ω) a.e. ω ∈ U

where Uσ are unitary and Λσ(ω) := diag(λσ
1 (ω), . . . , λσ

m(ω)) ∈ C
m×m and they are also measurable matrices 

as in Lemma 2.2. We also have λσ
1 (ω) ≥ · · · ≥ λσ

m(ω) for each σ ∈ N .
Using the decompositions of the blocks Gσ we have that

GF̃ (ω) = U(ω)Λ(ω)U∗(ω) (8)

where U has blocks Uσ in the diagonal, and Λ is diagonal with blocks Λσ. We want to recall here that 
for almost each ω the matrix Λ(ω) collects all the eigenvalues of the Gramian GF̃ (ω) and the columns of 
the matrix U(ω) are the associated left eigenvectors. Note that an eigenvector associated to the eigenvalue 
λσ
j (ω) has all the components not corresponding to the block σ equal to zero.
Now for each fixed ω ∈ U , we consider {(i1(ω), j1(ω)), . . . , (in(ω), jn(ω))} with is(ω) ∈ N and js(ω) ∈

{1, . . . , m} and n = mκ such that

λ
i1(ω)
j1(ω) ≥ · · · ≥ λ

in(ω)
jn(ω) ≥ 0

are the ordered eigenvalues of GF̃ (ω), with corresponding left eigenvectors Y (is(ω),js(ω)) ∈ C
n, for s =

1, . . . , n.
Here is(ω) indicates the block of the matrix GF̃ (ω) in which the eigenvalue λis(ω)

js(ω)(ω) is found and 

js(ω) indicates the displacement in this block of the matrix GF̃(ω). More precisely, we have that λis(ω)
js(ω)(ω)

coincides with λ(is(ω)−1)m+js(ω)(ω), the ((is(ω) −1)m +js(ω))-th eigenvalue of GF̃(ω). When ω ∈ U is fixed, 
we will write is instead of is(ω) and js instead of js(ω).

We will prove now that γs(ω) := λ
is(ω)
js(ω)

(ω) is measurable as a function on ω for each s = 1, . . . , n.
Let s ∈ {1, . . . , n} fixed. Let is(ω) ∈ N and js(ω) ∈ {1, . . . , m}. We have that γs(ω) = λσ

j (ω) for all 
ω ∈ Eσj := {ω ∈ U : is(ω) = σ, js(ω) = j}.

We observe that

Eσj = {ω ∈ U : is(ω) = σ, js(ω) = j} = {ω ∈ U :λs(ω) = λσ
j (ω)}.

Using Lemma 2.2 applied to GF̃(ω) and Gσ(ω), we have that λs and λσ
j are measurable functions of ω. 

Therefore Eσj are measurable sets.
We further observe that γs(ω) = λσ

j (ω), for ω ∈ Eσj . So γs(ω) is a measurable function. A similar 
argument shows that the eigenvectors are measurable.

Finally we define hs: Rd → C, for s = 1, . . . , �

hs(ω) := θisjs(ω)
m∑

k=1

y
(is,js)
(is−1)m+k(ω)f̂ is

k (ω), (9)

where θisjs(ω) = (λis
js

(ω))−1/2 if λis
js

(ω) �= 0 and θisjs(ω) = 0 otherwise.
Now we are ready to state the main result of this section.
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Theorem 3.1. Let m, � ∈ N, and M be a closed proper subgroup of Rd containing Zd. Assume that F =
{f1, . . . , fm} ⊂ L2(Rd) is given data and let V�

M be the class defined in (7). Then, there exists a shift 
invariant space V ∗ ∈ V�

M such that

V ∗ = argmin
V ∈V�

M

m∑
j=1

‖fj − PV fj‖2. (10)

Furthermore, with the above notation,

(1) The eigenvalues {λσ
j (ω) : σ ∈ N , j = 1, . . . , m}, are Zd-periodic, measurable functions in L2(U) and the 

error of approximation is

E(F ,M, �) :=
m∑
j=1

‖fj − PV ∗fj‖2 =
∫
U

mκ∑
s=�+1

λis
js

(ω) dω.

(2) The functions {h1, . . . , h�} defined in (9) are in L2(Rd) and if ϕ1, . . . , ϕ� are defined by ϕ̂j = hj, then 
Φ = {ϕ1, . . . , ϕ�} is a generator set for the optimal subspace V ∗ and the set {ϕi(· − k), k ∈ Z

d, i =
1, . . . , �} is a Parseval frame for V ∗.

Proof. Let V� be the class defined in Theorem 2.7, that is V� is the set of all shift invariant spaces V that 
can be generated by � or less generators. (Note that we do not ask the elements of the class V� to have 
extra-invariance.)

Define V ∗ ∈ V� to be the optimal space given by Theorem 2.7 for the data F̃ . That is,

∑
σ∈N

m∑
j=1

‖fσ
j − PV ∗fσ

j ‖2 ≤
∑
σ∈N

m∑
j=1

‖fσ
j − PV f

σ
j ‖2 ∀ V ∈ V�. (11)

We claim that V ∗ ∈ V�
M (in particular is M extra-invariant) and it is optimal in this class for the data F , 

i.e.
m∑
j=1

‖fj − PV ∗fj‖2 ≤
m∑
j=1

‖fj − PV fj‖2 ∀ V ∈ V�
M . (12)

Let us prove first that V ∗ is M extra-invariant. For this we will check that the generators of V ∗ satisfy 
condition (iv) in Theorem 2.10. We have from (8) that the Gramian GF̃ (ω) can be decomposed as GF̃ (ω) =
U(ω)Λ(ω)U∗(ω) with eigenvalues {λσ

j (ω) : σ ∈ N , j = 1, . . . , m}.
By Theorem 2.7, the � generators of V ∗ have the form defined in (9),

ϕ̂s(ω) = θisjs(ω)
m∑

k=1

y
(is,js)
(is−1)m+k(ω)f̂ is

k (ω), for s = 1, . . . , �. (13)

From (13) it is clear that ϕ̂s is supported in Bis , since each f̂ is
k is supported in Bis . Then if we apply 

the cut off operator to these generators we obtain ϕ̂σ
s (ω) = ϕ̂s(ω) if σ = is(ω) and ϕ̂σ

s = 0 otherwise. So, in 
any case ϕσ

s ∈ V ∗ for all σ ∈ N , s = 1, . . . , � which proves the M -invariance of V ∗.
What is left now is to prove that V ∗ is optimal over the class V�

M , that is V ∗ satisfies equation (12). For 
this note that if V ∈ V�

M then V =
⊕

σ∈N Vσ. So we have for any f ∈ L2(Rd),

‖PV f‖2 = ‖PV

∑
fσ‖2 = ‖

∑
PV f

σ‖2 = ‖
∑

PV σfσ‖2 =
∑

‖PV σfσ‖2 =
∑

‖PV f
σ‖2,
σ∈N σ∈N σ∈N σ∈N σ∈N
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which implies together with (11) that

m∑
j=1

‖PV ∗fj‖2 ≥
m∑
j=1

‖PV fj‖2, ∀ V ∈ V�
M .

The others claims of the theorem are a direct consequence of Theorem 2.7. �
4. Approximation with Paley–Wiener spaces

4.1. Preliminaries

In this section the class of approximation subspaces will be finitely generated SIS that are translation 
invariant. That is translation invariant spaces that are generated by the integer translates of a finite number 
of functions.

More precisely, given � ∈ N define T � to be the set of all shift invariant spaces V = S(ϕ1, . . . , ϕ�) for 
some functions ϕ1, . . . , ϕ� in L2(Rd), and such that V is translation invariant and the integer translates of 
{ϕ1, . . . , ϕ�} form a Riesz basis of V .

Given a set F = {f1, . . . , fm} ⊂ L2(Rd), we want to find V ∗ ∈ T � such that

V ∗ = argmin
V ∈T �

m∑
j=1

‖fj − PV fj‖2. (14)

Here PV denotes the orthogonal projection on V .
Before going to the approximation problem, we will obtain a characterization of the class T �.
Using Wiener’s theorem, we have that V is a translation invariant space in L2(Rd) if and only if there 

exists a measurable set Ω ⊂ R
d such that

V = {f ∈ L2(Rd) : f̂(ω) = 0 a.e. ω ∈ R
d \ Ω}.

Since Ω is unique up to measure zero, we will write V = VΩ.

Definition 4.1. Let Ω ⊂ R
d be measurable and L ⊂ R

d be a countable set. We say that Ω tiles Rd when 
translated by L at level � ∈ N if

∑
t∈L

χΩ(ω − t) = �, for a.e. ω ∈ R
d.

In case of L = Z
d we will say that Ω is an � multi-tile.

It is known (see for example [19]) that Ω is an � multi-tile of Rd, if and only if, up to measure zero, Ω is 
the union of � measurable and disjoint 1 tile sets. i.e. Ω is a quasi-disjoint union of � sets of representatives 
of Rd/Zd.

Lemma 4.2. A measurable set Ω ⊂ R
d, � multi-tiles Rd if and only if

Ω = Ω1 ∪ · · · ∪ Ω� ∪N,

where N is a zero measure set, and the sets Ωj, 1 ≤ j ≤ � are measurable, disjoint and each of them tiles 
R

d by translations on Zd.
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The following proposition characterizes the set Ω for the elements in T �.

Proposition 4.3. A subspace V is in T � if and only if V = VΩ with Ω a measurable � multi-tile of Rd.

Proof. Assume first that V ∈ T �, so V = VΩ for some measurable Ω ⊂ R
d. Also, as a consequence of 

Wiener’s theorem, for almost all ω ∈ U we have JV (ω) ∼= �2(Oω) with Oω = {k ∈ Z
d : w + k ∈ Ω}. To see 

this, we note that JV (ω) ⊂ �2(Oω). For the other inclusion, fix ω ∈ U . Using that Ω =
⋃

k∈Zd Ek where 
Ek = (U + k) ∩ Ω, we have that k ∈ Oω, if and only if ω + k ∈ Ek. Hence, if a ∈ �2(Oω) consider the 
function Gω(ξ) =

∑
k∈Oω

akχEk
(ξ). Since Gω is in L2(Ω), the function g defined by ĝ = Gω is in V , and 

ĝ(ω + k) = ak if k ∈ Oω. Therefore, g ∈ V and a = τg(ω) ∈ JV (ω).
Now, since V = S(ϕ1, . . . , ϕ�), and the integer translates of ϕ1, . . . , ϕ� form a Riesz basis of V , using 

Lemma 2.6 we obtain that {τϕ1(ω), . . . , τϕ�(ω)} form a Riesz basis of JV (ω) with the same Riesz bounds 
for a.e. ω ∈ U . We conclude that dim(JV (ω)) = � a.e. ω ∈ U .

Since V is translation invariant, by the observation above dim(JV (ω)) = #Ow. Then #Oω = � for almost 
all ω ∈ U , which implies that Ω is an � multi-tile. (Here #A denotes the cardinal of the set A.)

For the converse, assume that Ω is a measurable � multi-tile of Rd. Define V = VΩ. So, V is translation 
invariant.

By Lemma 4.2 we have that Ω = Ω1 ∪ · · · ∪ Ω� up to a measure zero set, where each Ωj is a set of 
representatives or Rd/Zd. We define ϕj by its Fourier transform: ϕ̂j = χΩj

, j = 1, . . . , �.
Since {e2πiωkϕ̂j : k ∈ Z

d} is an orthonormal basis of L2(Ωj), we have that {e2πiωkϕ̂j : k ∈ Z
d, j = 1, . . . , �}

is an orthonormal basis of L2(Ω), and so, {tkϕj : k ∈ Z
d, j = 1, . . . , �} is an orthonormal basis of V , in 

particular a Riesz basis. �
4.2. The approximation problem for Paley–Wiener spaces

Now we come back to our approximation problem. In order to find an optimal subspace in the class T �

for a set of data F = {f1, . . . , fm}, it is enough to find the associated � multi-tile Ω in Rd. It is not difficult 
to see that if we allow Ω to be any � multi-tile the minimum in (14) may not exist. So we will restrict Ω to 
be inside a cube that could be arbitrarily large. Let us fix N ∈ N. Define

CN := [−(N + 1/2), N + 1/2]d,

M �
N := {Ω ⊂ CN : Ω is measurable and � multi-tiles R

d} and

T �
N := {V ∈ T � : V = VΩ with Ω ∈ M �

N}.

With this notation we can state the main result of this section.

Theorem 4.4. Assume that m, � ∈ N and a set F = {f1, . . . , fm} ⊂ L2(Rd), are given. Then for each N ≥ �

there exists a Paley–Wiener space V ∗ ∈ T �
N that satisfies

V ∗ = argmin
V ∈T �

N

m∑
j=1

‖fj − PV fj‖2, (15)

where T �
N is the class defined above.

Proof. First we observe that if a solution space V ∗ exists then

V ∗ = argmin
V ∈T �

m∑
‖fj − PV fj‖2 = argmax

V ∈T �

m∑
‖PV fj‖2, (16)
N j=1 N j=1
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and using the definition of T �
N , we have that

max
V ∈T �

N

m∑
j=1

‖PV fj‖2 = max
Ω∈M�

N

m∑
j=1

‖PVΩfj‖2. (17)

So, we need to find Ω ∈ M �
N that yields the maximum in (17).

Using Lemma 2.5 we see that for each Ω ∈ M �
N ,

m∑
j=1

‖PVΩfj‖2 =
m∑
j=1

‖P
V̂Ω

f̂j‖2

=
m∑
j=1

∫
U

‖PJVΩ
(ω)(τfj(ω))‖2

�2(Zd) dω

=
∫
U

m∑
j=1

‖PJVΩ
(ω)(τfj(ω))‖2

�2(Zd) dω. (18)

Recall that PJVΩ
(ω) denotes the orthogonal projection onto the closed subspace JVΩ(ω) of �2(Zd).

Furthermore, if Ω ∈ M �
N , we know from the proof of Proposition 4.3 that dim(JVΩ(ω)) = � for a.e. ω ∈ U . 

Note that JVΩ(ω) agrees with the subspace of �2(Zd) of the sequences supported in Oω. Then there exists 
a unique set of � integer vectors kΩ(ω) = {kΩ

1 (ω), . . . , kΩ
� (ω)} ⊂ Z

d such that span{δkΩ
j (ω) : j = 1, . . . , �} =

JVΩ(ω), for a.e. ω ∈ U . Here δj denotes the canonical vector in �2(Zd). i.e. δj(s) = 0 if s �= j and 1 otherwise. 
Note that, since Ω ⊂ CN necessarily ‖kΩ

j (ω)‖∞ ≤ N , for each j and ω. Combining this observation with 
(18) we obtain,

m∑
j=1

‖PVΩfj‖2 =
∫
U

m∑
j=1

�∑
s=1

|f̂j(ω + kΩ
s (ω))|2 dω. (19)

So, now we need to maximize the left hand side in (19) over all the sets Ω ∈ M �
N .

Note that given Ω ∈ M �
N , for almost each ω ∈ U , the set Ω contains exactly � elements from the sequence 

{ω + k, k ∈ Z
d}. Then we can pick for each ω ∈ U (up to a set of zero measure) � translations k∗s(ω) such 

that 
∑m

j=1
∑�

s=1 |f̂j(ω + k∗s(ω))|2 is maximum over all sets of � translations k = {k1, . . . , k�} ⊂ Z
d, with 

‖kj‖∞ ≤ N . The maximum exists since the fibers of fj are �2(Zd)-sequences and the number of translations 
considered is finite.

Call K the set of admissible translations i.e. K = {k = {k1, . . . , k�} ⊂ Z
d : ‖kj‖∞ ≤ N} and for k ∈ K

set Hk(ω) =
∑m

j=1
∑�

s=1 |f̂j(ω + ks(ω))|2.
Our goal is to construct a set Ω such that the associated space VΩ is optimal. So the idea is to construct 

the optimal set Ω∗ considering for each ω ∈ U the optimal translations {ω + k∗s(ω) : s = 1, . . . , �}, and then 
taking the union over almost all ω ∈ U .

For this we define for each k = {k1, . . . , k�} ∈ K the following subset of U ,

Ek = {ω ∈ U :Hk(ω) ≥ Hr(ω), ∀ r = {r1, . . . , r�} ∈ K} ,

i.e., Ek is the set of ω ∈ U for which the maximum is attained for k = {k1, . . . , k�}. Note that Ek could be 
the empty set for some k = {k1, . . . , k�} and the sets Ek may not be disjoint.

Finally we define our optimal set as,

Ω∗ =
⋃ �⋃

Ek + kj .

k∈K j=1
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We will now prove that Ω∗ is measurable. First we note that Ek is a measurable set for each k ∈ K since,

Ek =
⋂
r∈K

Fk
r ,

where,

Fk
r = {ω ∈ U :Hk(ω) ≥ Hr(ω)} .

Now, since Fk
r is measurable for all r ∈ K, we obtain that Ek is measurable and so is Ω∗.

Furthermore, by construction, Ω∗ is in M �
N . Since for all Ω ∈ M �

N we have that,

m∑
j=1

�∑
s=1

|f̂j(ω + kΩ
s (ω))|2 ≤

m∑
j=1

�∑
s=1

|f̂j(ω + k∗s(ω))|2 for almost all ω ∈ U ,

taking the integral over U we get

m∑
j=1

‖PVΩfj‖2 =
∫
U

m∑
j=1

�∑
s=1

|f̂j(ω + kΩ
s (ω))|2 dω

≤
∫
U

m∑
j=1

�∑
s=1

|f̂j(ω + k∗s(ω))|2 dω =
m∑
j=1

‖PVΩ∗ fj‖2.

This shows that Ω∗ ∈ M �
N is optimal over all Ω ∈ M �

N . We conclude that VΩ∗ ∈ T �
N is a solution for the 

data F . �
Remark 4.5. Notice that if Ω∗

N is the optimal multi-tile set for the class T �
N for some data F , then the 

approximation error is given by

EN (F , �) =
∫

Rd\Ω∗
N

m∑
j=1

|f̂j(ω)|2dω =
∫

CN\Ω∗
N

m∑
j=1

|f̂j(ω)|2dω +
∫

Rd\CN

m∑
j=1

|f̂j(ω)|2dω.

Clearly EN (F , �) ≥ EN+1(F , �). So E(F , �) := limN→∞ EN (F , �) is somehow the optimal error. Since F ⊂
L2(Rd) then the second integral goes to zero when N goes to infinite, for functions with good decay at 
infinite we will be close to the optimal error for conveniently large N .

Remark 4.6. In Proposition 4.3 we show, for an element of T �, how to construct a set of generators that 
gives a Riesz basis of translates in Zd. There are many ways to construct other sets of generators that gives 
Riesz basis of translates. Recently Grepstad–Lev in [14] constructed a basis of exponentials for L2(Ω) when 
Ω ⊂ R

d is a multi-tile. Later on, Kolountzakis [19] gave a simpler proof of this result in a slightly more 
general form. Precisely they prove the following result.

Theorem 4.7. (See Theorem 1 of [19].) Suppose Ω ⊂ R
d is bounded, measurable and multi-tiles Rd when 

translated by Zd at level �. Then there exist vectors a1, . . . , a� ∈ R
d such that the exponentials

e−2πi(aj+k)ω j = 1, . . . , �, k ∈ Z
d

form a Riesz basis for L2(Ω).
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From Theorem 4.7, we can obtain immediately a set of generators for VΩ. Let ϕ be such that ϕ̂ = χΩ. 
If a1, . . . , a� ∈ R

d are as in Theorem 4.7, then VΩ = S(ϕ1, . . . , ϕ�) with ϕj = taj
ϕ, j = 1, . . . , �, and the 

translates of ϕ1, . . . , ϕ� form a Riesz basis of VΩ.
In general, all the Riesz basis for VΩ can be described in the following way:
Let A = {ajs} ∈ [L2(U)]�×� be a measurable matrix, such that 0 < c1 ≤ λ(ω) ≤ c2 for every eigenvalue 

λ(ω) and for almost each ω ∈ U . Set k(ω) = (k1(ω), . . . , k�(ω)) such that w+ks(ω) ∈ Ω. Define ϕj such that 
ϕ̂j(ω + ks(w)) = ajs(ω). Using the results stated in subsection 2.1 it is not difficult to see that ϕ1, . . . , ϕ�

are measurable, VΩ = S(ϕ1, . . . , ϕ�) and the translates of ϕ1, . . . , ϕ� form a Riesz basis of VΩ.

5. The discrete case

The optimal subspace V ∗ in Theorem 3.1 is the closest to the data F over all subspaces V in the 
class V�

M . It is not difficult to see that almost each fiber space JV ∗(ω) ⊂ �2(Zd) of V ∗ is the closest to the 
fibers of our data, τ(F)(ω) = {τf1(ω), . . . , τfm(ω)} over a certain class of closed subspaces of �2(Zd) that 
we will call D�

N . Clearly this class of subspaces is determine by the class V�
M . So, Theorem 3.1, implies an 

approximation result in �2(Zd), for a very particular class determined by the extra-invariance. Therefore it 
is interesting to see if this approximation result in �2(Zd), extends to more general classes. We will define in 
what follows a very general class D�

N . The cases coming from the continuous case will be particular cases of 
our general definition. The proof of the optimality that we obtain is more general and cannot follow from 
Theorem 3.1.

In what follows, the Hilbert space we consider is �2(Zd). We define the class of approximating subspaces 
in the following way:

Let N be an arbitrary finite set and {Dσ: σ ∈ N} a partition of Zd, that is, Zd =
⋃

σ∈N Dσ, where the 
union is disjoint.

For a ∈ �2(Zd), we denote aσ = 1Dσ
a, where 1Dσ

denotes the indicator of Dσ. Given S ⊂ �2(Zd) a closed 
subspace we define

Sσ = {aσ : a ∈ S}, for each σ ∈ N .

We define the class of approximating subspaces by

D�
N = {S ⊂ �2(Zd):S is a subspace, dim(S) ≤ � and Sσ ⊂ S, ∀σ ∈ N}. (20)

Note that S ∈ D�
N if and only if dim(S) ≤ � and S is the orthogonal sum of the subspaces Sσ i.e.,

S = ⊕σ∈NSσ.

For a given set A = {a1, . . . , am} ⊂ �2(Zd) consider for each, σ ∈ N , the Gramian matrix Gσ ∈ C
m×m of 

the data Aσ = {aσ1 , . . . , aσm}, that is (Gσ)k,l = 〈aσk , aσl , 〉, k, l = 1, . . . , m, with eigenvalues λσ
1 ≥ · · · ≥ λσ

m, 
and orthonormal corresponding left eigenvectors yσ1 , . . . , yσm.

Now set Λ = {λσ
j : j = 1, · · ·m, σ ∈ N} and collect in Λ� the � first biggest eigenvalues of Λ that is if 

λ ∈ Λ� then λ ≥ μ for all μ ∈ Λ \ Λ�.
Write Λ� = {λ1, . . . , λ�}. For each s = 1, . . . , � we define the sequence qs ∈ �2(Zd) in the following way:
Since λs = λσs

js
for some σs ∈ N and some js = 1, . . . , m, then λs is an eigenvalue of Gσs

. Let yσs
js

be the 
corresponding left eigenvector yσs

js
= (yσs

js
(1), . . . , yσs

js
(m)).

Then define, if λs ∈ Λ�, λs �= 0

qs := (λs)−1/2
m∑

yσs
js

(k)aσs

k . (21)

k=1
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If λs = 0 we define qs to be the zero sequence.
With this notation we can state the main theorem of this section:

Theorem 5.1. Let m, � ∈ N and N a finite set. Assume that a set A = {a1, . . . , am} ⊂ �2(Zd) is given.
Then there exists S∗ ∈ D�

N that satisfies

m∑
j=1

‖aj − PS∗aj‖2 ≤
m∑
j=1

‖aj − PSaj‖2, ∀S ∈ D�
N . (22)

Moreover, we have that

(1) S∗ = span{q1, . . . , q�} where q1, . . . , q� are defined in (21). Also, the vectors {q1, . . . , q�} form a Parseval 
frame for S∗.

(2) The error in the approximation is

E(A,N , �) =
∑

λ∈Λ\Λ�

λ.

Proof. First, we observe that (22) is equivalently to,

m∑
j=1

‖PS∗aj‖2 ≥
m∑
j=1

‖PSaj‖2, ∀S ∈ D�
N .

Furthermore, if S ∈ D�
N then

m∑
j=1

‖PSaj‖2 =
m∑
j=1

‖
∑
σ∈N

PSσ
aj‖2 =

m∑
j=1

‖
∑
σ∈N

PSσ
aσj ‖2 =

∑
σ∈N

m∑
j=1

‖PSσ
aσj ‖2,

where aj =
∑

σ∈N aσj .
In order to construct an optimal subspace S∗ ∈ D�

N for the data A, we will find an optimal subspace Sσ

for each σ ∈ N , of dimension at most ασ ∈ {1, . . . , �} for the data Aσ = {aσ1 , . . . , aσm}. The existence of the 
optimal subspaces are provided by Theorem 4.1 of [2]. We need 

∑
σ∈N dim(Sσ) =

∑
σ∈N ασ = dim(S∗) ≤ �.

Thus if Q = {α = {ασ} : 0 ≤ ασ ≤ � and
∑

σ∈N ασ ≤ �}, then for each choice of α ∈ Q we will find 
optimal subspaces {Sα

σ : σ ∈ N} and define Sα = ⊕σ∈NSα
σ .

The candidate for S∗ is the space Sα which minimize the expression (22) over all α ∈ Q. Let β ∈ Q be 
the minimizer. Hence β satisfies,

∑
σ∈N

m∑
j=1

‖PSα
σ
aσj ‖2 ≤

∑
σ∈N

m∑
j=1

‖PSβ
σ
aσj ‖2 ∀ α ∈ Q. (23)

Therefore, the subspace S∗ := Sβ = ⊕σ∈NSβ
σ is the optimal subspace we need. It is straightforward to 

see that S∗ ∈ D�
N and that S∗ is optimal.

Using Theorem 4.1 of [2] we obtain that for each α ∈ Q, the error of approximation for the data Aσ and 
the class of subspaces of dimension at most ασ is given by
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E(Aσ, ασ) =
m∑

s=ασ+1
λσ
s .

So the distance between the α-optimal subspace Sα and the data A is,

E(α) =
∑
σ∈N

E(Aσ, ασ) =
∑
σ∈N

m∑
s=ασ+1

λσ
s . (24)

Let κ be the number of elements in N . We see that E(α) is minimum when the mκ − � eigenvalues used 
in (24) are the smallest from the set Λ = {λσ

j : j = 1, . . . , m, σ ∈ N}. Therefore if we set Λ� ⊂ Λ the set of 
the � biggest eigenvalues from Λ, the optimal β = {βσ} ∈ Q satisfies that

⋃
σ∈N

{λσ
1 , . . . , λ

σ
βσ
} = Λ�.

Therefore,

E(A,N , �) =
∑
σ∈N

E(Aσ, βσ) =
∑
σ∈N

m∑
j=1

‖aσj − PSβ
σ
aσj ‖2 =

∑
σ∈N

m∑
s=βσ+1

λσ
s =

∑
λ∈Λ\Λ�

λ.

In order to construct the generators of Sβ it is enough to construct the generators of each Sβ
σ . Since Sβ

σ

are optimal subspaces for the data Aσ according with Theorem 4.1 of [2] the generators of Sβ
σ are given by 

(21). That is the set {qs : σs = σ} is a Parseval frame of Sβ
σ .

Since the subspaces Sβ
σ are mutually orthogonal, {q1, . . . , q�} is a set of Parseval frame generators for the 

optimal space S∗ = Sβ . �
Remark 5.2. As explained at the beginning of this section there is a reason to consider this particular class of 
subspaces for the discrete case. If a SIS V is M extra-invariant for some proper subgroup M of Rd containing 
Z
d, then its fiber spaces JV (ω) satisfies exactly the conditions that we imposed on the class D�

N where the 
partition of Zd is {Bσ ∩ Z

d : σ ∈ N} and Bσ and N are as in (5). So, the discrete result (Theorem 5.1) 
provides a different proof of Theorem 3.1 using properties of range functions (see Definition 2.3), without 
the need of Theorem 2.7. Actually this proof includes Theorem 2.7.
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