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The controllability analysis for airplane flight dynamics is very crucial in upset/loss-of-control situations.
Conventional airplanes are normally equipped with so redundant control authority. That is, an airplane
might experience a loss of one or more control surfaces and remain controllable. As such, the aim of
this paper is to investigate common upset situations and to explore the limits of controllability using
linear analysis tools with emphasis on analysis of Thrust-only Flight Control Systems (TFCSs) where all
the hydraulic systems are lost. Based on those analyses, the necessity of nonlinear controllability analysis
for such situations is discussed.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Control loss of an airplane, known in literature as loss-of-
control, is a serious problem whose repercussions can be catas-
trophic. Luckily, conventional airplanes may still be controllable 
if one or more control surfaces fail. For example, if an airplane 
lost all of its control surfaces due to hydraulic failure, it may still 
be controllable by manipulating the engines thrust forces. There 
are two common incidents in history that support such a fact. In 
1989, the United Airlines Flight 232 DC-10 aircraft lost flight con-
trol surfaces due to hydraulic pressure loss because of a failure 
in its tail-mounted engine. However, the crew managed to con-
trol the airplane until they reached an airport. Nevertheless, the 
aircraft lost balance just before touchdown leading to a wing-tip 
crash into the run way, which in turn, led to the aircraft break-
ing apart. But 185 people survived out of the 296 on board. The 
2003 DHL A300-B4 aircraft incident is another example. The air-
craft was hit by a ground-to-air missile during initial climb right 
after takeoff from Baghdad airport. As such, all hydraulics were lost 
within few seconds. However, the crew managed to land the air-
plane safely using only thrust controls. Of course, there are other 
examples of flight control failures where the crew could not avoid 
the worst case scenario such as the 1974 Turkish Airlines Flight 
981. The DC-10 aircraft lost the cargo door, which leads to a dam-
age in the control cables. The aircraft crashed a minute later and 
none of the 346 people on board survived.
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The above incidents among others invoked design and analysis 
of a thrust-only flight control system (TFCS) or a propulsion con-
trolled aircraft (PCA). These systems have been investigated in the 
1990s by Burcham et al. [5,6] and Tucker [20] at NASA Dryden 
Flight Research Center. They developed a computer-assisted engine 
control system, implemented and tested it on the F-15 fighter air-
craft and the MD-11 transport aircraft. In his study of the 2003 
DHL A300-B4 aircraft incident, Lemaignan [13] analyzed the appli-
cability of TFCSs. More recently, Yamasaki et al. [22], at Mitsubishi 
Heavy Industries, developed a TFCS system for the Boeing 747-400 
and validated it by testing in a domed simulator.

On the other hand, Wilborn and Foster [21], at Boeing Com-
pany and NASA Langley Research Center, presented a quantitative 
measures for loss-of-control in commercial transport aircraft. They 
presented five envelopes relating to airplane flight dynamics, aero-
dynamics, structural integrity, and flight control use that can reli-
ably identify key Loss-of-control characteristics. Also, Kwatny et al. 
[12] presented a nonlinear analysis for aircraft loss-of-control. They 
examined the ability to regulate an aircraft around stall points with 
emphasis on impaired aircraft and presented some examples using 
NASA’s generic transport model.

The objective of this paper is to formulate the airplane loss of 
control (LOC) into a controllability framework. It is understandable 
that controllability of a linearized model is not necessary. That 
is there exists a class of systems that are linearly uncontrollable 
but nonlinearly controllable, see for example Sec. 3.1 in Ref. [17]. 
However, the linear analysis should be performed first because of 
its sufficiency. Then nonlinear analysis should be employed in the 
cases where the linear analysis fails. Therefore, the current effort 
is to perform linear controllability analysis for some LOC cases 
(e.g., no elevator) and identify situations where nonlinear analysis 
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is required. A successive effort will be to discuss nonlinear control-
lability and apply it to these situations.

In this work, a linear decoupled six-degrees-of-freedom flight 
dynamic model is considered. Controllability of the linearized 
model about the cruise equilibrium is assessed at no-elevator, 
no-aileron, no-rudder, and no-thrust situations. In particular, the 
landing-approach problem using TFCS is analyzed. Also, the con-
cerns raised by Lemaignan [13] and Nguyen et al. [16] are ad-
dressed. Finally, LOC situations that necessitate nonlinear control-
lability analysis are provided for a successive effort.

2. Linear controllability analysis

Controllability is defined as the ability to steer a given system 
from some configuration into another configuration in finite time. 
A linear time-invariant (LTI) system is written in the form

ẋ(t) = Ax(t) + Bu(t) (1)

where x is the state vector (n × 1), u is the control input vector 
(m × 1), A is the state matrix (n × n), and B is the input matrix 
(n × m). A necessary and sufficient condition for the controllability 
of the system (1) is that the (n × nm) controllability matrix

C = [
B A B A2 B .... An−1 B

]
(2)

to be of full rank (i.e. rank(C) = n) which is often denoted by 
Kalman rank condition [18].

Luckily, controllability of linear systems is constructive. That is, 
if the matrix C is of full rank, then the following relation provides 
a control input history that steers the system (1) from x0 at t0 to 
x1 at t1 [3, pp. 74–77]

u(t) = −B ′ �′(t0, t) W −1(t0, t1)
(
x0 − �(t0, t1) x1

)

W (t0, t1) =
t1∫

t0

�(t0, t) B B ′ �′(t0, t) dt
(3)

where (.)′ denotes the transpose, � is the state transition matrix 
which is defined as �(t0, t) = e A(t0−t) . It should be noted that the 
control law (3) minimizes the integral 

∫ t1
t0

||u(t)||2dt of control en-
ergy needed for steering.

On the other hand, for nonlinear, control-affine system in the 
form

ẋ = f (x) +
m∑

i=1

gi(x)ui (4)

where f (x) is the drift vector field (uncontrolled dynamics) and 
gi(x) is the control input vector field associated with the control 
input ui . Assume, without loss of generality, that x0 is an equi-
librium point (i.e. f (x0) = 0). A sufficient condition for the local 
controllability of the system (4) at x0 is that the linearization about 
x0, written as

�ẋ =
[

∂ f

∂x

] ∣∣∣∣
x0

�x +
m∑

i=1

gi(x0)ui (5)

to be controllable. That is, the controllability matrix

C =
[

g1(x0), ..., gm(x0),

[
∂ f

∂x

] ∣∣∣∣
x0

g1(x0), ...,

[
∂ f

∂x

] ∣∣∣∣
x0

gm(x0), ...

...,

[
∂ f

∂x

]n−1 ∣∣∣∣
x0

g1(x0), ...,

[
∂ f

∂x

]n−1 ∣∣∣∣
x0

gm(x0)

]
(6)

to be of full row rank [17]. It is noteworthy to mention that 
this controllability matrix of the linearized system (5) is the ana-
logue of the controllability matrix of the linear system (1), where 
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is the Jacobian matrix of the vector field f (x) eval-

ted at x0, which is equivalent to the matrix A in (1) and 
1(x0), ..., gm(x0)] is equivalent to the matrix B in (1).

Controllability analysis of linearized flight dynamics

In this section, the controllability analysis of the linearized sys-
m is performed. Since this linearization is performed at the 
uise flight condition; i.e., the lateral velocity v = 0 as well as 
e rolling and yawing angular velocities p = r = 0, then the lon-
udinal and lateral dynamics are decoupled and their respective 

duced-order models can be studied separately.

. Longitudinal 4 × 4 flight dynamics model

The longitudinal 4 × 4 flight dynamics model for a rigid aircraft 
n be written as follows [15]

u̇
ẇ
q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Xu Xw 0 −g cos θ0
Zu Z w U0 −g sin θ0
Mu Mw Mq −gMw sin θ0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

Xδe Xδt

Zδe 0
Mδe Mδt

0 0

⎤
⎥⎥⎦

[
δe

δt

]
(7)

ere u and w are the forward and normal velocity perturba-
ns of the airplane center of gravity from the equilibrium state 
ng the longitudinal and normal body axes, respectively. The 
dy pitching angle and angular velocity are θ and q, respectively. 

and θ0 are the cruise forward speed and pitching angle, re-
ectively and g is the gravitational acceleration. The longitudinal 
ntrol inputs are the elevator deflection δe and thrust control in-
t δt . The parameters Xu , Xw , Zu , Z w , Mu , Mw , Mq , Xδe , Xδt , 
e , Mδe , and Mδt are stability and control derivatives at the cruise 
ndition.
The rank of the controllability matrix for this system is calcu-

ed using Eq. (2) and found to be four which ensures linear (and 
nce nonlinear) controllability for the system at hand. In case of 
failure in the elevator system or loss of regulation in the en-
e system, the control input matrix B becomes [Xδt 0 Mδt 0]′ or 

δe Zδe Mδe 0]′ , respectively. However, in either case, the rank of 
e controllability matrix is found to be also four, which means 
at the airplane remains controllable even if the elevator or en-
e fails.
In order to verify the existence of a steering control input his-

ry in the case of elevator or engine loss, we use the longitudinal 
ght dynamic characteristics of the DELTA aircraft (a paradigm 
odel for a very large, four-engined, cargo jet aircraft) from [14, 
. 561–563], at the flight condition (sea-level cruising at U0 =
m/s and θ0 = α0 = 2.7◦). It is preferred over a particular air-

ane type (e.g., B747, A320) for its general representation for a 
ole class of airplanes. However, it should be noted that the 

esented analysis is transferable to any class. The stability and 
ntrol derivatives of such an airplane at the stated flight condi-
n are given as:

= 300,000 kg, Xu = −0.02, Xw = 0.1,

= −0.23, Z w = −0.634,

u = −2.55 ∗ 10−5, Mw = −0.005, Mq = −0.61,

e = 0.14, Zδe = −2.9,

δe = −0.64, Xδt = 1.56, Mδt = 0.0054.



266 A.M. Hassan, H.E. Taha / Aerospace Science and Technology 55 (2016) 264–271
Fig. 1. Control input history for DELTA aircraft to reach x1 = [80 0 0 3.7◦]′ .

Fig. 2. Variation of the body velocity U for DELTA aircraft model due to the control 
input shown in Fig. 1.

Fig. 3. Variation of the pitch angle θ for DELTA aircraft model due to the control 
input shown in Fig. 1.

where Xδt is calculated as Xδt = Tmax−Ttrim
m , Tmax is the max allow-

able thrust for this airplane and it is given to be 730 KN, and Ttrim

is the thrust trim value which is calculated, using the drag polar 
relation, at this flight condition to be 262 KN, in this way the al-
lowed δt should be between 1 and −0.56. The control derivative 
Mδt is calculated based on the assumption that the thrust line has 
an offset of 0.5 m below the center of gravity line.

Now, we use the minimal control energy input presented in 
Eq. (3) to calculate a control input history to attain a final state 
x1 = [80 0 0 3.7◦]′ . Figs. 1–4 show the control input history 
to reach the state x1 over the course of 25 seconds, the result-
ing forward velocity U, the resulting pitch angle θ , and the vertical 
trajectory respectively. Obviously, the throttle control input exceeds 
the control input bounds, but this is not of a concern here. At this 
point, we are just concerned about the existence of a steering con-
trol input history. A control input history that is confined to the 
control input bounds could be designed using an optimal control 
approach (e.g., Linear Quadratic Regulator) as will be shown in the 
subsequent sections.
Fig. 4. Vertical Trajectory for DELTA aircraft model due to the control input shown 
in Fig. 1.

It should be noted that even if Mδt = 0, the linear controllability 
of the system is still preserved using the thrust control only due 
to the indirect pitch control authority via speed regulation. That 
is, thrust manipulations induce velocity changes, which in turn in-
duces a change in the pitching moment. This point will also be 
discussed further in Sec. 4.2.1.

It is noteworthy to emphasize the fact that linear controllability 
implies reachability in the sense that any arbitrarily given state can 
be reached in arbitrary time with unbounded controls and in finite 
time with control bounds. However, the system may depart from 
such a state immediately after the excursion time. In other words, 
controllability does not necessarily imply equilibrium, as the latter 
necessitates forcing to sustain. As such, it is not surprising that the 
controllability of the fourth order longitudinal model is preserved 
even if one longitudinal control input is removed. There will be al-
ways a control strategy that steers the longitudinal flight dynamics 
to a given final state, making use of the available potential energy. 
As shown in Fig. 4, the airplane lost altitude in order to reach the 
desired final state, because no restriction is imposed on the final 
altitude. As such, for a more representative analysis, the altitude 
should be included as a state, as shown in the next subsection.

3.2. Longitudinal 5 × 5 flight dynamics model

During the landing-flare phase, the altitude should follow a 
certain temporal trajectory [2, pp. 94–97]. As such, linear controlla-
bility of the longitudinal flight dynamics, including the altitude as 
a state variable, must be ensured. In this subsection, the altitude 
state h is included in the longitudinal flight dynamics model and 
the controllability of the system is assessed again in various situ-
ations. Firstly, the linearized longitudinal flight dynamics model is 
then written as
⎡
⎢⎢⎢⎢⎣

u̇
ẇ
q̇

θ̇

ḣ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Xu Xw 0 −g cos θ0 0
Zu Z w U0 −g sin θ0 0
Mu Mw Mq −gMw sin θ0 0
0 0 1 0 0

sin θ0 − cos θ0 0 U0 cos θ0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u
w
q
θ

h

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

Xδe Xδt

Zδe 0
Mδe Mδt

0 0
0 0

⎤
⎥⎥⎥⎦

[
δe

δt

]
(8)

As intuitively expected, the rank of the controllability matrix of 
this system using both controls is found to be five which ensures 
linear controllability of the fifth-order longitudinal flight dynamics 
model. A direct implication from the definition of controllability is 
that we can increase both velocity and altitude (i.e., no reliance on 
potential energy).
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Fig. 5. Control input history for DELTA aircraft to reach x1 = [80 0 0 3.7◦ 150]′
using throttle only.

Fig. 6. Variation of the body velocity U for DELTA aircraft model due to the control 
input shown in Fig. 5.

Fig. 7. Variation of the altitude h for DELTA aircraft model due to the control input 
shown in Fig. 5.

Now, assume that there is an elevator or an engine failure. 
Then the rank of the controllability matrix is found to be also
five, which means that the system remains controllable. This may 
be intuitively acceptable for the case of elevator loss, but not in 
the case of engine loss. The existence of a control input history 
in this case can be verified as before using the control law in 
Eq. (3). Assume that the targeted state vector x1 is the same as 
the previous section with the desired altitude perturbation to be 
+50 m from the initial altitude which is assumed to be 100 m (i.e., 
x1 = [80 0 0 3.7◦ 150]′). Figs. 5–7 show the throttle control 
input history to reach the state x1 over the course of 25 seconds 
using throttle only, the resulting forward velocity U, and the re-
sulting altitude h respectively.

For the case of throttle regulation loss, despite the fact that 
the controllability matrix is of full rank, the control input his-
tory required to reach x1 and the corresponding airplane simu-
lated trajectory are found to be unrealistic as shown in Figs. 8, 9, 
and 10. This finding, which agrees with physical intuition, refutes 
the mathematical controllability consequent upon the satisfaction 
of the Kalman rank condition.
Fig. 8. Control input history for DELTA aircraft to reach x1 = [80 0 0 3.7◦ 150]′
using elevator only.

Fig. 9. Variation of the body velocity U for DELTA aircraft model due to the control 
input shown in Fig. 8.

Fig. 10. Variation of the altitude h for DELTA aircraft model due to the control input 
shown in Fig. 8.

3.3. Longitudinal 6 × 6 flight dynamics model

In this subsection, the airplane’s altitude h and north position 
coordinate P N in the inertial frame are included in the longitudinal 
flight dynamics model and the controllability is assessed. Firstly, 
the full longitudinal flight dynamics model is written as

⎡
⎢⎢⎢⎢⎢⎢⎣

u̇
ẇ
q̇

θ̇

Ṗ N

ḣ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Xu Xw 0 −g cos θ0 0 0
Zu Z w U0 −g sin θ0 0 0
Mu Mw Mq −gMw sin θ0 0 0
0 0 1 0 0 0

cos θ0 sin θ0 0 −U0 sin θ0 0 0
sin θ0 − cos θ0 0 U0 cos θ0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u
w
q
θ

P N

h

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

Xδe Xδt

Zδe 0
Mδe Mδt

0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

[
δe

δt

]
(9)
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The rank of the controllability matrix of this system using both 
controls is found to be six. However, if either elevator control or 
throttle regulation is lost, the rank of the controllability matrix is 
found to be five, which means that the system is linearly uncon-
trollable. The practical implications of this finding can be under-
stood in the context of a landing problem where the end point has 
specified coordinates P N and h. The found uncontrollability of the 
system, if one controller fails, implies that some combination(s) of 
P N and h may not be reached. However, since controllability of the 
linearization is only sufficient, the system may still be controllable 
and further nonlinear analysis is required [4,9,11,7,19,1].

This case worth more discussion. Full controllability of the lon-
gitudinal flight dynamics including navigation states is an overly 
stringent requirement that may not be needed. It should be noted 
that linear controllability (controllability of the linearized system) 
implies the ability to locally reach all neighboring points in all 
directions; that is, for example, to be able to move forward and 
backward. In fact, such an ability is not even guaranteed with full 
control authority because large negative thrust forces are not at-
tainable for a conventional airplane. However, the Kalman rank 
condition assumes unbounded controls in all directions and, as 
such, did not show uncontrollability for the system (9) with full 
control authority (both elevator and thrust are functioning). This 
discussion invokes more relaxed notions for controllability. In fact, 
these notions already exist for nonlinear systems; Accessibility is a 
controllability notion for nonlinear systems that implies the ability 
to move in all neighboring directions, possibly in a biased manner. 
Formally, the accessibility property at x0 implies that the set R
of reachable points from x0 has a non-empty interior. That is, an 
accessible system can be driven forward in some direction but not 
backward, which is similar to the expectations with the present ex-
ample. Therefore, nonlinear analysis and controllability definitions 
are indeed invoked in such a case, which will be considered in de-
tail in a successive effort.

3.4. Lateral 5 × 5 flight dynamics model

The lateral flight dynamics model of a rigid aircraft using the 
standard aileron and rudder controls along with a differential 
thrust control can be written as⎡
⎢⎢⎢⎢⎣

v̇
ṗ
ṙ
φ̇

ψ̇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Y v Y p −(U0 − Yr) g cos θ0 0
Lv Lp Lr 0 0
Nv Np Nr 0 0
0 1 0 0 0
0 0 sec θ0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 Yδr 0
Lδa Lδr Lδtd

Nδa Nδr Nδtd

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎣ δa

δr

δtd

⎤
⎦ (10)

where v is the velocity of the airplane center of mass along the 
body starboard lateral axis, p and r are the roll and yaw rates, re-
spectively, and φ and ψ are the corresponding Euler angles. The 
lateral controls include the aileron deflection δa , the rudder deflec-
tion δr and the differential thrust control δtd . The latter represents 
asymmetric thrust variations from the cruise values, which mainly 
creates a yawing moment (in addition to a rolling moment in case 
of inertial cross coupling). The parameters Y v , Y p , Yr , Lv , Lp , Lr , 
Nv , Np , Nr , Yδr , Lδa , Lδr , Lδtd

, Nδa , Nδr , and Nδtd
are stability and 

control derivatives at the cruise condition.
The rank of the controllability matrix for this system is found 

to be five (i.e., fully controllable). In fact, the lateral dynamics 
is luxurious in controllability. That is, if we drop any two con-
trols and retain only one, we find that the system remains linearly 
controllable. Moreover, this controllability is not affected if the air-
plane does not have inertial coupling (i.e., J xz = 0), which weakens 
the roll-yaw coupling control derivatives Nδa and Lδr and makes 
Lδtd

= 0. That is, the lateral flight dynamics can be controlled using 
only differential thrust even for zero-inertial coupling airplanes.

4. Application to thrust-only flight control system

As shown in the preceding sections, both longitudinal and lat-
eral flight dynamics (excluding the navigation states) have been 
proved to be controllable using thrust inputs (symmetric and 
asymmetric) only. This invokes analyzing the emergency cases 
where there is a complete hydraulic failure during flight and con-
sequently all the control surfaces are lost. In this section we will 
investigate the ability of a specific airplane to land safely using 
only the thrust control input without exceeding the control input 
bounds, i.e., maximum allowable thrust.

Consider the same airplane adopted before in Sec. 3, DELTA air-
craft, at the same flight condition. To investigate the capability of 
this airplane to achieve safe landing-approach using thrust-control 
only, the criteria would be to achieve the appropriate flight path 
angle γ for the final approach, which is −3◦ in most airports, and 
the appropriate approach speed V T which is usually taken to be 
1.3 V stall . To take the effect of engine time lag into consideration 
we will represent the engine dynamics as a first order system with 
time constant T = 10 seconds. As such, the transfer function of the 
engine dynamics can be written as

δt

eδt

= 0.1

s + 0.1
(11)

where eδt is the input signal to the engine (e.g., a throttle lever 
displacement). As such, the engine time-lag is written in a state 
space form as

δ̇t = −0.1δt + 0.1eδt (12)

Combining the engine-dynamics as represented by Eq. (12) into 
the longitudinal flight dynamics (7), we write

⎡
⎢⎢⎢⎢⎣

u̇
ẇ
q̇

θ̇

δ̇t

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Xu Xw 0 −g cos θ0 Xδt

Zu Z w U0 −g sin θ0 0
Mu Mw Mq −gMw sin θ0 Mδt

0 0 1 0 0
0 0 0 0 −0.1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u
w
q
θ

δt

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
0
0
0

0.1

⎤
⎥⎥⎥⎦ eδt (13)

To track the desired flight path angle during landing-approach 
using TFCS, we use a linear-state-feedback servo-mechanism. That 
is, we use the control law

uc(t) = −k x(t) + ki e(t)

ė(t) = r − y(t)
(14)

where uc(t) is the control input, x(t) is the state vector, the out-
put (flight path angle in this case) y = C x, k is the (1 × 5)

state-feedback gain matrix, and ki is an integral gain. The servo-
mechanism induces an additional state variable e whose rate rep-
resents the error between the desired reference and output signals. 
As such, feeding back by this state represents an integral control 
action that eliminates steady state error. The full system dynamics 
(when r = 0) is then written as
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[
ẋ
ė

]
=

[
A 0

−C 0

][
x
e

]
+

[
B
0

]
uc

y = [
C 0

][
x
e

] (15)

where A, B , and C are the matrices of the original 5 × 5 longi-
tudinal system shown in Eq. (13). The closed loop system can be 
written as

[
ẋ
ė

]
=

[
A − Bk Bki

−C 0

][
x
e

]
+

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎦

r

y = [
C 0

][
x
e

]
.

(16)

To solve for the state-feedback gains (k and ki ), we formulate a 
linear quadratic regulator (LQR) problem; that is, we consider the 
quadratic cost function

J =
∞∫

0

(xT Q x + uT Ru)dt (17)

where, in this case, x is the augmented state vector [x e]′ and u
is the control input uc . We consider the weighting matrices Q and 
R to be in the form

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
x2

1max

0 ... 0

0 1
x2

2max

... 0

...
. . .

...

0 ... ... 1
x2

nmax

⎤
⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
u2

1max

0 ... 0

0 1
u2

2max

... 0

...
. . .

...

0 ... ... 1
u2

mmax

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

where ximax is the desired maximum allowable perturbation for the 
state variable xi and u jmax is the physical limit imposed on the 
control input u j . The resulting controller guarantees the asymp-
totic stability of the dynamics (16) for any constant r. For more 
details about LQR controller design, the reader is referred to [10]. 
In our case, there is only one control input eδt , so the R ma-
trix will be reduced to the scalar 1

e2
δtmax

. According to the thrust 

trim value Ttrim and the control derivatives Xδt and Mδt calculated 
in Sec. 3, the allowed δt should be between 1 and −0.56, then 
δtmax = eδtmax

is chosen to be 0.56 (note the unity dc gain between 
eδt and δt ). The maximum allowable perturbations for the states 
are chosen to be umax = 5 m/s, wmax = 2 m/s, qmax = 2 deg/s, and
θmax = 10◦ .

4.1. Regulation of the flight path angle during landing-approach

To track a −3◦ step reference signal for the flight path angle, 
we define y = γ = C x with C = [0 −1

U0
0 1 0]. Using the LQR 

problem formulation shown above, the appropriate gains can be 
calculated, the closed-loop system is simulated over the course of 
100 seconds and the resulting flight path angle and throttle input 
are shown in Figs. 11 and 12 respectively. It is interesting to note 
Fig. 11. Closed loop response of the flight path angle γ due to a −3◦ step reference 
input using the designed LQR servo system.

Fig. 12. Required engine throttle manipulation to ensure a flight path angle γ = −3◦
using the designed LQR servo system.

that the desired flight path angle for landing-approach can be en-
sured using a TFCS without exceeding the throttle control input 
bounds even if engine lag is included.

4.2. Analysis of the raised concerns about TFCS

4.2.1. Lack of pitch control authority when Mδt = 0
An intuitive concern raised by Lemaignan [13] is that a zero 

thrust-line-cg offset (Mδt = 0) might preclude pitch controllability 
and, as such, the landing-approach could not be performed using 
thrust-only. However, our current analysis shows that regulation 
of the flight path angle for landing-approach is achievable using a 
TFCS even if Mδt = 0. In fact, we find very similar responses in the 
case of Mδt = 0 to those shown in Figs. 11 and 12 with the steady 
state value of δt is slightly higher.

4.2.2. Inability to regulate both flight path angle and speed during 
landing-approach

In reality, landing is one of the most intricate flight conditions, 
if not the most. It does not only require regulation of the flight 
path angle but also the flight speed. Regulation of the flight speed 
can be easily achieved using a TFCS. However, we find that, similar 
to Lemaignan’s conclusion [13], simultaneous regulation for γ and 
V T is not possible using a TFCS, which is physically intuitive. As 
such, in such an emergency case where a TFCS is used, the airplane 
will have to land at a speed higher than the standard requirements 
(1.3 V stall).

4.2.3. Effect of engine time lag on yaw damping
A legitimate concern raised by Nguyen et al. [16] is that 

while airplane controllability may still be ensured using TFCSs, 
the time lag associated with engine dynamics might affect sta-
bilization of the lateral flight dynamics. In particular, the use of 
differential thrust inputs might not be effective in damping the 
Dutch roll mode because the engine dynamics will not be fast 
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Fig. 13. Airplane open loop response due to 5◦ side-slip disturbance.
enough to recover the airplane from a side-slip disturbance be-
fore getting into an unrecoverable upset situation. In this sub-
section, we investigate the effect of the engine dynamics on yaw 
damping. We consider the lateral characteristics of DELTA aircraft 
model [14, pp. 561–563] at the flight condition (sea-level cruising 
at U0 = 75 m/s and θ0 = α0 = 2.7◦):

Y v = −0.078, Y p = 0, Yr = 0,

Lv = −0.0086, Lp = −1.0758, Lr = 0.6334,

Nv = 0.0037, Np = −0.1121, Nr = −0.2569,

Lδtd
= 0.0031, Nδtd

= 0.0345.

To make our investigation more relevant to the raised point, we 
decrease the yaw damping derivative Nr of the airplane to be 20% 
of the original value. Also, we consider the full 12 × 12 nonlin-
ear model, developed earlier [8] for simulation to account for the 
longitudinal–lateral coupling, which may result in an upset situa-
tion due to a side-slip disturbance. Fig. 13 shows the open loop 
response of the DELTA aircraft (with Nr = −0.0514) due to a 5◦
side slip disturbance. Clearly, the airplane goes into a spiral dive.

We then design a simple yaw damper using rudder input as 
δr = −kr. The closed loop response due to a 5◦ side slip distur-
bance is shown in Fig. 14. As expected, the yaw damper is very 
efficient in damping the side slip disturbance. Now, we assume 
that the rudder control authority is lost and we only rely on a 
TFCS. We design the following yaw damper eδtd

= −k r and simu-
late the full 12 × 12 system in addition to the engine lag dynam-
ics (12). Fig. 14 provides a comparison between the response of 
the two closed loop systems; using rudder and differential thrust. 
While the response using the TFCS is more sluggish than that of 
the rudder, it is quite acceptable and the airplane did not diverge 
into any upset situation, even in the presence of a considerable en-
gine lag. It should be noted that TFCS are not meant to replace the 
conventional primary flight controls but to be used in emergency 
situations. This analysis shows its efficacy in such situations.
5. Conclusions

In this work, a linear controllability approach is adopted to 
study airplane flight dynamics in different loss-of-control situa-
tions using different model sizes. For the conventional fourth-order 
longitudinal flight dynamics, we show that the system remains 
controllable if the elevator control input or the throttle regulation 
is lost. However, the elevator-only longitudinal controller relies on 
the available gravitational potential energy. To prevent such an ex-
ploitation, we added the altitude to the state variables and found 
that the resulting fifth-order longitudinal flight dynamics cannot 
be controlled using elevator only but is still controllable using 
thrust only. If all longitudinal kinematic variables are included (i.e., 
sixth-order flight dynamic model), linear controllability becomes 
deficient if either elevator or throttle is lost. In such a case, nonlin-
ear controllability analysis is discussed and invoked because of its 
relaxed notions of controllability. On the other hand, the conven-
tional fifth-order lateral flight dynamics is shown to be controllable 
using either aileron or rudder controls. Moreover, both aileron and 
rudder could be replaced with a differential thrust control input 
without diminishing linear controllability. We also stress the fact 
the system being controllable using only one controller does not 
guarantee equilibrium at the end state; i.e., the system may depart 
from such a state immediately after the excursion time.

In this work, we also considered application of the linear con-
trollability analysis to Thrust-only Flight Control Systems (TFCSs). 
We show that the desired flight path angle for landing-approach 
can be tracked using a TFCS without exceeding the thrust control 
input bounds even if the engine lag is considered. Then, we ad-
dress some of the previously raised concerns about TFCSs. Firstly, 
we show that flight path angle regulation during the landing-
approach is also achievable using TFCS even if Mδt = 0. Secondly, 
we confirm the previously raised issue that is both flight path 
angle and speed cannot be simultaneously regulated using TFCS 
during the landing-approach. Thirdly, we investigate the effect of 
slow engine dynamics on yaw damping in the case of rudder loss. 
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Fig. 14. Airplane closed loop response due to 5◦ side-slip disturbance.
We conclude that differential thrust control represents a practi-
cal solution for lateral stabilization and control in case of aileron 
and rudder failure, even with a slow engine dynamics and unstable 
open loop flight dynamics. Finally, we conclude by proposing use 
of nonlinear controllability to analyze the linearly uncontrollable 
situations and assess potential exploitation of nonlinear interacting 
mechanisms to enhance controllability. This point will be consid-
ered in future by the authors.
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