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The concept of reliability has been attracting attentions in mechanical engineering following the
developments of the aerospace industries. Limited failure data and statistical analyses of helicopter
components reliability exist in the technical literature. For filling this gap, a nonparametric analysis is
conducted on the performance of the 338 blades of some Iranian helicopters, which were in service
between 1974 and 2012. These blades have 41 different failure modes. In this paper, statistical reliability
analysis is conducted based on two strategies: In strategy I, general failure is defined as scrapping or
retirement of the blade. In strategy II, the blade is assumed to be subjected to different modes of
failure and the cumulative mode-specific functions are derived for each failure modes using Nelson–Aalen
estimator. The Kaplan–Meier estimator is used for calculating the nonparametric reliability functions.
Confidence intervals are derived for the reliability results and parametric fits are conducted using the
maximum likelihood estimation. An important result from parametric analysis is that the blade reliability
has a 3-parameter Weibull distribution and so the blades exhibit an increasing failure rate. Finally,
considering the mode-specific hazard functions, the failure mode 1, i.e., excessive vibration is observed to
have major contribution to the blade failures.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The growing trends of the application of the concept of reliabil-
ity in mechanical engineering design owe to the statistical nature 
of the various failure modes of the mechanical components. It is 
essential that the mechanical equipment operate reliably under all 
the conditions in which it is used; however, the requirement for 
reliability is different for each application. Reliability is the prob-
ability that a component, equipment, or system will perform a 
required function under the operating conditions encountered for a 
stated period of time [1]. There are many different operational re-
quirements and various environments, thus reliability is quantified 
in many different ways. One of them is the statistical analysis that 
is referred to as lifetime, survival time, or failure time data. Some 
methods of dealing with lifetime data are quite old, but starting at 
about 1970 the field expanded rapidly with respect to methodol-
ogy, theory, and fields of applications [2].

Limited failure data and statistical analyses of helicopter com-
ponents reliability exist in the technical literature and few statisti-
cal studies were made to model the reliability of these parts. Bell 
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Helicopters Company documented the reliability for some OH-58D 
components using the strength/load interaction formulation and 
established a life versus reliability relationship [3]. Sometimes 
there is a single lifetime for each individual, but failure may be 
of different modes of types. Often the modes refer to cause of fail-
ure, in which case the term “competing risks” or “multiple modes 
of failure” is sometimes used [2]. There have been many efforts 
to consider failure mechanisms (competing risks) for each compo-
nent to analyze reliability [4–6]. Kaplan and Meier [7] presented 
the Kaplan–Meier estimator for calculating the nonparametric reli-
ability function. In the nonparametric analysis, the confidence in-
tervals are derived to inform about the dispersion around the non-
parametric reliability function [8,9]. Nelson and Aalen presented 
the Nelson–Aalen estimator for calculating the cumulative mode-
specific functions for each failure modes [10–13].

In this paper, failure data are collected for 338 helicopter 
blades. These blades have 41 different failure modes. Two different 
strategies are adopted. In the first one, general failure is defined 
as scrapping of the blade, which results in retirement of the blade. 
A nonparametric analysis of blade reliability is conducted for 338 
blades, which were in service between 1974 and 2012. Because 
in this case the dataset is censored due to the fact that some of 
the blades are still operational at the end of gathering data, the 
Kaplan–Meier estimator is used for calculating the blade reliabil-
ity function. In addition, confidence intervals are derived for the 
nonparametric reliability result. In the second strategy, the blade is 
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Table 1
Data collection template and sample data for statistical analysis of blade reliability.

Failure mode Failure date Mode of failure Flight times (hours)

1 8/10/2002 Excessive Vibration 683
2 27/2/1985 Corroded 746
3 15/12/1982 Chipped 1204
4 30/12/1975 Cracked 603
5 12/8/1985 Bent/Dented 719
6 23/8/1998 Scrapping 1108
7 7/9/1999 Hard Landing 90
8 28/7/1976 Sudden Stop 1413

10 4/5/1982 Worn Excessively 1501
17 11/7/1978 Delaminated 1155

assumed to be subjected to different modes of failure. In the other 
words, causes other than scrapping such as fatigue, excessive vi-
bration, corrosion, . . . can also make the blade to fail. So, the blade 
is faced with multiple modes of failure in this strategy. In this case, 
the dataset is unsensored because the first time failures of the 
blades are available. A nonparametric analysis of blade reliability 
is conducted using the Kaplan–Meier estimator [7] and the confi-
dence intervals are derived for the nonparametric reliability result. 
In addition, the cumulative mode-specific functions are derived for 
each failure modes by using Nelson–Aalen estimator. In both cases, 
parametric fits are conducted using the maximum likelihood esti-
mation (MLE) and graphical approach. Moreover, the goodness of 
fit tests are used to justify the choice of a 3-parameter Weibull 
distribution for modeling blade reliability and then with the max-
imum likelihood estimation, the parameters of the 3-parameter 
Weibull distribution are calculated.

Applying the MLE procedure, the values of the shape parame-
ter (β = 1.793) and the scale parameter (θ = 9390.97 hours) are 
derived for the first strategy, and the values of the shape param-
eter (β = 2.187) and the scale parameter (θ = 1234.9 hours) are 
derived for the second one. It is seen that the shape parameter β
is greater than one in both strategies. Consequently, the helicopter 
blades in both cases (strategies I and II) suffer increasing failure 
rate or wear-out failures and as a result their failure probability of 
occurrence increases over time. Hence, with regarding the bathtub 
hazard rate curve their expected average life in wear-out period of 
life can be much smaller than their mean life in the period of their 
useful life.

2. Dataset description

For the purpose of this study, the data taken from the Iranian 
helicopter industry (PANHA) are used. This dataset provides ex-
tensive data on helicopter blade failures, as well as flight and in 
service histories since 1974.

For each blade in dataset, these data are collected from the 
dataset: (1) its flight times; (2) its failure date, if failure occurred; 
(3) the failure mode according to each flight time; and (4) the 
“censored time,” if no failure occurred. This last point is further 
explained in the following section where data censoring and the 
Kaplan–Meier estimator are discussed. The data collection template 
and sample data for this analysis for the most important failure 
modes are shown in Table 1. In the following section, the data are 
collected to conduct a nonparametric reliability analysis of all the 
blades identified previously.

3. Nonparametric reliability analysis of helicopter blade

Two different reliability analyses are accomplished:

Strategy I: General failure is defined as scrapping or retirement 
of the blade.
Strategy II: Failure of the blade occurs as a result of different 
modes of failure.

In the second strategy, failure does not mean the retirement of 
the blade. In fact, the distinction of the two strategies is that the 
first one accounts for the repairments done on the blades and as a 
result the repaired blade can be treated as a new one. The retire-
ment of the blades in this strategy occurs when the repairments 
can no longer be helpful and so, the blade has to be scrapped. 
However, the second strategy considers that the blade stops to 
work properly when each of the failure modes occur.

3.1. Censored data sample and Kaplan–Meier estimator as applied in 
the context of the first strategy

Censoring occurs when life data for statistical analysis of a set 
of items is incomplete, as in the case the dataset corresponding 
to the first strategy. More specifically, right censoring occurs. This 
means the following: (1) the blades in the present dataset are ac-
tivated at different points in time but all these activation times in 
this dataset are known, (2) failure dates and censoring are stochas-
tic, and (3) censoring occurs because the blade is still operational 
at the end of gathering data. In this work, the powerful Kaplan–
Meier estimator [7] is adopted, which is best suited for handling 
the type of censoring in the present dataset. The Kaplan–Meier es-
timator of the reliability function with censored data is given by:

R̂(t) =
∏

all i such that t(i)≤t

ni − di

ni
(1)

where:

t(i): time to the i’th failure (arranged in ascending order)
ni = number of operational units right before t(i)

= n − [number of censored units right before t(i)]
− [number of failed units right before t(i)]

di = number of failure units at t(i)

(2)

3.2. Confidence interval analysis

The Kaplan–Meier estimator (Eq. (1)) provides a maximum like-
lihood estimate of reliability but does not inform about the disper-
sion around R̂(ti). This dispersion is captured by the variance or 
standard deviation of the estimator, which is then used to derive 
the upper and lower bounds for say a 95% confidence interval (that 
is, a 95% likelihood that the actual reliability will fall between the 
two calculated bounds, with the Kaplan–Meier analysis providing 
us with the most likely estimate). The variance of the estimator is 
provided by Greenwood’s formula [8] and [9]:

var
[

R(ti)
] ≡ σ 2(ti) = [

R̂(ti)
]2 ∑

j≤i

d j

n j(n j − d j)
(3)

Moreover, the 95% confidence interval is determined by:

R95% = R̂(ti) ± 1.96σ(ti) (4)

More details about these equations can be found in [8] and [9].

3.3. Kaplan plot of blade reliability in presence of censored data

With the brief overview of censoring, of the Kaplan–Meier es-
timator, and of confidence intervals, the blade reliability can be 
analyzed from the present dataset. According to the first strategy 
for the 338 blades analyzed, 310 censored and 28 failure times 
are obtained. The data is treated with the Kaplan–Meier estimator 
(Eq. (1)), and the Kaplan–Meier plot of the reliability of helicopter 
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Fig. 1. Blade reliability with 95% confidence intervals based on strategy I.

blade is obtained. In addition, when Eqs. (3) and (4) are applied 
to the data, the 95% confidence interval curves are obtained. These 
are shown in Fig. 1.

Fig. 1 shows that the reliability of the blade decreases to 91.71% 
after 2504 flight hours. The complete tabular data corresponding to 
Fig. 1 is provided in Appendix A, Table A.1.

3.4. Uncensored data sample: the second strategy of reliability analysis

Considering all of the failure modes, the dataset is uncensored 
and the second strategy holds true. In this case, the blades can fail 
in different ways, i.e., multiple modes of failure exist. These modes 
may refer to the cause of failures, in which case they are often 
termed as competing risks. In the present dataset, the blades have 
41 different failure modes.

With considering the first time failure of the blades, the non-
parametric reliability function (R̂(t)) is estimated by ignoring the 
associated types of the failure modes and using the Kaplan–Meier 
estimator based on the data that is given by Eq. (1) [2]. It should 
be noted that the Kaplan–Meier estimator formula could be used 
in both cases: censored data and uncensored data [2]. When there 
is no censoring, n1 = n and ni = ni−1 − di−1 (i = 2, 3, . . . , k) and 
Eq. (1) for each ti reduces to:

R̂(ti) = Number of observations ≥ ti

n
; ti ≥ 0 (5)

In both censored and uncensored cases R̂(t) is a left-continuous 
step function which is equal to 1 at t = 0 and drops in a stepwise 
manner by a factor (ni −di)/ni immediately after each life time t(i) . 
To estimate the confidence intervals, Eqs. (3) and (4) should be 
used.

In this case, in addition, the Nelson–Aalen (NA) estimator is 
adopted to estimate the cumulative mode-specific hazard func-
tions corresponding to each failure modes [2]. The derivation of 
the Nelson–Aalen estimator formula can be found in [10–13]. The 
Nelson–Aalen estimator of the cumulative mode-specific hazard 
function with multiple failure modes for failure mode j is given 
by:

Λ̂ j(t) =
∑

all i such that t(i)≤t

δi j

ni
; j = 1, . . . ,k (6)

where:

t(i): time to i’th failure
k: number of failure mod es
n : number of operational units right before t

(7)

i (i)
Fig. 2. Blade reliability with 95% confidence intervals based on strategy II.

Fig. 3. NA estimates of cumulative mode-specific hazard functions based on strat-
egy II.

With the brief overview of uncensored data, of the Kaplan–
Meier estimator in case of multiple failure modes, and of cumu-
lative mode-specific hazard function, the blade reliability can be 
analyzed from the present uncensored dataset. Based on the sec-
ond strategy, for the 338 blades analyzed, the first time failures of 
the blades are available. The Kaplan plot of blade reliability along 
with the 95% confidence intervals is shown in Fig. 2. This figure 
shows that the reliability of the blade decreases to 84.31% after 
418 flight hours.

The cumulative mode-specific hazard functions corresponding 
to each failure modes are derived. The plots of the Λ̂ j(t)’s are 
given in Fig. 3 for the most important failure modes that are 
shown in Table 1. Failure mode 1 is excessive vibration. Exces-
sive quivering or tumbling vibration can cause structural stress on 
the helicopter during flight or ground running. Failure mode 2 is 
corrosion. Corrosion is a natural chemical process that gradually 
destroys most metals by a chemical reaction due to the effect of 
environment. Corrosion of rotor blades is common and requires a 
vigilant effort to control. Because of that pitting can occur on a sur-
face. Pitting of a surface is breakdown of a material due to chem-
ical or electrochemical attack by atmosphere, moisture or other 
agent. Failure mode 3 is chipping. Chipping is the actual breaking 
out of some small pieces of metal usually caused by heavy impact. 
Failure mode 4 is cracking. The rotating machines such as heli-
copter rotor blades are subjected to mixed high level loading and 
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Fig. 4. Weibull plots of the blade reliability based on: (a) strategy I, (b) strategy II.
initiation of a crack can lead to fracture under the effect of these 
loads. Failure mode 5 is denting. When surface is dented, surface 
indent with rounded bottom that usually caused by impact of a 
foreign object and parent material is displaced but not separated. 
Failure mode 6 is scrapping. The retirement of the blades occurs 
when the repairments can no longer be helpful and so, the blade 
has to be scrapped. Failure mode 7 is hard landing. A hard land-
ing is any accident or incident in which impact of the A/C caused 
severe pitching of main rotor allowing hard contact of hub with 
mast or results in cracking the aft. Failure mode 8 is sudden stop. 
Sudden stop is defined as any rapid deceleration of the drive sys-
tem, whether by internal seizure of the transmission or by main 
or tail rotor blades striking something which causes rapid deceler-
ation or enough tail rotor damage or require replacement. Failure 
mode 10 is wear. Excessive deterioration of a surface occurs due 
to material removal caused by relative motion between it and an-
other part. Failure mode 17 is delamination. Delamination occurs 
when a part is being separated into constituent layers due to heat, 
pressure, stress or expired adhesive.

The cumulative mode-specific hazard functions (Λ̂ j(t)) show 
that the failure mode 1 that is the “excessive vibration” is the 
major reason for the blade failures. After “excessive vibration” the 
failure mode 3, i.e., “the chipped” is the second rank cause of fail-
ure of the blades. The slopes of the plots in Fig. 3 provide rough 
estimation of the hazard functions λ j(t).

4. Parametric reliability of the helicopter blade

Nonparametric analysis provides powerful results since the reli-
ability calculation is unconstrained to fit any particular pre-defined 
lifetime distribution. However, this flexibility makes nonparamet-
ric results neither easy nor convenient to use for various purposes 
often encountered in engineering design (e.g., reliability-based de-
sign optimization). Several possible methods are available to fit 
a parametric distribution to the nonparametric estimated reliabil-
ity function (as provided by the Kaplan–Meier estimator), such as 
graphical procedures and inference procedures. In the following, 
two such methods namely the probability plots and the maximum 
likelihood estimation are reviewed briefly. The goodness of fit tests 
are used to justify the choice of a 3-parameter Weibull distribu-
tion for modeling the blade reliability and then with the maximum 
likelihood estimation, the parameters of each 3-parameter Weibull 
distribution are calculated.

4.1. Probability plots or graphical estimation

The review of fitting techniques are begun with the easy-to-use 
and visually appealing graphical technique known as probability 
plotting (or plotting positions). This technique is used to demon-
strate that the 3-parameter Weibull distribution is an appropri-
ate choice in both strategies for capturing the failure behavior of 
blades. Probability plots constitute a simple graphical procedure for 
fitting a parametric distribution to nonparametric data. This pro-
cedure is based on the fact that some parametric models, such 
as the exponential or Weibull distribution for example, can have 
their reliability function that are linearized by using a particular 
mathematical transformation. Considering the 2-parameter Weibull 
distribution, we have:

R(t) = exp

[
−

(
t

θ

)β]
(8)

Taking the natural logarithm of both sides of Eq. (8), yields:

ln
[

R(t)
] = −

(
t

θ

)β

(9)

Taking again the natural logarithm of both sides of this equality, 
results in:

ln
[− ln R(t)

] = β ln(t) − β ln(θ) (10)

If ln[− ln R̂(ti)] is plotted as a function of ln(ti) and data points 
are obtained that are aligned in the (ln(t); ln[−R̂(t)]) space, the 
resulting graph is termed the Weibull plot. In addition, shape pa-
rameter β of the Weibull distribution is provided with the slope of 
the line that fits the data point with least square method. More-
over, the scale parameter θ can be evaluated for example from the 
value of the intersection of the line with the y-axis.

Examining different line fitting techniques according to the 
3-parameter Weibull, 2-parameter Weibull, exponential, normal 
and lognormal distribution probability plots, it is concluded that a 
3-parameter Weibull distribution leads to the best approximation. 
Therefore, it can be stated that blade reliability can be properly 
approximated by 3-parameter Weibull distribution in each of the 
two strategies. Fig. 4 shows the Weibull plots for the blade relia-
bility based on the two strategies.

Probability plots or graphical methods for parametric fit have 
a powerful advantage in their simplicity: they are easy to set up, 
they do not require involved calculations, and they give immediate 
(visual) information about the validity of the assumed parametric 
distribution. In addition, the parameters of the assumed distribu-
tion can be calculated by simple least-square linear fit of the data 
on the probability plots. However, probability plots have some dis-
advantages when used to calculate the actual parameters of the 
distribution. For example,
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Fig. 5. Nonparametric reliability and 3-parameter Weibull fits for the strategy I.

(i) With distributions requiring logarithm time transformations 
(e.g., Weibull or lognormal distribution), excessive weight is given 
to the early failure times, and consequently, the resulting paramet-
ric fit is biased (towards more precision for early failures).

(ii) As a consequence of (i), the least-square fit on the probabil-
ity plot does not result in minimum variance estimate of the actual 
distribution.

(iii) The estimation of the parameters may be poor if the failure 
times are not scattered properly across the data range.

If the purpose or objectives of conducting the reliability study 
do not require “precise” results, then probability plots or graphi-
cal estimations are adequate for conducting parametric fits. Oth-
erwise, one can revert to the more precise, but analytically in-
volved, maximum likelihood estimation method, discussed later. 
For this purpose, probability plots are used to justify the choice 
of a 3-parameter Weibull distribution for modeling the blade re-
liability, and then MLE is used to calculate the parameters of the 
3-parameter Weibull distribution.

4.2. Maximum likelihood estimation

Maximum likelihood estimation (MLE) addresses all the limi-
tations of probability plots and provides more precise parametric 
fits than graphical estimation. While conceptually simple, the MLE 
method analytically requires:

(1) Determining the right formulation of a function (known 
as the likelihood function) depending on several parameters (e.g., 
censoring type, chosen parametric distribution), and (2) Searching 
for an optimum of this function, which can prove analytically te-
dious by calculating a set of partial derivatives of the logarithm of 
the likelihood function, and/or numerically intense by non-linear 
optimization techniques. In the following, a brief overview of this 
method is provided.

Conceptually, MLE is based on the following: given a set of 
observed data, and assuming a parametric life distribution with 
unknown parameters (e.g., three parameters for the 3-parameter 
Weibull distribution), likelihood function is defined as the prob-
ability of obtaining the observed data from the chosen paramet-
ric distribution. When an exhaustive search is conducted over the 
unknown parameters of the distribution, the values of these pa-
rameters that maximize the likelihood function are termed as the 
maximum likelihood estimates and the method is known as the 
MLE.

Fig. 5 shows the nonparametric reliability curve for the strat-
egy I, as well as the best 3-parameter Weibull fit extracted using 
MLE and graphical parameters. Fig. 5 provides a visual verification 
Fig. 6. Nonparametric reliability and 3-parameter Weibull fits for the strategy II.

Fig. 7. Nonparametric reliability and 3-parameter Weibull fit for the strategy I.

for the 3-parameter Weibull distribution of the nonparametric reli-
ability computed based on the first strategy. Similar results for the 
failure data obtained following the second strategy are shown in 
Fig. 6.

The MLE procedure is applied to determine the parameters of 
3-parameter Weibull distribution for the helicopter blade reliabil-
ity. Considering the strategy I, its nonparametric reliability is best 
approximated by the following 3-parameter Weibull distribution:

R(t) = exp

[
−

(
t − 125.697

9265.273

)1.793]
(11)

The values of the shape parameter (β = 1.793) and the scale 
parameter (θ = 9390.97) are the maximum likelihood estimates. 
Now considering the strategy II, its nonparametric reliability is best 
approximated by the following 3-parameter Weibull distribution:

R(t) = exp

[
−

(
t + 174.830

1409.73

)2.187]
(12)

The values of the shape parameter (β = 2.187) and the scale 
parameter (θ = 1234.9) are the maximum likelihood estimates. 
Fig. 7 and Fig. 8 show the nonparametric reliability curve (with 
95% confidence intervals) for the helicopter blades, as well as the 
best 3-parameter Weibull fit (with MLE parameters).

The maximum error of the goodness-of-fit for the 3-parameter 
Weibull distribution is 4.24% for strategy I and 0.408% for strat-
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Fig. 8. Nonparametric reliability and 3-parameter Weibull fits for the strategy II.

egy II. This represents a remarkable accuracy for a 3-parameter 
Weibull distribution.

The important result is that the helicopter blades in both cases 
(strategies I and II) undergo increasing failure rate or wear-out fail-
ures (shape parameter β > 1). Hence, with regarding the bathtub 
hazard rate curve their expected average life in wear-out period of 
life can be much smaller than their mean life in the period of their 
useful life.

5. Conclusion

Limited failure data and statistical analyses of helicopter com-
ponents reliability exist in the technical literature and few statisti-
cal studies were made to model the reliability of these parts. This 
issue motivates the development of the present statistical analy-
sis of helicopter blade reliability. In this work, this gap is filled by 
conducting a nonparametric statistical analysis of helicopter blade 
reliability. It is demonstrated that the 3-parameter Weibull distri-
bution is a good fit for helicopter blade reliability. The Weibull 
parameters are calculated using the maximum likelihood estima-
tion technique. One important result from the parametric analysis 
is that the blade reliability function versus life has 3-parameter 
Weibull distribution. Regarding the Kaplan plots in both strate-
gies, they show that in the first strategy the reliability of the blade 
decreases to 91.71% after 2504 flight hours. Nevertheless, in the 
second strategy the reliability of the blade decreases to 84.31% 
after 418 flight hours. Further, the blades exhibit an increasing 
failure rate or wear-out. In other words, their failure probability 
of occurrence increases over time and with regarding the bathtub 
hazard rate curve their expected average life in wear-out period 
of life can be much smaller than their mean life in the period of 
their useful life. This finding has important implications for the 
helicopter industry and should prompt serious consideration for 
wear-out procedures. Finally, considering the cumulative mode-
specific hazard functions it was observed that the failure mode 1, 
i.e., the “excessive vibration” is the major reason for the blade 
failure. After “excessive vibration” the failure mode 3, i.e., “the 
chipped” is the second major reason for failure of the blades. The 
slopes of the cumulative mode-specific functions provide rough es-
timates of the hazard functions λ j(t).
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Appendix A. Nonparametric blade reliability and tabular data 
according to the first strategy

Table A.1
Tabular data for the Kaplan–Meier plot of blade reliability in Fig. 1.

Failure time ti

(hours)
R̂(ti) 95% Confidence 

interval—lower 
bound

95% Confidence 
interval—upper 
bound

348 0.997041 0.991251 1.00000
418 0.994083 0.985907 1.00000
573 0.991124 0.981125 1.00000
672 0.988166 0.976637 0.99969

1078 0.985207 0.972337 0.99808
1108 0.982249 0.968171 0.99633
1188 0.979290 0.964108 0.99447
1271 0.976331 0.960125 0.99254
1367 0.973373 0.956210 0.99054
1395 0.970414 0.952350 0.98848
1405 0.967456 0.948539 0.98637
1614 0.964497 0.944770 0.98422
1687 0.961538 0.941037 0.98204
1689 0.958580 0.937337 0.97982
1863 0.955621 0.933667 0.97758
1870 0.952663 0.930024 0.97530
1991 0.949704 0.926404 0.97300
2126 0.946746 0.922808 0.97068
2141 0.943787 0.919232 0.96834
2154 0.940828 0.915675 0.96598
2188 0.937870 0.912136 0.96360
2460 0.934911 0.908613 0.96121
2476 0.931953 0.905106 0.95880
2481 0.928994 0.901613 0.95637
2483 0.926036 0.898135 0.95394
2495 0.923077 0.894669 0.95148
2504 0.917160 0.887774 0.94655
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