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As thin plates have relatively big thickness ratios, their elastic buckling usually occurs before the yielding.
From beginning of the previous century, many researchers have considered various in-plane loading states
on thin plates and have strived to find simple equations to predict the buckling load. However, there are
few valid equations with negligible errors for a thin plate, when it is under all of in-plane loads. In this
paper, using energy method, an applicable formula is suggested for a simply supported rectangular plate,
which is under biaxial and shear loads. The biaxial loads can be applied in the compressive/compressive,
compressive/tensile, and tensile/tensile states on the plate. Generally, 15 129 examples are considered
for this problem. The aspect ratio of plates varies from 1 to 5 and for each case and with the known
load ratios, the plate buckling coefficient is calculated. Then, by using the regression techniques and
interpolation, it is tried to estimate a simple equation with minimum error to predict the buckling load.
The confirmed results show that for the biaxial compression and shear state, the maximum error is 8%
and for the compression–tension–shear and biaxial tension and shear states, it increases until 20%.

© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Thin-plated structures are widely used in various engineering 
industries such as building, bridge, aerospace, marine, shipbuilding 
and so on. Thin plates usually have thickness ratio between 10 and 
100 and in practical purposes they mostly buckle under in-plane 
axial and shear loading before yielding. Because they have the 
post-buckling behavior, prediction of the buckling load by an ap-
plicable equation with minimum error is very important for such 
structures.

In many years, the valuable efforts have been performed to find 
concise equations for the buckling load of flat plates under the 
various loading types and boundary conditions [1–3]. There are 
several methods to predict buckling loads of such plates. The older 
methods have been applied from near the end of the 19th century 
[1] that mostly included the method of integration of the differen-
tial equation and also, the energy method. Recently, the numerical 
methods have been considered as useful tools for the complicated 
problems. Generally, the exact solutions can be developed, when 
the plate is under uniformly distributed compressive in one direc-
tion or two perpendicular directions. For the latter state, Lebove 
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[4] showed that one of half-waves in the buckled plate is always 
unit; but the other one can be achieved by an explicit solution.

In this way, numerous researchers have investigated other 
states of loadings and boundary conditions through the years. Us-
ing energy method, van der Neut [5] obtained the buckling load of 
a simply supported plate under a half-sine load distribution on the 
opposite sides and later Benoy [6] investigated this problem for a 
parabolic distribution. He considered four boundary conditions of 
plate: (i) ends and sides simply supported, (ii) ends clamped, sides 
SS, (iii) ends SS, sides C, and (iv) ends and sides C. Also, the load-
ing was expressed in terms of the stresses at the panel edges and 
center. Benoy compared the obtained results with those of van 
der Neut. Later, Bert et al. [7] claimed that two previous works 
were based on an incorrect in-plane stress distribution. They used 
Galerkin solution to remove the existing deficiencies in the previ-
ous works, especially for a sinusoidal stress distribution and then, 
achieved more accurate results for the buckling load. They con-
cluded that their analysis shows the buckling loads at higher plate 
aspect ratio increase relative to those obtained in the literature.

Bank and Yin [8] considered buckling of an orthotropic plate, 
simply supported on its loaded edges and free and rotationally re-
strained on its unloaded edges. Uniform uniaxial compression was 
applied on the loaded edges and the method of integration of the 
differential equation (exact solution) for the deflected plate was 
used. In this study, the effect of orthotropic properties of the plate 
material, the plate aspect ratio, the rotational restraint of the one 
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loaded edge and the buckle half-wavelength was discussed. They 
showed that in the case of a plate with a free edge, the Pois-
son ratio appears explicitly in the boundary conditions. Finally, the 
buckling curves were presented for the results of parametric stud-
ies as well as typical composite materials.

Kang and Leissa [9] presented an exact solution for the buckling 
and free vibration of rectangular plates having two opposite edges 
simply supported, each subjected to an in-plane moment, with the 
other two edges being free. The exact solution was applied in term 
of an infinite power series, so that sufficient number of terms of 
the series must be taken to obtain accurate numerical results. The 
results showed that the critical buckling moment always occurs for 
a mode having one half-wave in the direction of loading and also, 
the buckling and frequency parameters depend upon the Poisson 
ratio. Furthermore, the used approach may be applied equally well 
to plates having other continuous boundary condition along their 
unloaded edges.

Elangovan and Prinsze [10] arranged a finite element shear 
buckling analysis with NASTRAN for flat rectangular plates with 
two free opposite edges and the other two edges with different 
boundary conditions. In some curves, the shear buckling coeffi-
cient which obtained for the boundary conditions was compared 
and emphasized that the in-plane flexibility of the supports is an 
important parameter in the structural design.

In recent decades, the numerical methods have been extended 
to increase the efficiency and ability. Sherbourne and Pandey [11]
used differential quadrature method (DQM) for solving directly the 
partial differential equation governing the problem with prescribed 
boundary conditions. This method suggests polynomial approxi-
mations of partial derivatives of a function. They employed DQM 
to compare some examples and results with available standard 
solutions. Their experience showed that compactness and compu-
tational economy of the DQ model are praiseworthy. Later, Civalek 
[12] compared the methods of differential quadrature (DQ) and 
harmonic differential quadrature (HDQ). He used these methods 
for various analysis of thin isotropic plates and columns. Unlike DQ 
that uses the polynomial functions, HDQ uses harmonic or trigono-
metric functions as the test functions. Civalek applied both of 
methods on some examples such as elastic columns, circular, rect-
angular, skew, trapezoidal, eccentric sectorial, and square plates. 
He concluded that in the numerical examples, the results obtained 
with HDQ method are more accurate than the values calculated 
by using finite elements and finite differences and needs less grid 
points than the DQ method.

Liew et al. [13] formulated the radial point interpolation 
method (RPIM) for the buckling analysis of non-uniformly loaded 
thick plate. The RPIM is a mesh-free method, so that the prob-
lem domain is not divided into sub-domain to approximate the 
displacement (unlike the FEM). The buckling loads of the circular, 
trapezoidal and skew plates were calculated and compared with 
FEM. Furthermore, Civalek et al. [14] used discrete singular convo-
lution (DSC) for buckling and free vibration analyses of rectangular 
plates subjected various in-plane compressive loads and with dif-
ferent boundary conditions. The mathematical foundation of this 
method is the theory of distributions and wavelet analysis. The 
obtained results were compared with those of other numerical 
methods.

Beyond the described investigations, many studies can be found 
that have been presented for buckling of thin plates under combi-
nations of in-plane loads and various boundary conditions. Using 
energy method, McKenzie [15] gave an analysis of the buckling of 
a rectangular plate of arbitrary aspect ratio under combination of 
biaxial compression, bending and shear. In this investigation, the 
pair of sides of the plate to which bending is applied are assumed 
to be simply supported, while the other two sides are supported 
by edges members of arbitrary torsional and flexural stiffnesses. 
McKenzie generated some interaction curves for different aspect 
ratios and load ratios.

Liu and Pavlovic [16] broke-down external loads (direct, shear 
and bending loads) into four parts in the symmetrical and anti-
symmetrical forms. For a simply supported rectangular plate and 
using principle of super position, the Ritz energy technique was 
used to compute the buckling coefficient of the plate. They em-
phasized that the proposed approach based on formal plane stress 
elasticity solution enables the true distribution in any plate to be 
obtain irrespective of the complexity and/or arbitrariness of ap-
plied forced on any edges.

However, some equations have been approximately developed 
among pure shear, pure bending, combined shear and longitudinal 
compression, shear and bending load [17–19]. Although a few in-
vestigations can be found for the buckling behavior of plates under 
biaxial and shear loads, Wagner [20–22] established two formu-
las to calculate the critical shear stress of simply supported and 
clamped plates with given values of biaxial stresses:(

τcrm

τ0

)2

=
(

2

√
1 − σy

τ0
+ 2 − σx

τ0

)(
2

√
1 − σy

τ0
+ 6 − σx

τ0

)
;

all edges simply supported(
τcrm

τ0

)2

=
(

2.31

√
4 − σy

τ0
+ 4

3
− σx

τ0

)(
2.31

√
4 − σy

τ0
+ 8 − σx

τ0

)
;

all edges clamped (1)

where

τ0 = π2 E

12(1 − υ2)

(
t

b

)2

In above equation, σx and σy are axial stresses in x- and 
y-directions respectively. They have negative values when are ten-
sile. To use this equation, the plate aspect ratio must be very large 
[22]. As a result, Eqs. (1) could not be used for usual aspect ratio 
of plates (1 < α < 5).

Chen et al. [23] estimated a concise formula for the critical 
buckling stresses of an elastic plate under biaxial compression and 
shear (Eq. (2)). They considered the plate aspect ratio between 1 
and 5.

σx

σx,cr
+

(
σy

σy,cr

)γ

+
(

τcrm

τcr

)2

= 1 (2)

where

γ =
{

1; 1 ≤ α ≤ √
2

α[1−( τcrm
τcr

)2]; α >
√

2
; α = a

b

In Eq. (2), σx is compressive stress in x-direction; σx,cr is uniax-
ial compressive buckling stress in x-direction; σy is compressive 
stress in y-direction; σy,cr is uniaxial compressive buckling stress 
in y-direction; τcrm is modified shear buckling stress of the plate 
and τcr is pure shear buckling stress of the plate.

Chen et al. emphasized that the maximum error of the critical 
stress relationship in above equation is found to be less than 0.5% 
for 1 ≤ α <

√
2, 5% for 

√
2 ≤ α < 2, and 10% for 2 ≤ α < 5 [23]. 

Eq. (2) shows that for α >
√

2, without shear load (τcrm = 0), 
γ = α. As a result, Eq. (2) is converted to σx

σx,cr
+ (

σy
σy,cr

)α = 1. It 
can be shown that for the biaxial loaded plates, power of both of 
the terms must be unit [1,22], whereas here α >

√
2.

In addition, according to Von-Mises criteria, DNV-RP-C201 has 
an equation which can be used to obtain inelastic buckling of un-
stiffened plate under biaxial compression and shear loads [24].



JID:AESCTE AID:3717 /FLA [m5G; v1.182; Prn:21/07/2016; 9:27] P.3 (1-12)

A. Jahanpour, F. Roozbahani / Aerospace Science and Technology ••• (••••) •••–••• 3

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 1. A simply supported rectangular plate with a × b × t dimensions under com-
pression biaxial and shear stresses.

In this paper, the Rayleigh–Ritz method is applied on sim-
ply supported thin rectangular plates with aspect ratio between 
1 and 5 to achieve the coefficient of elastic buckling load for 
three types of in-plane loading: compression–compression–shear, 
compression–tension–shear and tension–tension–shear. Then, us-
ing the regression technique and interpolation, an applicable equa-
tion with relatively acceptable accuracy is represented to predict 
the buckling load of plates. The number of half-waves of buck-
led plate under biaxial loading is an essential stage for above 
calculations. The obtained results are validated with those of the 
Rayleigh–Ritz method and the finite element modeling. Finally, the 
appeared errors from each type of loading are represented.

2. The analytical method

2.1. The Rayleigh–Ritz approach [2]

For a rectangular plate with known boundary and loading con-
ditions (Fig. 1), initially, the total potential energy function must 
be established (Eq. (3)) and then minimized. This function has two 
parts: the total strain energy (Eq. (4)) and the external forces po-
tential functions (Eq. (5)). The latter function is calculated for a 
plate that is under biaxial and shear stresses.

Π = U − V (3)

U = D

2

a∫
0

b∫
0

[(
∂2 w

∂x2
+ ∂2 w

∂ y2

)2

− 2(1 − ν)

(
∂2 w

∂x2

∂2 w

∂ y2

)

−
(

∂2 w

∂x∂ y

)2]
dxdy (4)

V = t

2

a∫
0

b∫
0

[
σx

(
∂ w

∂x

)2

+ σy

(
∂ w

∂ y

)2

− 2τxy

(
∂ w

∂x

∂ w

∂ y

)]
dxdy (5)

where t is the plate thickness and D is bending rigidity of the 
plate that calculated as below:

D = Et3

12(1 − ν2)
(6)

where E is module of elasticity and ν is Poisson ratio of the plate 
material. In Eqs. (4) and (5), w is a double sine function to show 
the plate displacement, so that it satisfies the boundary conditions 
(Eq. (7)):

w(x, y) =
∞∑ ∞∑

Amn sin
mπx

a
sin

nπ y

b
(7)
m=1 n=1
where m and n are number of the half-waves that appear in x and 
y directions respectively and Amn is unknown coefficient. Substi-
tuting Eq. (7) in Eqs. (4) and (5), the functions of U and V can be 
simplified as below:

U = Dabπ4

8

∞∑
m=1

∞∑
n=1

A2
mn

(
m2

a2
+ n2

b2

)2

(8)

V = π2abt

8

∞∑
m=1

∞∑
n=1

A2
mn

[
σx

m2

a2
+ σy

n2

b2

]

− 4tτ
∞∑

m=1

∞∑
n=1

∞∑
p=1

∞∑
q=1

Amn Apq
mnpq

(m2 − p2)(n2 − q2)
(9)

In Eq. (9), (m + p) and (n + q) must be odd numbers, thus 
(m +n + p +q) must be even, i.e. m +n and p +q must be even or 
odd numbers simultaneously. A set of equations can be achieved 
to minimize the total potential energy function that shown in 
Eqs. (10):(

∂Π

∂ Amn

)
= ∂(U − V )

∂ Amn
= 0;

m = 1,2,3, . . . , M; n = 1,2,3, . . . , N (10)

where M and N are the minimum terms that must be selected 
to find convergence in the results. Substituting Eqs. (8) and (9)
in Eqs. (10), the set of equations can be simplified as shown in 
Eq. (11):

Amn
[(

m2 + n2α2)2 − kxm2α2 − kyn2α4]
+ 32ksα

3

π2

∞∑
p=1

∞∑
q=1

Apq
mnpq

(m2 − p2)(n2 − q2)
= 0 (11)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kx = tb2

Dπ2
σx

ky = tb2

Dπ2
σy

ks = tb2

Dπ2
τ

(12)

In Eqs. (11) and (12), kx , ky and ks are the coefficients of criti-
cal stress in x, y and xy directions respectively and α = a/b is the 
plate aspect ratio (Fig. 1). As a general closed-form solution could 
not be found for the set of Eqs. (11), the limited terms must be se-
lected. Therefore, a set of M × N linear equations for the unknown 
coefficients of Amn are established that can be shown in matrix 
form (Eq. (13)):

[C]L×L{A}L×1 = 0; L = M × N (13)

It can be shown that considering M = N = 10, the results are found 
with successful convergence [25]. The different dimensionless pa-
rameters, R = σy

τ = ky
ks

and S = σx
τ = kx

ks
, and the plate aspect ratio 

are considered as below:

α = 1,1.1,1.2,1.3, . . . ,4.8,4.9 and 5

S = −1,−0.8,−0.6,−0.4,−0.2,−0.1,0,0.1,0.2,0.4,0.6,0.8,

1,1.2,1.5,2,3,4,5 and 10

R = −1,−0.8,−0.6,−0.4,−0.2,−0.1,0,0.1,0.2,0.4,0.6,0.8,

1,1.2,1.5,2,3,4,5 and 10
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Fig. 2. The boundary curves between consecutive buckling modes for the biaxial 
loaded plate.

where negative sign refers to tensile stresses. All load cases are 
S × R = 20 × 20 = 400. In some load cases, it is possible that the 
plate yielding occurs before the elastic buckling. Therefore, such 
states must be eliminated from above arrangement and the num-
ber of load cases are reduced to 369. Finally, all examples are 
realized as 369 × 41 = 15 129. Eq. (13) is solved for all examples 
and the buckling coefficient is determined for each case. The com-
parison between the obtained results and finite element models 
show that the biaxial loading state (without shear stresses) has 
major influence on the number of half-waves in the buckled plate 
and they have small dependence to the shear stresses. In the fol-
lowing, this state is applied to find them.

2.2. Calculation of the number of half-waves for the biaxial loading

If there is no shear stress on the plate, Eq. (11) has the closed-
form solution as shown in Eq. (14) [1]:

σx = kx
Dπ2

tb2
; kx =

[(m
α

)2 + n2
]2

[(m
α

)2 + βn2
] (14)

where β = σy
σx

is the axial loads ratio. It has been shown that 
one of the half-waves is always unit [4] (Here, it is supposed that 
n = 1). As m is an integer number, using Eq. (15), the relationship 
among α and β can be found in the boundary between mth and 
(m + 1)th half-waves as shown in Eq. (16).[(m

α

)2 + 1
]2

(m
α )2 + β

=
[(m+1

α

)2 + 1
]2

(m+1
α )2 + β

(15)

β = α4 − m2(m + 1)2

α2[2α2 + (m + 1)2 + m2] (16)

Fig. 2 shows Eq. (16) graphically in the different buckling modes 
(α ≥ 1). As pointed, one of the half-waves is permanently unit and 
using Fig. 2, with both known parameters (α and β), the number 
of half-waves in other direction can be achieved. In Fig. 2 and for 
negative β , it is always supposed that σx > 0 and σy < 0. For the 
opposite state, the plate and its applied stresses must be rotated in 
90◦ to reach to above conditions. As a result, the inversed α and 
β must be considered. In this situation, m = 1 and n is determined 
from Fig. 2. For example, if β = −3, α = 1.5, σx < 0 and σy > 0, 
after rotation of the plate, the new values of α and β are found as 
0.67 and −0.333 respectively. Using Fig. 2, n = 1 can be attained 
(and m = 1). But, if σx > 0 and σy < 0, there is no change for α
and β , so that m = 4 (and n = 1). When both of σx and σy are 
applied as tensile stresses, apart from Eq. (15), it is supposed that 
both of the half-waves are unit (m = n = 1).
Fig. 3. The different states of in-plane loading on the plate.

2.3. Estimation of a suitable equation for the obtained data

To predict an appropriate function that can evaluate the plate 
buckling coefficient with minimum error, the regression and in-
terpolation methods are used. In this way, package GeneXproTools 
[26] is widely employed and thousands functions are examined 
with different interpolators. Finally, the best function with the 
least error is obtained as below:

kx =
[(m

α

)2 + n2
]2

[(m
α

)2 + βn2
] .δ (17)

where δ is a coefficient that is additionally introduced to Eq. (14)
when shear load is added to the biaxial loaded plate. It is defined 
as below:

δ =
⎧⎨
⎩

1 − ( ks
ks,cr

)2; ( ks
ks,cr

)
< 0.25 or α ≤ 1.6

e
αβ
20 .

( ks
ks,cr

)2

− ( ks
ks,cr

)2; ( ks
ks,cr

) ≥ 0.25 and α > 1.6
(18)

After simplification, Eq. (17) can be converted as shown below:

kx

kx,cr
+ ky

ky,cr
+

(
ks

ks,cr

)2

= λ

λ =
⎧⎨
⎩

1; ( ks
ks,cr

)
< 0.25 or α ≤ 1.6

e
αβ
20 .

( ks
ks,cr

)2

; ( ks
ks,cr

) ≥ 0.25 and α > 1.6
(19)

where kx,cr and ky,cr are coefficients of uni-axial critical stresses 
with half-waves corresponding to the biaxial state in x- and 
y-directions respectively (Eqs. (20) and (21)). These half-waves 
should be obtained from Fig. 2 (Eq. (16)). Also, ks,cr is that of pure 
shear which obtained from Eq. (22).

kx,cr =
[(m

α

)2 + n2
]2

(m
α

)2
(20)

ky,cr =
[(m

α

)2 + n2
]2

n2
(21)

ks,cr = 5.34 + 4

α2
(22)

Eq. (19) is suitable for compression–compression–shear state 
(Fig. 3a). If there is at least one tension (negative) stress (Fig. 3b–d), 
then λ is always considered unit and the shear buckling coeffi-
cient (ks), is always calculated from Eq. (23):
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Table 1
The different zones in presence of the tensile stresses with possible modifier factors (Eqs. (24) and (25)).

C–T–S S > 0 and R < 0 (Fig. 3b) S ≤ 1.4, Zone I S > 1.4, Zone II

η1 None

S < 0 and R > 0 (Fig. 3c) S < −0.4 and R ≤ 1, Zone III S ≥ −0.4 or R > 1, Zone IV

n = m = 1 n > 1, m = 1 None

None η2
*

T–T–S** S < 0 and R < 0 (Fig. 3d) S < −0.4 or R < −0.4, Zone V S ≥ −0.4 and R ≥ −0.4, Zone VI

η1 None

* If η2kn
s < kn−1

s , then the procedure is correct; otherwise, the shear buckling coefficient is kn−1
s , where kn

s and kn−1
s are calculated from Eq. (23) for n and (n − 1) 

half-wave(s) respectively.
** The proposed equation has an acceptable prediction, if |R| ≤ |S|.
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kx

kx,cr
+ ky

ky,cr
+

(
ks

ks,cr

)2

= 1 (23)

Eq. (23) may be modified by a factor (η1 or η2) that should be 
achieved by Eqs. (24) and (25).

η1 = (
R + |R S + 0.011|)2 − R + |S|−0.45|S|(R+R5)

+ 0.91R S

0.82R|S| + α − 1.41

50
(24)

η2 = (
S + |R S + 0.011|)2 − S + |R|−0.45|R|(S+S5)

+ 0.91R S

0.82S|R| + α − 1.41

50
(25)

where S = kx
ks

and R = ky
ks

. Eq. (25) is defined when R is replaced 
with S in Eq. (24) and vice versa. Table 1 shows the modifier fac-
tors (η1 or η2) that must be applied on ks in three situations. In 
this table, it is supposed that ks is always positive. This table shows 
some states which it is not necessary to use η1 or η2 and ks can be 
directly obtained from Eq. (23). However, in presence of the ten-
sile load(s) it is necessary to check that the elastic buckling occurs 
before the yielding.

3. Comparison of the results with the Rayleigh–Ritz method

For each loading state which is shown in Fig. 3, the coefficient 
of buckling (kx or ks) is calculated from both of the proposed equa-
tion (Eq. (19) or (23)) and the Rayleigh–Ritz method. In C–C–S 
state (Fig. 3a), it is better that the coefficient ‘kx ’ is supposed as an 
unknown variable, because in Eq. (19) the parameter ‘λ’ is func-
tion of ‘ks ’ in some cases. Thus, if ‘ks ’ is an unknown variable, the 
equation must be solved with a trial and error method. However, 
in T–C–S (Fig. 3b and 3c) and T–T–S (Fig. 3d) states, λ = 1 iden-
tically and there is no significant difference between prediction of 
kx and ks .

3.1. Compression–Compression–Shear state (C–C–S)

Eq. (19) has acceptable accuracy to predict the plate buckling 
coefficient and the obtained results can compare to those of the 
energy method. Figs. 4–11 show the comparison between two 
methods in some loading states and for aspect ratio among 1 to 5. 
In these figures, the vertical axis shows the buckling stress coeffi-
cient of plate in x-direction (kx). Table 2 shows the maximum and 
minimum difference between two methods with corresponding as-
pect ratios which appeared in the presented figures. The figures 
numbers have been arranged based on the maximum difference 
increasing. When ks/kx = 0.1 and β = 1, the best conformity is 
seen (Fig. 4). In this loading case, one half-wave always appears in 
the both of perpendicular directions (m = n = 1). In Fig. 5, before 
α = 2.8, there is no significant difference; but in this aspect ratio, 
it grows once up to 0.8% and after that, it changes smoothly. In 
Fig. 4. The kx–α diagrams for ks/kx = 0.1 and β = 1.

Fig. 5. The kx–α diagrams for ks/kx = 0.5 and β = 0.1.

Fig. 6, very good fitting has been achieved between two diagrams 
and the difference increases to 1.7% (Table 2). However, there are 
four buckling modes in Fig. 7 and the maximum difference ap-
pears on m = 4 and α = 5. This figure shows that before α = 1.4, 
the error is very small. In Figs. 8 and 11, using the Rayleigh–Ritz 
method, the buckling mode changes from m = 1 to m = 2, when 
α = 2.6 and α = 2.8 respectively; but using Eq. (19), for ks/kx = 1
and β = 0.4 (Fig. 8), it changes on α = 3.4 and consequently, there 
is 3.5% difference between two methods on m = 1 and α = 2.6. 
Furthermore, for ks/kx = 5 and β = 1 (Fig. 11), there is always one 
half-wave in the plate and therefore, 6.7% difference appears. In 
Figs. 9 and 10, the two methods have relatively good coordina-
tion, so that increasing aspect ratio leads to increasing error until 
it reaches about 4%, when α = 5.
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Fig. 6. The kx–α diagrams for ks/kx = 5 and β = 3.

Fig. 7. The kx–α diagrams for ks/kx = 1.25 and β = 0.25.

Fig. 8. The kx–α diagrams for ks/kx = 1 and β = 0.4.

Generally, the shown examples and other loading cases rep-
resent that the greater aspect ratio usually leads to the greater 
errors. In addition, a desirable relationship could not be found 
between the loadings ratios and the maximum difference. Fi-
nally, after comparison among all of obtained results, the maxi-
mum difference appeared in Eq. (19), can be summarized in Ta-
ble 3.
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Fig. 9. The kx–α diagrams for ks/kx = 2.5 and β = 1.5.

Fig. 10. The kx–α diagrams for ks/kx = 1.25 and β = 1.

Fig. 11. The kx–α diagrams for ks/kx = 5 and β = 1.

Table 2
Difference between two methods for C–C–S loading.

Figure 
no.

ks/kx β Max. Min.

Value (%) α m Value (%) α m

4 0.1 1 0.03 5 1 0.0002 1.1 1
5 0.5 1 0.8 2.8 3 0.01 1.3 1
6 5 3 1.7 1.7 1 0.03 1.3 1
7 1.25 0.25 2.5 5 4 0.02 1.4 1
8 1 0.4 3.5 2.6 1 0.02 3.6 2
9 2.5 1.5 3.7 5 1 0.02 1.3 1

10 1.25 1 4.1 5 1 0.01 1.3 1
11 5 1 6.7 2.8 1 0.02 1 1
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Table 3
The maximum error for the different conditions of C–C–S loading.

Maximum error (%) The plate conditions

1 1 ≤ α < 1.5
4 1.5 ≤ α < 3
8 3 ≤ α ≤ 5

1 ks
ks,cr

≤ 0.25

8 0.25 < ks
ks,cr

≤ 1

Fig. 12. The ks–α diagrams for S = 1.2 and R = −0.4 (β = −0.333, zone I).

Fig. 13. The ks–α diagrams for S = 1.2 and R = −0.8 (β = −0.67, zone I).

Fig. 14. The ks–α diagrams for S = 0.8 and R = −1.2 (β = −1.5, zone I).

Fig. 15. The ks–α diagrams for S = 1.5 and R = −0.2 (β = −0.133, zone II).

Fig. 16. The ks–α diagrams for S = 2 and R = −1 (β = −0.5, zone II).

Fig. 17. The ks–α diagrams for S = 1.5 and R = −1 (β = −0.667, zone II).

3.2. Tension–Compression–Shear state (T–C–S)

When one of the applied stresses is tensile and it is applied on 
the plate length (Fig. 3b), Eq. (23) predicts the satisfactory results, 
if σx > 1.4τ . Furthermore, if the tensile stress is applied on the 
plate width (Fig. 3c), the proposed equation can be used solitarily, 
if |σx| ≤ 0.4τ or σy > τ . In the other conditions, Eq. (23) must be 
modified as shown in Table 1. Figs. 12–23 have been adjusted for 
zones I to IV respectively that are defined in Table 1. These fig-
ures show the comparison between the shear buckling coefficients 
(ks) which calculated by two methods in some loading ratios and 
for aspect ratio among 1 to 5. Also, Tables 4 and 5 represent the 
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Fig. 18. The ks–α diagrams for S = −0.6 and R = 1 (β = −1.67, zone III).

Fig. 19. The ks–α diagrams for S = −0.8 and R = 0.6 (β = −0.75, zone III).

Fig. 20. The ks–α diagrams for S = −1 and R = 0.4 (β = −0.4, zone III).

Table 4
Difference between two methods for T–C–S loading (zones I and II).

Zone Figure 
no.

S R Max. Min.

Value 
(%)

α m Value 
(%)

α m

I 12 1.2 −0.4 4.1 1 1 0.05 3.3 4
13 1.2 −0.8 9.6 1.5 2 2 2.5 4
14 0.8 −1.2 19.2 2.7 5 6.1 1.1 2

II 15 1.5 −0.2 4.5 2.3 3 0.04 1 1
16 2 −1 9.4 4.8 7 4.5 1.6 2
17 1.5 −1 17.6 4.7 7 8.5 1.5 2

Fig. 21. The ks–α diagrams for S = −0.2 and R = 1 (β = −5, zone IV).

Fig. 22. The ks–α diagrams for S = −0.6 and R = 1.2 (β = −2, zone IV).

Fig. 23. The ks–α diagrams for S = −1 and R = 1.5 (β = −1.5, zone IV).

Table 5
Difference between two methods for T–C–S loading (zones III and IV).

Zone Figure 
no.

S R Max. Min.

Value 
(%)

α n Value 
(%)

α n

III 18 −0.6 1 3.9 1 2 0.03 1.3 1
19 −0.8 0.6 7.5 5 1 0.07 1.3 1
20 −1 0.4 14.6 5 1 1.25 1.3 2

IV 21 −0.2 1 2.9 5 1 0.03 1.3 1
22 −0.6 1.2 6.3 1 2 0.07 1.3 1
23 −1 1.5 10.1 1 2 0.08 1.3 1
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Fig. 24. The ks–α diagrams for S = −0.6 and R = −0.2 (zone V ).

Fig. 25. The ks–α diagrams for S = −0.6 and R = −0.6 (zone V ).

Fig. 26. The ks–α diagrams for S = −0.8 and R = −0.2 (zone V ).

appeared maximum and minimum difference in Figs. 12–17 and 
18–23 respectively. As seen in Table 4 and zone I (Figs. 12–14), 
increasing of |R| leads to the error growing, so that for |R| ≥ 1 it 
reaches to 19.2% rapidly (Fig. 14). Fig. 12 shows that Eq. (23) with 
the modifier factor (η1) overestimates/underestimates values in the 
various aspect ratios. However, it is possible that for all of aspect 
ratio, the predicted values are always bigger than the actual ones 
(Fig. 13) or vice versa (Fig. 14). As the same way, in Figs. 15–17, 
Fig. 27. The ks–α diagrams for S = −0.2 and R = −0.2 (zone VI).

Fig. 28. The ks–α diagrams for S = −0.4 and R = −0.2 (zone VI).

Fig. 29. The ks–α diagrams for S = −0.4 and R = −0.1 (zone VI).

the error reaches to 17.6%, when |R| ≥ 1. In this zone, the esti-
mated values are mostly smaller values than the actual ones.

In zones III and IV , the plate buckles transversely. Two or three 
modes may appear in the buckled plates as shown in Figs. 18–23. 
In zone III decreasing of ‘R ’ leads to increasing of difference; but 
in zone IV with the shown Figs. 21–23, it is reversed. However, 
in these zones, the maximum errors are 14.6% (Fig. 20) and 10.1% 
(Fig. 23) respectively.
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Table 6
Difference between two methods for T–T–S loading (zones V and VI).

Zone Figure 
no.

S R Max. Min.

Value 
(%)

α Value 
(%)

α

V 24 −0.6 −0.2 8.5 1.3 0.9 3.3
25 −0.6 −0.6 10.1 5 0.1 1.4
26 −0.8 −0.2 14.2 5 1.4 1.4

VI 27 −0.2 −0.2 4.3 1 0.3 1.9
28 −0.4 −0.2 13.9 5 7.7 1.3
29 −0.4 −0.1 16.4 5 4.3 1.3

3.3. Tension–Tension–Shear loading (T–T–S)

There are two zones for this loading state: zone V in which 
modifier factor η1 (Eq. (24)) must be used and zone VI in which 
Eq. (23) predicts explicitly acceptable results. In zone V one/both 
of the tensile stresses values are larger than 40% of the shear stress 
(Figs. 24–26) and otherwise, the loading state appears in zone VI
(Figs. 27–29). It is pointed out both of zones should be consid-
ered with m = n = 1 and the obtained results have the required 
accuracy, when |σy| ≤ |σx|. If the latter condition is violated or 
stress ratios values (‘S ’ and ‘R ’) approach to unit, it is possible 
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 7
The comparison between FEM and two previous methods in C–C–S loading.

No. α β τ (MPa) σx (MPa) 100 C−B
B % 100 A−B

B %

A B C

The Rayleigh–Ritz method FEM The proposed equation

1 1 1.00 3.722 37.217 36.983 37.219 0.638 −0.634
2 1 0.20 12.349 61.747 61.360 61.747 0.631 −0.630
3 1 50.00 14.502 1.450 1.441 1.450 0.630 −0.635
4 1 1.00 35.687 35.687 35.457 35.668 0.594 −0.649
5 1 1.67 43.641 26.184 26.017 26.168 0.580 −0.642
6 1 2.50 49.012 19.605 19.476 19.587 0.570 −0.659
7 1 10.00 59.764 5.976 5.937 5.971 0.559 −0.658
8 1 1.00 75.217 30.087 30.035 30.269 0.779 −0.171
9 1 0.33 43.641 52.369 52.033 52.336 0.582 −0.645

10 1 0.25 99.848 39.939 39.664 39.935 0.683 −0.694
11 1 0.00 64.344 64.344 63.917 64.276 0.561 −0.668
12 1.5 1.00 2.688 26.884 26.704 26.882 0.665 −0.676
13 1.5 0.20 11.962 59.810 59.410 59.786 0.632 −0.674
14 1.5 50.00 7.671 0.767 0.763 0.767 0.652 −0.598
15 1.5 1.00 25.916 25.916 25.740 25.864 0.482 −0.685
16 1.5 1.67 29.249 17.549 17.429 17.504 0.427 −0.688
17 1.5 2.50 31.241 12.496 12.411 12.459 0.392 −0.690
18 1.5 10.00 34.760 3.476 3.452 3.463 0.322 −0.689
19 1.5 1.00 55.761 22.304 22.140 22.131 −0.038 −0.744
20 1.5 0.33 38.279 45.934 45.619 45.776 0.345 −0.691
21 1.5 0.25 83.800 33.520 33.276 33.569 0.879 −0.732
22 1.5 0.00 65.237 65.237 64.737 61.224 −5.427 −0.773
23 2 1.00 2.325 23.254 23.159 23.263 0.451 −0.410
24 2 0.20 12.279 61.393 60.955 61.388 0.711 −0.718
25 2 50.00 5.779 0.578 0.575 0.578 0.402 −0.466
26 2 1.00 22.616 22.616 22.507 22.418 −0.395 −0.486
27 2 1.67 24.462 14.677 14.606 14.526 −0.547 −0.490
28 2 2.50 25.499 10.200 10.150 10.085 −0.639 −0.493
29 2 10.00 27.225 2.723 2.709 2.687 −0.804 −0.502
30 2 1.00 49.906 19.962 19.854 19.532 −1.619 −0.547
31 2 0.33 38.087 45.704 45.474 44.851 −1.370 −0.506
32 2 0.25 80.970 32.388 32.103 31.493 −1.901 −0.887
33 2 0.00 57.898 57.898 57.422 56.554 −1.511 −0.829
34 3 1.00 2.067 20.666 20.630 20.679 0.238 −0.174
35 3 0.20 11.914 59.568 59.240 59.539 0.505 −0.554
36 3 50.00 4.584 0.458 0.457 0.458 0.145 −0.259
37 3 1.00 20.333 20.333 20.283 19.949 −1.645 −0.245
38 3 1.67 21.150 12.690 12.659 12.431 −1.808 −0.242
39 3 2.50 21.588 8.635 8.613 8.449 −1.900 −0.258
40 3 10.00 22.267 2.227 2.222 2.176 −2.045 −0.235
41 3 1.00 46.744 18.698 18.645 17.382 −6.771 −0.284
42 3 0.33 36.771 44.125 43.836 44.413 1.317 −0.658
43 3 0.25 73.820 29.528 29.309 30.649 4.573 −0.748
44 3 0.00 56.051 56.051 55.610 54.299 −2.358 −0.794
45 5 1.00 1.936 19.361 19.341 19.356 0.077 −0.103
46 5 0.20 11.770 58.851 58.465 58.825 0.616 −0.661
47 5 50.00 4.023 0.402 0.402 0.402 −0.017 −0.116
48 5 1.00 19.214 19.214 19.195 18.681 −2.678 −0.098
49 5 1.67 19.512 11.707 11.695 11.371 −2.769 −0.106
50 5 2.50 19.664 7.866 7.857 7.636 −2.814 −0.114
51 5 10.00 19.897 1.990 1.987 1.930 −2.885 −0.121
52 5 1.00 46.024 18.409 18.389 16.454 −10.520 −0.112
53 5 0.33 36.260 43.513 43.247 43.961 1.651 −0.614
54 5 0.25 70.711 28.284 28.078 31.136 10.891 −0.734
55 5 0.00 55.156 55.156 54.716 52.866 −3.382 −0.804
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Table 8
The comparisons between FEM and two previous methods in T–C–S and T–T–S loadings.

No. α S R σx (MPa) 100 C−B
B % 100 A−B

B %

A B C

Rayleigh–Ritz method Finite element model Proposed equation

1 1 1 −1 124.927 124.420 126.789 1.904 −0.407
2 1 −1 1 −124.927 −124.420 −126.789 1.904 −0.407
3 1 −0.6 1 −66.019 −65.790 −66.355 0.858 −0.349
4 1 1 −0.6 110.032 109.650 105.750 −3.557 −0.349
5 1 −0.2 −0.2 −57.083 −56.710 −54.625 −3.676 −0.657
6 1.5 1 −1 112.229 111.520 109.846 −1.501 −0.636
7 1.5 −1 1 −57.343 −57.044 −56.990 −0.095 −0.525
8 1.5 −0.6 1 −28.039 −27.756 −27.871 0.415 −1.019
9 1.5 1 −0.6 87.989 86.950 88.063 1.280 −1.195

10 1.5 −0.2 −0.2 −43.343 −42.924 −42.598 −0.760 −0.975
11 3 1 −1 103.051 102.190 97.186 −4.897 −0.842
12 3 −1 1 −25.190 −24.930 −24.520 −1.645 −1.044
13 3 −0.6 1 −14.422 −14.256 −14.075 −1.268 −1.161
14 3 1 −0.6 83.707 83.620 80.430 −3.815 −0.103
15 3 −0.2 −0.2 −34.529 −34.426 −35.486 3.079 −0.299
16 5 1 −1 99.792 99.213 96.814 −2.418 −0.584
17 5 −1 1 −20.778 −20.540 −20.163 −1.834 −1.157
18 5 −0.6 1 −12.266 −12.126 −11.908 −1.797 −1.151
19 5 1 −0.6 80.746 79.910 80.244 0.417 −1.047
20 5 −0.2 −0.2 −32.704 −32.252 −33.996 5.409 −1.403
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that the plate yielding occurs before the elastic buckling. For ex-
ample, in Fig. 25, which S = R = −0.6, the minimum ks for the 
big aspect ratios is converged to about 35. For mild steel mate-
rial with E = 206 GPa, ν = 0.3 and F y = 240 MPa, it can be easily 
shown that if b/t > 217, then the elastic buckling is prior to the 
plate yielding. The obtained thickness ratio is big enough to have 
a membranous plate.

The maximum and minimum differences in Figs. 24–26 (zone 
V ) and Figs. 27–29 (zone VI) have been shown in Table 6. The 
occurred errors in Fig. 24 is relatively small and they may in-
crease with overestimated values (Fig. 25) or underestimated val-
ues (Fig. 26). Also, in Fig. 27, there is good conformity between 
two diagrams (Table 6); but the significant underestimated values 
have been predicted in Figs. 28 and 29. It seems that there is not a 
rational relationship between the load ratios (‘S ’ and ‘R ’) and the 
appeared differences. The maximum error in zones V and VI are 
14% and 16% respectively.

4. Validation of the results with finite element method

Tables 7 and 8 summarize the results of some examples that 
are caught from finite element modeling and two previous meth-
ods. The Eigen-buckling analysis is applied on the FE modeling. 
The used element is 8-nodes SHELL with 5 degree of freedom. The 
convergence conditions shows that the element dimension should 
be 2 cm. All of models have 1 m width and 10 mm thickness 
with E = 206 GPa, ν = 0.3 and the reference stress σe = π2 D

tb2 =
18.618 MPa. The σx values are calculated from three methods (The 
Rayleigh–Ritz method, FEM and Eq. (19) or (23)) for some aspect 
ratios and load ratios. They have been shown in Tables 7 and 8 for 
C–C–S and C–T–S/T–T–S states respectively. Tables 7 and 8 show 
that the maximum difference between the proposed equation and 
FEM is less than 11% and between the Rayleigh–Ritz method and 
FEM is about 1.4%.

5. Conclusion

In this paper, using the Rayleigh–Ritz method, the buckling 
load of a simply supported rectangular plate under biaxial and 
shear loads was evaluated. The plate aspect ratio was supposed 
that varies from 1 to 5 and with several loading states, 15 129 
examples were considered. Then, applying the regression tech-
niques and interpolation on the obtained data, a concise equation 
(Eq. (19) or (23)) is approximated to predict the buckling load 
coefficient. It can be shown that for longer plates (α > 5), the ob-
tained results for α = 5 are applicable with a good accuracy. In 
Compression–Compression–Shear state, the maximum error in the 
proposed equation increases when the aspect ratio rises. However, 
it is always less than 8% (3 ≤ α ≤ 5).

In presence of tensile stress(es), right hand of the proposed 
equation must be always considered unit. When the tensile stress 
(σy) is applied on the plate length (the longer direction) and the 
compressive stress, σx ≤ 1.4τ , then a modifier factor (η1) must be 
applied on the results. Furthermore, if the tensile stress (σx) is ap-
plied on the plate width and its value is larger than 40% of the 
shear stress and also σy ≤ τ , then another modifier factor (η2) 
must be used. The predicted results by the proposed equation lead 
to error up to 20% in some states.

The proposed equation is directly applicable for Tension–
Tension–Shear state, when both of tensile stresses values are less 
than 40% of the shear stress; otherwise, the modifier factor, η1
should be used to decrease errors. However, the maximum ap-
peared error reaches to 16%. Finally, the achieved results from 
two methods were compared with those of FEM; thus the max-
imum difference between the Rayleigh–Ritz method and FEM is 
about 1.4%.
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