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The phasing segment of the rendezvous mission between a cargo spacecraft and a space station usually
lasts for several weeks, and actually presents an orbital long-duration problem. In this study, this
orbital long-duration problem is formulated as a mixed integer nonlinear programming (MINLP) problem
in which the maneuver revolution numbers (integers), maneuver arguments of latitude and impulse
magnitude are used as design variables at the same time. A hybrid approach is then proposed to solve
this MINLP problem. First, a linear dynamics model considering the J2 term of the Earth non-spherical 
gravity is employed to formulate an approximate phasing problem, which is optimized using a genetic
algorithm. Second, a shooting iteration process considering the coupling effect between the in-plane
and out-of-plane maneuvers is proposed to improve the approximate solution to satisfy the terminal
conditions of the high-precision problem. The proposed approach is demonstrated for a typical two-week
rendezvous phasing mission. The results show that the proposed approach can stably obtain the near
optimal high-precision solution by integrating the perturbed trajectory only a few times. Furthermore,
a long-duration rendezvous phasing plan is compatible with any initial phase angles that the in-plane
velocity increment remains almost unchanged when the initial phase angle changes. However, under
the same conditions, the out-of-plane velocity increment has considerable variations. Compared with
a two-day rendezvous phasing plan, a two-week plan could have several successive coplanar launch
opportunities for the chaser by aiming different terminal revolution numbers.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

A rendezvous and docking (RVD) mission between a cargo 
spacecraft and a space station, for example, the RVD between an 
ATV (Automated Transfer Vehicle) or HTV (H-II Transfer Vehicle) 
and the ISS (International Space Station) [1,2], usually lasts for 
several weeks. The rendezvous phasing segment consumes most 
of the time for a RVD mission [3], and then presents an orbital 
long-duration problem. For this orbital long-duration problem, in 
addition to impulses (continuous numbers), the maneuver revolu-
tion numbers (integers) could be used as design variables, and the 
continuous and discrete variables are then investigated at the same 
time. The optimization of a long-duration rendezvous phasing mis-
sion thus is a mixed integer nonlinear programming (MINLP) prob-
lem.

RVD has been extensively researched, and is still a hot research 
topic [4–8]. In a classical survey paper on RVD studies, Jezewski [9]
reviewed the planning of rendezvous trajectories from both a the-
oretical research perspective and an operational application per-
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spective. He pointed out that for a long-duration operational ren-
dezvous mission, orbital perturbations must be taken into account, 
and that simplified relative motion models could be the foundation 
of rendezvous targeting algorithms. However, only a few studies 
have focused on orbital long-duration maneuver problems. Labour-
dette and Baranov [10] studied a long-duration rendezvous prob-
lem with a large initial ascending node difference for the mission 
involving the return of samples from Mars. They employed a near-
circular relative motion model based on orbital element differences 
with the J2 perturbation, to optimize the propellant cost and to 
analyze the relation between that cost and the terminal revolu-
tion number. Zhang et al. [11] improved Labourdette and Baranov’s 
model, and applied it to the optimization of in-plane maneuvers in 
a target spacecraft’s long-duration phasing mission.

Recently, the MINLP, a powerful but complicated method, has 
been applied to the solution of space mission planning problems. 
Several contributions in this area should be noted here. Ross and 
D’Souza [12] proposed a hybrid optimal control framework for 
space mission planning and applied it to the optimization of a 
multi-agent launch system. Luo et al. [13] proposed a hybrid strat-
egy in the optimization of a two-day rendezvous phasing trajectory 
with maneuver revolution variables. Zhang et al. [14,15] employed 
a mixed-code genetic algorithm (GA) to optimize a multi-segment 
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Nomenclature

a semi-major axis
e eccentricity
Isp specific impulse of thrusters
i orbital inclination
k iteration number of times
l terminal revolution number changed by maneuvers
N j revolution number of the jth maneuver
n mean angular motion rate
T orbital period
t f end time of the rendezvous phasing mission
t j burn time of the jth maneuver
u j argument of latitude of the jth maneuver
v orbital velocity
�a difference in semi-major axis
�i difference in orbital inclination
�v yj in-track impulse of the jth maneuver
�vzj cross-track impulse of the jth maneuver
�Ω difference in right ascension of ascending node
�θ difference in phase angle
�ξ difference in non-singular orbital element ξ

�η difference in non-singular orbital element η
Ω right ascension of ascending node
ξ non-singular orbital element, equal to e cos ω

η non-singular orbital element, equal to e sin ω

ω argument of perigee

Superscript

− related to a mean orbital element

Subscripts

c related to the chaser
j related to the jth maneuver
r related to a reference orbital element
t related to the target spacecraft
y related to the in-track direction
z related to the cross-track direction
aim related to aimed orbital elements
in related to in-plane parameters
out related to out-of-plane parameters

Fig. 1. Rendezvous phasing maneuver plan.
rendezvous mission, and also used the MINLP to solve a low-Earth-
orbit (LEO) multi-spacecraft rendezvous problem. MINLP problems, 
however, remain difficult to solve due to their mixed nature and 
the potential for multiple local optima [16]. The idea of using ma-
neuver revolution numbers as design variables can also be found in 
studies on the two-impulse multi-revolution Lambert rendezvous 
algorithm, in which the two maneuver revolution numbers are 
enumerated to find the global optimum [17].

The purpose of this paper is to propose a hybrid optimiza-
tion approach for long-duration rendezvous phasing missions. To 
avoid having to integrate the long-duration trajectory many times, 
the approach first presents an approximate optimization problem, 
which considers the J2 term of the Earth non-spherical gravity and 
the coupling effect between in-plane and out-of-plane maneuvers. 
The solution to the approximate problem is obtained by a GA, and 
then is improved to a high-precision one by a few iterations.

As mentioned above, reference [11] has employed the MINLP 
to solve a long-duration in-plane phasing mission of the target 
spacecraft. Relative to that study, this paper is actually an im-
provement. First, an out-of-plane maneuver is involved in this pa-
per, which makes the problem more difficult to solve. Second, the 
coupling effect between the in-plane and out-of-plane maneuvers 
could bring difficulties to the convergence of the iteration to ob-
tain high-precision solution, and these difficulties will be tackled 
in the iteration process of this paper.

2. Rendezvous phasing optimization problem

As shown in Fig. 1, the chaser, i.e. the cargo spacecraft, executes 
several maneuvers to acquire the initial aim point at the end of 
the rendezvous phasing segment, and the maneuver plan is given 
as follows.

The first maneuver �v y1, along the in-track direction, is exe-
cuted at the apogee to adjust the altitude of the perigee.

The second maneuver �v y2, along the in-track direction, is ex-
ecuted at the perigee to adjust the altitude of the apogee.

The third maneuver �vz3, along the cross-track direction, is 
executed at the argument of latitude u3 to adjust the orbital in-
clination and the right ascension of ascending node (RAAN) at the 
same time.

The fourth maneuver �v y4, along the in-track direction, is ex-
ecuted at the argument of latitude u4 (near the perigee) to adjust 
the apogee altitude to the altitude of the initial aim point.
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The fifth maneuver �v y5, along the in-track direction, is exe-
cuted at the argument of latitude u5 (near the apogee) to reduce 
the eccentricity.

Let t j and N j ( j = 1, . . . , 5) be the burn time and revolution 
number of the jth maneuver respectively, u1 and u2 be the ar-
guments of latitude of the first and the second maneuver, and t0
and t f be the initial and the end time of the rendezvous phasing 
segment respectively.

The maneuver plan presented above is similar to the ren-
dezvous phasing maneuver plans of the space shuttle, ATV, HTV 
and the Shenzhou spacecraft [1–3,18]. The major difference be-
tween the rendezvous phasing plans of the manned and unmanned 
spacecraft is the mission duration. Manned spacecraft needs to 
consume water, food, and oxygen, and prefers a short rendezvous 
phasing plan, but unmanned spacecraft allows the use of a rela-
tive long rendezvous phasing plan and benefits from available time 
windows.

The design variables include each maneuver’s revolution num-
ber, argument of latitude, and impulse magnitude:

x = (N1, N2, N3, N4, N5, u3, u4, u5,�v y1,�v y2,�vz3,

�v y4,�v y5)
T (1)

where the locations of the first and the second maneuver are fixed 
at the apogee and perigee respectively and therefore are not used 
as design variables.

The objective is to minimize the total velocity increment:

min�vtotal =
2∑

j=1

|�v yj| + |�vz3| +
5∑

j=4

|�v yj| (2)

The terminal conditions of the rendezvous phasing segment, 
i.e. the state of the initial aim point, are constrained by the re-
quirements of the automated rendezvous segment. First, the chaser 
should be coplanar with the target, which can be expressed by the 
requirements on the inclination and RAAN:

ic(t f ) − it(t f ) = 0 (3)

Ωc(t f ) − Ωt(t f ) = 0 (4)

where the subscripts “c” and “t” denote the chaser and the target 
respectively.

Second, at the initial aim point, the chaser should run on a 
near-circular orbit, which can be expressed as the requirement on 
the mean eccentricity:

ēc(t f ) < εe (5)

where the superscript “¯” denotes a mean orbital element which is 
obtained by subtracting the first-order short-period term from an 
osculating orbital element [19], εe is the allowable upper limit of 
eccentricity.

Third, at the initial aim point, the chaser should run below 
the target and tens of kilometers away from the target, and these 
requirements on the orbital altitude difference and the distance 
between the two spacecraft can be expressed as the constraints on 
the mean semi-major axis and the argument of latitude:

āc(t f ) − āt(t f ) = �āaim (6)

uc(t f ) − ut(t f ) = �uaim (7)

where �āaim and �uaim are the aimed semi-major axis difference 
and the aimed argument of latitude difference between the two 
spacecraft respectively.
The search space of each maneuver’s revolution number is lim-
ited by telemetry, tracking, and command (TT&C) conditions:

N jl ≤ N j ≤ N ju ( j = 1, . . . ,5) (8)

where Nil and Niu are the lower and upper bounds of the jth 
maneuver’s revolution number respectively.

3. Optimization strategy

In operational applications, the trajectory of a spacecraft is usu-
ally calculated by means of high-precision numerical integration. 
Due to the long phasing duration, it is quite computation-intensive 
to integrate the trajectory many times. To obtain a good solution 
at a lower computation cost, an approximate rendezvous phas-
ing model is developed and then optimized using a GA. Finally, 
a shooting iteration process, which considers the coupling effect 
between the in-plane and out-of-plane maneuvers, is used to im-
prove the solution to the approximate problem to satisfy the high-
precision numerical integration trajectory.

3.1. Approximate optimization problem

For a LEO rendezvous problem, the non-spherical gravity and 
atmospheric drag are the main perturbations. The non-spherical 
gravity causes the drift of the ascending node and perigee. Here, 
a linear dynamics model considering the J2 term of the non-
spherical gravity is employed to approximate the rendezvous ma-
neuver process.

The state variable used to express orbital differences between 
the chaser and the target is

X = (�a/ar,�θ,�ξ,�η,�i,�Ω)T (9)

where the subscript “r” denotes the reference orbit, ar is the refer-
ence semi-major axis, �a is the difference in semi-major axis, �θ

is the difference in argument of latitude, �i is the difference in or-
bital inclination, �Ω is the difference in RAAN, �ξ and �η are the 
differences in the eccentricity vector (ξ, η)T = (e cosω, e sinω)T , 
and ω is the argument of perigee.

Using first order approximations, the state transitions of orbital 
element differences under the J2 perturbation are given by [15]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a = �a0

�θ = �θ0 −
[

3

2
nr

�a0

ar
+ 7

2

�a0

ar
C
(
3 − 4 sin2 ir

)]
�t

− 4C sin(2ir)�i0�t

�ξ = �ξ0 cos(ω̇ J2�t) − �η0 sin(ω̇ J2�t)

�η = �ξ0 sin(ω̇ J2�t) + �η0 cos(ω̇ J2�t)

�i = �i0

�Ω = �Ω0 +
(

7

2

�a0

ar
cos ir + sin ir�i0

)
C�t

(10)

where the subscript “0” denotes the initial state, �t is the orbital 
transfer time, μ is the geocentric gravitation constant, ae is the 

mean equatorial radius of the Earth, nr =
√

μ/a3
r is the mean an-

gular motion rate, C = 3 J2a2
e

2
√

μa
− 7

2
r , and ω̇ J2 = C(2 − 5

2 sin2 ir) is 
the drift rate of perigee.

Based on Eq. (10) and the Gauss’s form of variational equa-
tions [19], the effects of maneuver impulses on the orbital element 
differences can be expressed as [15]
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a

ar
= 2

�v y

vr

�θ = −[
3nr + 7C

(
3 − 4 sin2 ir

)]
�t

�v y

vr

− 4C sin(2ir) cos u�t
�vz

vr

�ξ = sin(u + ω̇ J2�t)
�vx

vr
+ 2 cos(u + ω̇ J2�t)

�v y

vr

�η = − cos(u + ω̇ J2�t)
�vx

vr
+ 2 sin(u + ω̇ J2�t)

�v y

vr

�i = cos u
�vz

vr

�Ω = 7C cos ir�t
�v y

vr
+

(
sin u

sin ir
+ C sin ir cos u�t

)
�vz

vr

(11)

The design variables of the approximate problem are chosen as

x′ = (�N1,�N2,�N3,�N4,�N5, u4, u5, l)T (12)

Let N f be the terminal revolution number of the chaser, �N j =
N f − N j ≈ t f −t j

Tr
be the revolution number difference between the 

jth maneuver and the initial aim point, where Tr = 2π

√
a3

r /μ. 
Based on Eq. (11), the in-plane maneuvers can be expressed as 
explicit functions of the design variables and terminal in-plane de-
viations:

(�vt1,�vt2,�vt4,�vt5)
T = −[y1,y2,y4,y5]−1�Xin vr (13)

where

y j =

⎡
⎢⎢⎢⎣

2

[−3nr − 7C(3 − 4 sin2 ir)]Tr�N j

2 cos(u j + ω̇ J2 Tr�N j)

2 sin(u j + ω̇ J2 Tr�N j)

⎤
⎥⎥⎥⎦ ( j = 1,2,4,5),

vr =
√

μ

ar
,

�Xin = (δa/ar, δθ − 2lπ, δξ, δη)T denote the terminal in-plane de-
viations, and l is the difference between the chaser’s terminal 
number of revolutions in the case of the trajectory with maneu-
ver and in the case of a purely coasting trajectory.

The effect of in-track maneuvers on the terminal RAAN is [15]

�Ωin = 7C cos ir
Tr

vr

(
2∑

j=1

�N j�v yj +
5∑

j=4

�N j�v yj

)
(14)

The out-of-plane maneuver and �Ωin are both used to adjust 
the out-of-plane deviations [15]:(

0
�Ωin

)
+

[
cos u3

sin u3/ sin ir + C sin ir cos u3Tr�N3

]
�vz3

vr

= −�Xout (15)

where �Xout = (δi, δΩ)T are the terminal out-of-plane deviations.
When δi = 0, the solution to Eq. (15) is{

u3 = 90◦

�vz3 = −(δΩ + �Ωin) sin ir vr

or

{
u3 = 270◦

�vz3 = (δΩ + �Ωin) sin ir vr

(δi = 0) (16a)
When δi �= 0, the solution to Eq. (15) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u3 = arc tan

[
sin ir

(
δΩ + �Ωin

δi
− Cr sin ir Tr�N3

)]

�vz3 = −δi

cos u3
vr

(δi �= 0)

(16b)

where the quadrant of u3 could be determined according to its 
allowable search space.

A hybrid-encoding GA is employed to optimize the approximate 
problem presented above [15,20]. The design variable vector x′ is 
directly used as the chromosome. The arithmetical crossover and 
uniform mutation operators are applied to all genes to diversify 
the population, and a tournament selection scheme is used to re-
tain good individuals during the evolution. An elitist strategy is 
employed during the algorithm’s selection phase, which can help 
prevent the loss of good solutions once they have been found. Af-
ter the crossover and mutation operations, the genes correspond-
ing to integer variables are rounded off to the nearest integers. 
More applications of GAs to orbital design can be found in refer-
ences [21–23].

Some relative dynamics models in satellite formation field 
have considered both the J2 perturbation and the differential 
drag [24–26], but these models need the assumption of a small 
relative distance which is not guaranteed in the rendezvous phas-
ing segment. For the rendezvous phasing segment, relative mod-
els considering both the J2 perturbation and the differential drag 
while keeping the additivity of linear models are not available 
now. Therefore, only the J2 perturbation is considered in the ap-
proximate model. One application for the usage of drag for orbital 
control can be found in reference [22].

3.2. Precise solution using iteration

Reference [11] employed a shooting iteration to improve an ap-
proximate solution to a high-precision one. Here, based on the 
iteration process in reference [11], a shooting iteration considering 
the coupling effect between the in-plane and out-of-plane maneu-
vers is proposed. The basic iteration steps are given as follows:

Step 1: Integrate the trajectory of the target spacecraft from t0
to t f and calculate its mean terminal state. Based on Eqs. (3)–(7), 
calculate the aimed mean terminal state of the chaser, and set the 
iteration number k = 0.

Step 2: Only considering a part of the atmospheric drag effect, 
e.g. “a quarter”, integrate the trajectory of the chaser from t0 to t f
without maneuvers, and then calculate the miss-distances δXin,0 =
(δa0/ar, δθ0, δξ0, δη0)

T and δXout,0 = (δi0, δΩ0)
T .

The perigee of the chaser just after injection is very low that 
the altitude decay effect of the atmospheric drag on the purely 
coasting trajectory is much larger than the trajectory with maneu-
vers. Moreover, the altitude decay effect is not considered in the 
approximate problem. In consequence, only a part of the atmo-
spheric drag effect is considered in Step 2, which could prevent the 
initial guess from being too far away from the final solution. The 
value “a quarter” is not necessarily fixed, and it could be changed 
to “one half”, “one third”, or “one fifth”, which only affects the 
number of iteration times when the iteration converges to increase 
or decrease one or two. The usage of part of atmospheric drag for 
the purely coasting chaser’s trajectory is mainly to prevent the tra-
jectory to decay too much.

Step 3: Assign the values of the orbital deviations used to cal-
culate maneuver impulses: �X′

in,k = δXin0, �Xout,k = δXout,0, and 
�Ω ′

in,k = δΩin,0 = 0.
Step 4: Optimize the approximate problem using the GA: 

for a group values of design variables given by GA, �Xin,k =
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�X′
in,k + (0, −2lπ, 0, 0)T , and calculate (�vt1, �vt2, �vt4, �vt5)

T

using Eq. (12) based on �Xin,k; calculate �Ωin,k using Eq. (13), 
update it as �Ωin,k = �Ωin,k − �Ω ′

in,k , and then calculate u3 and 
�vz3 using Eq. (15).

Step 5: Integrate the trajectory of the chaser using the ma-
neuver data obtained in Step 4 and calculate the terminal miss-
distances δXin,k = (δak/ar, δθk, δξk, δηk)

T and δXout,k = (δik, δΩk)
T .

Step 6: If δXin,k and δXout,k are both in allowable upper limits, 
stop the iteration and use the solution to the approximate problem 
as the solution to the original problem; otherwise, go to Step 7.

Step 7: If k < 3 or k is an even number, �X′
in,k = �X′

in,k +δXin,k; 
if k < 3 or k is an odd number, �Xout,k = �Xout,k + δXout,k +
[0, �Ωin,k]T and calculate �Ω ′

in,k using Eq. (13). k = k + 1, return 
to Step 4.

In Step 7, for the first three iterations, the in-plane and out-
of-plane deviations used in the approximate problem are updated 
simultaneously because �Ωin,k , the effect of in-plane maneuvers 
on RAAN, takes an important part in the RAAN deviation to be ad-
justed and it changes a lot during these iterations. As the iteration 
process runs, �Ωin,k does not change a lot any more. However, 
the out-of-plane maneuver affects the in-plane movement a lit-
tle and this effect is not considered in the approximate problem. 
After the first three iterations, if the in-plane and out-of-plane 
deviations used in the approximate problem were still updated 
simultaneously, the approximate solution can only approach the 
high-precision solution but cannot satisfy the terminal constraints 
precisely due to the coupling effect. That is why the in-plane and 
out-of-plane deviations used in the approximate problem are up-
dated separately after the third iteration. The parameter “three” 
can be set according to the experience of operators.

4. Results

The proposed approach is demonstrated for a practical fourteen-
day (two-week) rendezvous phasing mission. Some numerical ex-
periments are then performed to analyze the properties of long-
duration rendezvous phasing missions.

4.1. Problem configuration

The initial time is t0 = 0 s, its corresponding Gregorian univer-
sal coordinated time (UTCG) in the calculation is set as 21 June 
2010 00:00:00.0, and the end time is t f = 1209600 s (14 days). 
The initial states of the target spacecraft and the chaser in the 
form of classical osculating orbital elements (semi-major axis, ec-
centricity, inclination, RAAN, argument of perigee, true anomaly) 
are given respectively by

Et(t0) = (
6720.14 km, 1.0e–5,42◦, 169.2◦, 100◦, 145◦),

Ec(t0) = (
6638.14 km, 0.009039, 42.05◦, 171.6◦, 120◦, 1◦).

The orbital perturbations considered include both the non-
spherical gravity and the atmospheric drag. The spherical harmonic 
gravity model used is the Joint Gravity Model 3 (JGM3) [27], 
and both the degree and order are set to 10. The atmospheric 
density model used is the NRLMSISE-00 (Naval Research Labora-
tory Mass Spectrometer and Incoherent Scatter Radar Exosphere 
2000) model [28]. The other force model parameters for numerical 
trajectory integration are provided in Table 1. The Runge–Kutta–
Fehlberg 7th order integrator with the 8th order error control [29]
is used with an integral step of 60 s. The Earth’s mean radius 
is ae = 6378.137 km. The initial revolution numbers for the two 
spacecraft are both 1, and the terminal revolution number for the 
target, obtained by numerical integration, is 222. The reference 
semi-major axis is chosen as the mean value of the target’s and 
Table 1
Spacecraft’s force model parameters.

Item Value

Mass of the target 10000 kg
Mass of the chaser 8000 kg
Drag area of the target 30 m2

Drag area of the chaser 20 m2

Drag coefficient 2.2
Sea-level standard acceleration of gravity 9.80665 m/s2

Specific impulse (Isp ) of thrusters 305.91486 s
Daily F10.7 index 150
Average F10.7 index 150
Geomagnetic flux index (kp) 4

Table 2
GA parameters.

Item Value

Population size 500
Maximum number of generations 100
Scale of tournament selection 3
Probability of crossover 0.5
Probability of mutation 0.3

the chaser’s initial semi-major axis, and the other reference orbital 
elements are the same as the target orbit.

The lower and upper bounds on revolution number variables 
are [3, 15], [17, 30], [90, 105], [180, 195] and [197, 210], such 
that the first and second maneuvers are executed near the ini-
tial part of the mission, the fourth and the fifth maneuvers are 
executed near the terminal part of the mission, and the third 
is executed at the middle part of the mission. �āaim = −15 km
and �uaim = −0.445◦ . The convergence criterions for the terminal 
mean semi-major axis, argument of latitude and mean eccentric-
ity are εa = 0.2 km, εu = 0.001◦ and εe = 1.0e−4 respectively, and 
the convergence criterions for the terminal inclination and RAAN 
are εi = 0.001◦ and εΩ = 0.001◦ respectively. The parameters for 
the GA employed are listed in Table 2. Moreover, “a part” of atmo-
spheric drag used in Step 2 of the iteration is “a quarter” for this 
numerical example.

4.2. Optimal solution

According to the data provided above, the rendezvous phas-
ing problem is successfully solved using the proposed optimization 
strategy. The total velocity increment obtained is 72.517 m/s, and 
the corresponding propellant consumption is 191.061 kg. The ma-
neuver revolution numbers, arguments of latitude and impulses 
are provided in Table 3, and the terminal miss-distance errors 
during the iteration process are presented in Table 4. The time his-
tories of the phase angle and the chaser’s mean semi-major axis 
are shown in Fig. 2 and Fig. 3 respectively.

From Table 4, it can be obtained that the terminal miss-
distances decrease gradually and stably as k increases. When k = 9, 
the miss-distances satisfy the convergence criterions and therefore 
the iteration stops. The terminal revolution number of the chaser 
is adjusted from 226 (non-maneuver trajectory) to 224, i.e. l = −2.

In Table 3, the in-track impulses obtained are all positive, and 
this confirms the near optimality of the in-plane transfer because 
all in-track impulses are used to raise the altitude of a near-circular 
orbit. When l is fixed at −1, the minimum velocity increment ob-
tained is 102.008 m/s; when l is fixed at −3, the minimum velocity 
obtained is 152.831 m/s. Both of them are greater than the velocity 
increment obtained by the proposed approach, which partly indi-
cates the effectiveness of the optimization process.
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Table 3
Maneuver data.

Maneuver 
sequence

1 2 3 4 5

Revolution 
number

6 23 90 190 207

Argument 
of latitude 
(◦)

304.82369 125.44699 257.41309 55.31065 305.42823

Impulse 
(m/s)

18.43831 2.04364 30.21971 14.53279 7.28285

Table 4
Terminal miss-distances during the iteration.

k δā (km) ē δθ (◦) δi (◦) δΩ (◦) N f

0 −70.658 0.0073072 −0.66434 0.04899 −1.39241 226
1 −3.241 0.0005287 22.06829 −0.00034 −0.02062 224
2 0.378 0.0000825 −3.82816 −0.00010 0.01060 224
3 −0.037 0.0000852 0.36501 −0.00009 0.00956 224
4 −0.032 0.0000876 0.31488 0.00003 0.00018 224
5 0.003 0.0000872 −0.03036 0.00003 0.00027 224
6 0.003 0.0000873 −0.03160 −4.56e–6 1.50e–6 224
7 0.003 0.0000863 0.00420 0.00006 0.00002 224
8 0.003 0.0000863 0.00423 0.00006 0.00003 224
9 0.003 0.0000858 −0.00048 0.00005 0.00003 224

Fig. 2. Time history of the phase angle.

Fig. 3. Time history of the chaser’s mean semi-major axis.

4.3. Property analysis

To analyze to the effect of the initial phase angle on the velocity 
increment, a group of phase angle variations �ut0 ∈ [−180◦, 180◦]
are added to the target’s initial argument of latitude, while the 
other initial mean orbital elements remain unchanged in the cal-
Fig. 4. Velocity increment vs. difference in the target’s initial argument of latitude 
(two-week mission).

Fig. 5. Velocity increment vs. difference in the target’s initial argument of latitude 
(two-day mission).

culation. The values of the total velocity increment, out-of-plane 
impulse and in-plane velocity increment for the group of �ut0 are 
all shown in Fig. 4, where �vin−plane = �vtotal − |�vz|. A com-
parative numerical trial is made and shown in Fig. 5, where the 
maneuver revolution numbers are 3, 6, 15, 24 and 28, the time of 
flight is 172800 s (two days), the target’s initial RAAN is 169.2◦ , 
and the other problem configurations are the same as the two-
week mission. The mission duration of “two days” was used in 
the rendezvous plan of the Space shuttle, the Soyuz and Progress 
spacecraft before 2012, and the Shenzhou spacecraft, and there-
fore is used as the typical relative short rendezvous time length for 
comparison [13]. It should be noted that the relative short two-day 
mission is still much longer than the six-hour short rendezvous 
profile of Soyuz and Progress spacecraft after 2012 [30,31].

From Fig. 4, it can be found that the variation magnitude of 
the total velocity increment is almost the same as the variation 
of the out-of-plane impulse. Therefore, from the point view of the 
in-plane transfer, a long-duration phasing plan is compatible with 
any initial phase angles that the in-plane velocity increment re-
mains almost unchanged. However, a two-day phasing plan does 
not has this property that when |�ut0| > 50◦ , obvious in-plane 
velocity increments have appeared in Fig. 5. From the point view 
of the out-of-plane adjustment, the initial phase angle, an in-plane 
factor, has a considerable effect on the out-of-plane velocity in-
crement through the effect of in-plane maneuvers on the drift of 
RAAN. This confirms the necessity of considering Eq. (13) in the 
approximate problem.

To analyze to the effect of the initial RAAN on the velocity 
increment, a group of RAAN variations �Ωc0 ∈ [−1.5◦, 1.0◦] are 
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Fig. 6. Velocity increment vs. difference in the chaser’s initial RAAN (two-week mis-
sion).

Fig. 7. Velocity increment vs. difference in the chaser’s initial RAAN (two-day mis-
sion).

added to the chaser’s initial RAAN, while the other initial mean or-
bital elements remain unchanged in the calculation. The values of 
the total velocity increment, in-plane velocity increment and out-
of-plane impulse are all shown in Fig. 6. A comparative numerical 
trial with a two-day rendezvous phasing mission is made again 
and shown in Fig. 7, where the problem configuration correspond-
ing to �Ωc0 = 0 is the same as that of Fig. 5.

From Fig. 6, it can be found that there are three local minimums 
as the �Ωc0 varies from −1.5◦ to 1.0◦ , and each minimum corre-
sponds to a different revolution correction number l. In contrast, 
for the two-day mission in Fig. 7, there is only one local mini-
mum. Thus, by aiming different terminal revolution numbers (i.e. 
different values of l), a long-duration rendezvous phasing plan can 
be compatible with a much wider initial RAAN interval than a typ-
ical two-day phasing plan. Furthermore, one local minimum point 
actually corresponds to one coplanar launch opportunity of the 
chaser, and then a long-duration rendezvous phasing plan could 
have several successive launch opportunities. This will benefit the 
practical operation of a rendezvous mission.

5. Conclusion

This paper has presented a hybrid optimization approach for 
long-duration rendezvous phasing missions and then has demon-
strated it for a typical two-week rendezvous phasing mission. The 
results show that the proposed approach can stably obtain the near 
optimal high-precision solution by integrating the perturbed tra-
jectory only a few times.
A long-duration rendezvous phasing plan is compatible with 
any initial phase angles that the in-plane velocity increment re-
mains almost unchanged when the initial phase angle changes. 
However, under the same conditions, the out-of-plane velocity in-
crement has considerable variations, which is caused by the cou-
pling effect between in-plane and out-of-plane maneuvers.

For a typical two-day rendezvous phasing plan, or plans with 
shorter mission duration, the total velocity increment has only 
one local minimum when the initial right ascension of ascend-
ing node (RAAN) of the chaser changes, and that local minimum 
corresponds to a quasi-coplanar launch opportunity of the chaser. 
However, for a long-duration rendezvous phasing plan, such as 
the plan with two-week mission duration, the total velocity in-
crement has multiple local minimums as the initial RAAN of the 
chaser changes, and different local minimums correspond to dif-
ferent terminal revolution numbers. By aiming different terminal 
revolution numbers, a two-week plan could have more successive 
quasi-coplanar launch opportunities for the chaser (cargo space-
craft) than a two-day rendezvous phasing plan.
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