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Weapon systems accuracy is a vitally important tactical and technical index, which has a significant
impact on the process of the weapon systems design and test. Based on different accuracy criteria, we
proposed a new evaluation method for the weapon systems accuracy. First, a new bootstrap method,
using the correlation coefficient criterion, is presented to evaluate a weapon systems accuracy when the
sample size n satisfied n ≥ 10. Second, measures for weapon systems accuracy are introduced to represent 
the different performance of weapon systems. Furthermore, an attributes matrix is proposed to combine
the above measures. Third, inspired by the Pitman’s closeness measure, we designed a weapon systems
accuracy attributes competition matrix to contain the entire pairwise competition results, and then its
positive eigenvector is employed to the weapon systems accuracy evaluation. Finally, a numerical example
is provided to illustrate the effectiveness and feasibility of the proposed method. It is shown that the new
evaluation method can not only evaluate the weapon systems accuracy before and after improvement, but
also rank the accuracy of the designed weapon systems to the evaluated weapon systems.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Weapon systems accuracy represents the dispersion character-
istic between the target and the warheads land, which plays a 
more and more important role in the design and the evaluation 
of a weapon system (see, e.g. [1–6]). In practical applications, sev-
eral accuracy criteria were proposed for different weapon systems, 
such as accuracy, precision, system error, firing accuracy and CEP. 
The accuracy is the degree of closeness of the average impact point 
to the target, while the precision accounts for the dispersion of the 
impact points. System error is an exact value, which can be esti-
mated based on several experiments in the same conditions. Firing 
accuracy is used to measure the firing error of the gun system, and 
it usually includes accuracy and precision. CEP is a hit accuracy cri-
terion, which is often characterized with a CEP. CEP is the radius 
of a circle containing 50% of the hitting probability and centered 
at the target [7]. Therefore, CEP is used to describe the firing error 
of the weapon system [8].
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However, there exist three challenges in the process of the 
weapon systems design and test. One of the challenges, in the 
process of the weapon systems test, is that we want to know the 
weapon systems accuracy before and after improvement. To solve 
the above problems, [9] presented the sequential probability ra-
tio test to make statements concerning the unknown mean of a 
Gaussian process, which requires an expected number of observa-
tions considerably smaller than the fixed number of observations 
needed by the current most powerful test methods. Furthermore, 
the latter provides a control over the errors of the first and sec-
ond kinds to exactly the same extent (has the same α and β) as 
the sequential test. The second challenge is that we also need to 
rank the accuracy of the designed weapon systems with respect to 
one another. Several methods have been proposed to deal with this 
problem, such as the AHP [10], fuzzy-AHP [1], fuzzy arithmetic op-
erations [2], ranking fuzzy numbers [3], response surface method 
using grey relation analysis [11] and intuitionistic fuzzy sets [12]. 
Last but not least is the small sample problem. As mentioned 
above, the assessment of weapon systems accuracy is performed 
based on the test data of weapon systems. However, the classical 
statistic approaches which are based on the large sample are use-
less because a small number of experiments are usually performed. 
Therefore, the system simulation technology and the semi-physical 
simulation were proposed to increase the number of the test data 
(see, e.g. [4,18–24]).
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Nomenclature

Abbreviations

CEP Circular Error Probability
AHP Analytic Hierarchy Process
AEE Average Euclidean Error
RMSE Root Mean Square Error
HAE Harmonic Average Error
GAE Geometric Average Error
ME Median Error
EM Error Mode
IMRE Iterative Mid-Range Error
ES Error Spectrum
DES Dynamic Error Spectrum
CDF Cumulative Distribution Function
PDF Probability Density Function
PMF Probability Mass Function
AES Area-Error Spectrum
RES Range-Error Spectrum
WSAA Weapon Systems Accuracy Attributes
WSAAC Weapon Systems Accuracy Attributes Competition

Symbols

H1 Alternative hypothesis
α The probability of an error of the first kind (rejecting 

H0 when H0 is true)
H0 Null hypothesis
β The probability of an error of the second kind (accept-

ing H0 when H1 is true)
x Original data
x∗ Resampling data
xs Simulation data
ρ(·) Correlation coefficient criterion
ε The threshold of ρ(·) in the new bootstrap method
n The number of the original data
m The number of histogram
B The number of the resampling data
ns The number of the performed simulation
ρ(X,Z) The correlation between X and Y (where X and Y are 

downrange and cross-range misses, respectively)
In this paper, the weapon systems accuracy, based on the test 
data, is characterized by several statistics which reflect the differ-
ent aspects of the weapon systems. More concretely, among the 
above accuracy criteria, the accuracy is the mean of the error data, 
and the precision is the standard deviation of the error data. How-
ever, the mean (i.e., the AEE) and standard deviation (the approxi-
mation of the RMSE) are easily dominated by the outliers [13]. To 
solve the above problem, several robust statistics were proposed 
(see, e.g. [13–17]), such as the HAE, the GAE, the ME, the EM and 
the IMRE. Among these, the HAE is suit to evaluate hit-or miss 
since it is dominated by the small error terms [16]. Furthermore, 
the GAE is a more typical value than AEE because it is less affected 
by extreme values. The ME is the middle error term or the arith-
metic average of the middle two error terms; the error mode is the 
location of the highest peak of the histogram for the given error. 
Obviously, the ME and EM are decided by the “normal” or “typi-
cal” error, which are still not robust. Thus, the IMRE [17], a novel 
measure of central tendency, is presented to overcome the draw-
backs of the median. In [16], the RMSE and AEE are pessimistic 
since they focus on the bad performance; the HAE is optimistic 
because it focused on the good performance; the GAE, ME, EM and 
IMRE are balanced since they are neither dominated by larger er-
ror nor affected by small error. Obviously, different statistics reflect 
different aspects of performance. All of the above-listed statis-
tics can reflect only one aspect of the weapon systems accuracy. 
Thus, three comprehensive performance measures—the ES, desir-
ability level, and relative concentration and deviation measures 
were proposed in [25–27]. Among these metrics, the ES can reveal 
more information about the estimation because it is an aggrega-
tion of several incomprehensive metrics. Since then, most existing 
researches have focused on the improvements of the ES (see, e.g. 
[30–33]).

The main contribution of this work is that a new evaluation 
method using the ES is proposed to evaluate the weapon systems 
accuracy according to the test data. First, a new bootstrap method 
is proposed to increase the number of the test data. Further, based 
on the correlation coefficient criterion, the new subsamples repli-
cating by the new bootstrap method have faster convergence speed 
and lower square error than the bootstrap method. Second, several 
measures are introduced to the weapon systems accuracy, then, 
based on the above measures, a WSAA matrix is proposed to rep-
resent the performance of the weapon systems accuracy. Third, 
according to the WSAA matrix, let any two columns compared 
with each other, a WSAAC matrix is designed to store the com-
petition results, and its positive eigenvector is employed to find 
whether the tested weapon satisfied design requirement or not.

Considering the aforementioned introduction, in this paper, 
a new evaluation method for the weapon systems accuracy is 
proposed. The main novelty in this paper is summarized as fol-
lows. First, the proposed evaluation method can also be used to 
evaluate weapon systems accuracy under the small sample case 
based on the new bootstrap method. Second, more attributes of 
the weapon systems will be considered by using the error spec-
trum. Finally, the above evaluation method can not only evaluate 
the similar weapon systems but also to rank different types ac-
cording to WSAAC matrix.

2. The new bootstrap method to resampling

In practical applications, the frequency of weapon systems test 
is getting down because of the high cost of the test, which leads to 
the limitation of the tested weapon systems observations. There-
fore, before performing the new evaluation method, a new resam-
pling method is proposed to increase the original sample. To the 
best of our knowledge, most existing research has focused on the 
small sample problem (see [18–24]). Among these, the most pop-
ular ones are bootstrap method introduced by [18] and Bayesian 
bootstrap method (random weighing method) proposed by [22]
and [23]. In this paper, we utilized bootstrap method to resam-
pling.

2.1. Bootstrap method

Bootstrap method is described in [18,19], and we quote it 
here. Based on the available limited samples x = {x}n

i=1, bootstrap 
method does provide an efficient way of estimating the distribu-
tion of statistical parameter by using the resampling technique, 
which has been applied in many applications [20,21]. The main 
idea is to replicate several sets of bootstrap samples {x̄∗ j}B

j=1
with replacement from the original data x = {x}n

i=1. A key issue 
in bootstrap method is how to perform the replication. Usually, 
Monte Carlo method is applied to replicate the new subsamples 
x∗ j = (x∗ j

, x∗ j
, · · · , x∗ j

n ), which is carried out as follows:
1 2
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Fig. 1. Schematic representation of bootstrap method.

Step 1: Generate a random number R , which follows the 
uniform distribution U (0, M), M is a positive integer satisfying 
M � n;

Step 2: Let p = mod(R, n), where mod(·) is the mod function. 
If mod(R, n) = 0, let p = 1, if mod(R, n) > n, let p = n;

Step 3: Let x∗1
1 = xp , then repeat Steps 1 and 2 for n times to 

obtain a new sample x∗1 = {x∗1
i }n

i=1.

Then repeat Steps 1–3 for B times, and denote x̄∗ j the average 
of each replication sample {x∗ j

i }n
i=1, we have the new bootstrap 

sample {x̄∗ j}B
j=1.

Obviously, the advantage of this method is that it only requires 
the initial set of samples, as shown in Fig. 1. Moreover, the num-
ber of the bootstrap resampling is chosen to be large enough so 
that it does not affect the quality of the results. As shown in [20], 
the number of resample B is typically taken from 500 to 5000. In 
order to ensure the accuracy of the bootstrap method and to save 
computation time, we let the number of resampling equals to 1000 
in this paper.

Furthermore, as shown in Fig. 1, the key step in bootstrap 
method is the replication. Although Monte Carlo method is re-
garded as a significant technical approach in solving the above 
replication problem, it has some limitations. To see this, here is an 
example: assume that the initial set of samples are (r1, r2, r3, r4), 
then bootstrap method randomly selects five samples are (r1, r1,

r3, r4), (r1, r3, r3, r4), (r1, r2, r2, r4), (r1, r1, r3, r3), (r2, r2, r4, r4), then, 
the average of each replication sample is calculated to design a 
new sample (r̄∗

1, ̄r∗
2, ̄r∗

3, ̄r∗
4, ̄r∗

5). We can see from the replication 
sample (r1, r1, r3, r3) that only two points information (i.e., (r1, r3)) 
have been used. In other words, much information has been lost 
in the new replication sample. To solve the above problem, a new 
bootstrap method is proposed based on the correlation coefficient 
criterion.

2.2. The new bootstrap method

As discussed above, the correlation coefficient criterion is uti-
lized to quantify the closeness between the initial set x = {x}n

i=1

and the new replication set x∗ j = {x∗ j
i }n

i=1, which is defined as

ρ
(

f (x); f
(
x∗ j))=

∫
f (x) f (x∗ j)dx

[∫ f (x)2dx
∫

f (x∗ j)2dx]1/2
(1)

where f (x) and f (x∗ j) are the PDF of x = {x}n
i=1 and x∗ j = {x∗ j

i }n
i=1, 

respectively.
Since the PDF of x = {x}n

i=1 and x∗ j = {x∗ j
i }n

i=1 are rarely avail-
able, here, we use the histograms instead of the corresponding 
discretized PDF. Therefore, (1) is approximated to

ρ
(

f (x); f
(
x∗ j))≈

∑m
k=1 h(xk)h(x∗ j

k )

[∑m h(x )2
∑m h(x∗ j

)2]1/2
(2)
k=1 k k=1 k
where h(·) is a histogram function with m bins (m < n); xk is 
the center of the k-th bin ({xk}m

k=1 is the set of xk) and x∗ j
k is 

still the center of the k-th bin (k = 1, 2, · · ·m). It was assumed 
that the above correlation coefficient criterion is positive defi-
nite: ρ( f (x); f (x∗ j)) = 1 if f (x) = f (x∗ j) or h(x) = h(x∗ j) and 
ρ( f (x); f (x∗ j)) has the standard range: 0 ≤ ρ( f (x); f (x∗ j)) ≤ 1.

Obviously, keeping on iterating through Steps 1–3 in bootstrap 
method, we will obtain the new replication sample unless the 
above correlation coefficient criterion is greater than ε. Here, ε a 
real number satisfying ε ∈ [0, 1], typically determined by the user. 
Therefore, a detailed pseudocode description of the new bootstrap 
method is summarized as follows:

Step 1: Generate a random number R , which follows the 
uniform distribution U (0, M), M is a positive integer satisfying 
M � n;

Step 2: Let p = mod(R, n), if mod(R, n) = 0, let p = 1, if 
mod(R,n) > n, let p = n;

Step 3: Let x∗1
1 = xp , then, repeat Steps 1 and 2 for n times to 

obtain a new sample x∗1 = {x∗1
i }n

i=1.

Step 4: calculate the correlation coefficient criterion between 
new sample x∗1 = {x∗1

i }n
i=1 and the initial set x = {x}n

i=1. Then, 
repeat Steps 1–3 until convergence: ρ( f (x); f (x∗ j)) ≥ ε. If an ap-
propriate stopping condition holds then output the new sample 
x∗1 = {x∗1

i }n
i=1.

Step 5: Repeat Steps 1–4 for B times, the new bootstrap sample 
{x̄∗ j}B

j=1 are obtained.

In this paper, for the weapon systems accuracy evaluation, 
let (x0, z0) be the target position, assume that we fire a se-
ries of weapons as the target and mark where the warheads 
land (X, Z) = (x1, z1), (x2, z2), · · · , (xn, zn), which are indepen-
dent identically distributed; then the downrange and cross-range 
misses are x̃ = {xi − x0}n

i=1 = (x̃1, ̃x2, · · · , ̃xn) and z̃ = {zi − z0}n
i=1 =

(z̃1, ̃z2, · · · , ̃zn), respectively. Then, denote (X̃, Z̃) = (x̃1, ̃z1), (x̃2, ̃z2),

· · · , (x̃n, ̃zn) as the corresponding fall point error.
According to (2), it is inconvenience to calculate the correlation 

coefficient criterion between the test data (X, Z ) and the repli-
cation data (X∗, Z∗). Therefore, the relative error is proposed to 
transform the above two data.

Usually, we use the following relative distance between the tar-
get and warhead.

ci =
√

x2
i + z2

i i = 1,2, · · ·n (3)

Similarly, we can define a relative distance error between the 
target and warhead

c̃i =
√

x̃2
i + z̃2

i i = 1,2, · · ·n (4)

So, (x̃1, ̃z1), (x̃2, ̃z2), · · · , (x̃n, ̃zn) can be equivalently written as 
the relative distance error (c̃1, ̃c2, · · · , ̃cn). Then, we obtain the new 
observations (c̃∗

1, ̃c
∗
2, · · · , ̃c∗

B ) based on the above new bootstrap 
method. Similarly, according to (4), a relative distance error c̃∗

j cor-
respond to a fall point error {(x̃i, ̃zi)}n

i=1. Thus, the replication data 
are given by

{(
x̃∗

j , z̃∗
j

)}B
j=1 =

{(
1

n

n∑
i=1

x̃i,
1

n

n∑
i=1

z̃i

)}B

j=1

(5)

Essentially, we defined the relative distance or the relative dis-
tance error because of the following reasons. First, it is not con-
venient to calculate the correlation coefficient criterion for the 
two-dimensional test data. Second, as shown in Fig. 1, the new 



372 W. Peng et al. / Aerospace Science and Technology 58 (2016) 369–379
bootstrap method is very easy to be implemented after the two-
dimensional test data combined to one-dimensional data. Third, 
we can see that the relative distance or the relative distance rep-
resents the whole error of the weapon system fall point. Further-
more, the relative distance error can be applied in the error spec-
trum directly. Hereafter, we utilized the relative distance error data 
(c̃∗ = (c̃∗

1, ̃c
∗
2, · · · , ̃c∗

B)) to represent the weapon systems accuracy.

3. Measures for the weapon systems accuracy evaluation

3.1. Average Euclidean error and root mean square error

According to the new observations, there are several competi-
tive classes of statistics in the weapon systems accuracy evaluation 
(see, e.g. [13,14,16]). Among these, the two most popular ones are 
the mean and the variance. In fact, the mean is the AEE, which is 
defined as

AEE
(
c̃∗)= c̄∗ = 1

B

B∑
i=1

c̃∗
i (6)

And the variance is given by

σ̂ 2
c̃∗ = S2

c̃∗ = 1

B − 1

B∑
i=1

(
c̃∗

i − c̄∗)2 (7)

In order to unify dimension with the AEE, the variance is usu-
ally replaced by the RMSE, i.e.,

RMSE
(
c̃∗)=

[
1

B

B∑
i=1

(
c̃∗

i

)2]1/2

(8)

As we all know, the main nice feature of the RMSE is that it is 
the most nature finite-sample approximation of the standard error √

E[·2], which is closely related with standard deviation.
In fact, the above statistics are proved to be unbiased, consis-

tent and effective without system errors and outliers in the obser-
vation. In particular, with the Gaussian distribution, the mean and 
variance are the optimal estimation. However, it is usually existed 
the outliers in practical application, which leads to the limitation 
of the mean and variance. In other words, whatever in the large or 
small sample size, they have a common drawback, i.e., the mean 
and variance are easily dominated by the outliers. For example, if 
all 100 terms of weapon system errors are around 1 except for one 
terms of 500, then RMSE ≈ 50, AEE = 5.99.

To solve the above problem, several robust statistics were pro-
posed to complement for the above traditional statistics, such as 
the harmonic average error, the geometric average error, the me-
dian error, the error mode and the iterative mid-range error, which 
are defined as in the following.

3.2. Geometric average error

Unfortunately, the AEE and RMSE are still dominated by large 
error terms although the domination is alleviated. To avoid this 
limitation, the GAE is presented in [16]:

GAE
(
c̃∗)=

(
B∏

i=1

c̃∗
i

)1/B

= exp

[
1

B

B∑
i=1

ln
(
c̃∗

i

)]
(9)

Clearly, the GAE is a balance measure because it is less affected 
by extreme values.
3.3. Harmonic average error

Certainly, in case small errors are of interest, the HAE may be a 
good choice, this is defined by

HAE
(
c̃∗)=

(
1

B

B∑
i=1

(
c̃∗

i

)−1

)−1

(10)

Clearly, the HAE is an optimistic measure, which is suit to an-
swer the hit-or-miss question. However, all of the above measures, 
i.e., the AEE, the RMSE, the GAE and the HAE, can only reflect one 
part of the performance.

3.4. Median error, error mode and iterative mid-range error

In [16], the RMSE and AEE are pessimistic since they focus on 
the bad performance; the HAE is optimistic because it is focused 
on the good performance; the GAE is balanced since it is neither 
dominated by larger error nor affected by small error. In addition, 
there exist some other robust statistics, such as the ME, the EM 
and the IMRE. The ME is the middle error term or the arithmetic 
average of the middle two error terms, which is defined as

ME
(
c̃∗)=

{
c̃∗

B/2 if B is an odd number
c̃∗

B/2+c̃∗
(B+1)/2

2 if B is an even number
(11)

Obviously, the ME is dominated by the middle error.
For some case, we concentrate on the most frequently error. 

Therefore, the EM is proposed to solve the above problem, which 
is the location of the highest peak of the histogram for the given 
error. Obviously, the ME and EM are decided by the “normal” or 
“typical” error (i.e., the ME is dominated by the middle error and 
the EM affected by the location of the highest peak of the his-
togram for the given error), which are still not robust. Thus, the 
IMRE, a novel measure of central tendency, is presented to over-
come the drawbacks of the median [17]

IMRE
(
c̃∗)= min(c̃∗

) + max(c̃∗
)

2
(12)

To see this, here is an example of how to calculate IMRE. 
Given an error set e5 = {0, 1, 3, 4, 5}, compute the mid-range 
value of IMRE0

5 = min(e)+max(e)
2 = 0+5

2 = 2.5, then the mid-range 
value of IMRE0

5 is applied to replace the minimum and maximum, 
i.e., e4 = {1, 2.5, 3, 4}, furthermore, IMRE1

4 = min(e1)+max(e1)
2 =

1+4
2 = 2.5, then e3 = {2.5, 2.5, 3} and IMRE2

3 = min(e2)+max(e2)
2 =

2.5+3
2 = 2.75, continuing this process, finally, e2 = {2.5, 2.75} and 

IMRE3
2 = min(e3)+max(e3)

2 = 2.5+2.75
2 = 2.625, thus, e1 = {2.625} and 

IMRE(e5) = 2.625.
Unfortunately, all of the above metrics can only reflect one part 

of the estimator performance. Three comprehensive performance 
measures, i.e. the ES, desirability level, and relative concentration 
and deviation measures were proposed in [25–27]. Among these 
metrics, the ES can reveal more information because it is an ag-
gregation of many incomprehensive metrics, as shown in the fol-
lowing part.

3.5. Error spectrum

As proposed in [26], let e = ||c̃∗||p , where || · ||p can be taken 
as 1-norm or 2-norm. Then, for −∞ < r < +∞, the ES for the 
weapon systems accuracy evaluation is defined as,

S(r) = (E[er])1/r =
∫

erdF (e)

=
{

(
∫

er f (e)de)1/r, continuous e
(
∑

eq p )1/r, discrete e
(13)
i i
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Fig. 2. The ES performance curves of two weapons fall-points accuracy.

where F (e), f (e) and pi are the CDF, the PDF and the PMF, respec-
tively. The ES has many nice important properties for performance 
evaluation, which can be found in [14] and [16].

From (13), it is clear that the ES includes the above several met-
rics as special cases when r is set to some specific values:

(a) r = 2, then S(2) = (E[e2])1/2. For a discrete ei , S(2) = RMSE.
(b) r = 1, then S(1) = E[e]. For a discrete ei , S(1) = AEE.
(c) r = 0, then S(0) = limr→0 S(r) = exp(E[ln e]). For a dis-

crete ei , S(0) = GAE.
(d) r = −1, then S(−1) = 1/E[1/e]. For a discrete ei , S(−1) =

HAE.
In view of this, the notation r used in this paper is a real num-

ber satisfying r ∈ [−1, 2].
Especially, for a discrete {ei}B

i=1, the ES can be approximately 
calculated as follows [14,31]

S(r) ≈
{ [ 1

B

∑B
i=1(ei)

r]1/r r 
= 0

[∏B
i=1 ei]1/n r = 0

(14)

It can be seen from (13) that an ES performance curve is ob-
tained to describe the weapon systems accuracy. To see this, Fig. 2
shows that the ES curves of two evaluated missiles.

Furthermore, we can see that the traditional metric RMSE is 
just a point on the ES performance curve with r = 2. Thus, the 
above ES performance curve reflects more information because it 
includes the RMSE, the AEE, the GAE and the HAE. However, the 
above performance curve has some limitations and drawbacks. On 
one hand, its calculation without the error distribution is not easy, 
though in [7] (a further development of [4]), the authors provided 
analytical formulae for the computation of the ES when the error 
distribution is given. To overcome this problem, we proposed two 
approximation algorithms, i.e., the Gaussian mixture and power 
means error method to calculate the ES performance curve [31]. 
On the other hand, it is difficult to say which weapon performs 
better when their ES performance curves intersect with each other. 
To overcome this problem, the DES was presented in [8,9], which 
is in fact the average height of the ES performance curve. How-
ever, it is still difficult to decide which weapon performs better, 
when one weapon’s DES equals the other. To improve the DES, we 
proposed two metrics, i.e., the AES and RES in [32] and [33]. For 
convenience, we quote it in the following.

3.6. Area-error spectrum and range-error spectrum

As we know, the concept of the AES was informally put forward 
in reference [30]. Here, we proposed two areas of the ES for esti-
mation performance evaluation in [32] and [33], which can also be 
applied in the weapon systems accuracy evaluation.
The first one is the area under the ES performance curve, which 
is defined as

AES =
∫

S(r)dr (15)

In this paper, the AES is given by

AES =
2∫

−1

S(r)dr (16)

Furthermore, for a discrete ri, ri ∈ {ri}m
i=1, the AES can be ap-

proximated to

AES =
2∫

−1

S(r)dr ≈ rm − r1

m

m∑
i=1

S(ri) (17)

It is clearly seen from (17) that the smaller the area is, the bet-
ter the performance of a weapon is. Furthermore, the area under 
the ES performance curve reflects how much better or worse one 
weapon’s accuracy outperforms the other, as shown in Fig. 1.

Furthermore, we presented a range-error spectrum (RES) in 
[32], which is designed to quantify the concentration of the errors 
of an objective. Let S(r) = f (e, r), we have [25]

g
(

S(r)
)= f −1(e, r) (18)

Similar to (15), the second area, i.e., the RES, is defined as

RES =
S(rm)∫

S(r1)

g
(

S(r)
)
dS(r) ≈ S(rm) − S(r1)

m

m∑
i=1

g
(

S(ri)
)

(19)

Since g(S(ri)), the inverse function of f , is hard to be obtained 
analytically, (19) can be approximated as:

RES ≈ [S(rm) − S(r1)
] 1

m

m∑
i=1

(ri − r1) (20)

Moreover, we have

S(rm = 2) = RMSE, S(r1 = −1) = HAE (21)

Hence, the above equation is reduced to

RES = (RMSE − AEE) × 1

m

m∑
i=1

(ri − r1) (22)

Since 
∑m

i=1(ri − r1)/m is a constant, it is clear that the RES 
reflects the flatness of the ES performance curve. As mentioned 
in [32], this property is characterized by the concentration of the 
errors.

As can be seen in (17) and (22), number m represents the at-
tributes of weapon systems accuracy. For instance, if the number 
of indices over {ri}m

i=1 equals 4 (i.e., m = 4), within the inter-
val ri ∈ [−1, 2], we have ri ∈ {−1, 0, 1, 2}. That is, the HAE, the 
GAE, the AEE and the RMSE are altogether applied to describe a 
weapon’s attributes. In some situations, however, we may want to 
focus on the other error metrics. For this purpose, we set m to 
different values corresponding to different sets {ri}m

i=1. Obviously, 
different m reflects different attribute of a weapon.

For convenience, we define an attributes distance within the 
interval [−1, 2] to describe a weapon’s attributes:

D = rm − r1

m
(23)

As stated before, the above measures reflect all the information 
of weapon systems accuracy. Therefore, in the following, we pro-
pose a WSAA matrix concerning about all the aspects of weapon 
systems accuracy.
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4. Weapon systems accuracy attributes matrix

Assume that we have N weapons to be evaluated and a de-
sired weapon (designed in theory). For each weapon, we obtained 
a corresponding test data (X j, Z j), j = 1, · · · N . Then we have the 
relative distance error data ({c̃∗

j }N
j=1) of the weapon systems ac-

curacy according to the new bootstrap method. Furthermore, the 
above measures are calculated by the relative distance error data. 
Finally, the WSAA matrix is defined as

AWSAA

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0(rm = 2) = RMSE0 S1(rm = 2) = RMSE1 · · · Sn(rm = 2) = RMSEN

.

.

.

.

.

.

.
.
.

.

.

.

S0(rp = 1) = AEE0 S1(rp = 1) = AEE1 · · · Sn(rp = 1) = AEEN

.

.

.

.

.

.

.
.
.

.

.

.

S0(rq = 0) = GAE0 S1(rq = 0) = GAE1 · · · Sn(rq = 0) = GAEN

.

.

.

.

.

.

.
.
.

.

.

.

S0(r1 = −1) = HAE0 S1(r1 = −1) = HAE1 · · · Sn(r1 = −1) = HAEN

ME0 ME1 · · · MEN

EM0 EM1 · · · EMN

IMRE0 IMRE1 · · · IMREN

AES0 AES1 · · · AESN

RES0 RES1 · · · RESN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m+5)×(N+1)

(24)

where the first column represents the attributes of the desired 
weapon, the rest of the columns stand for the attributes of the 
corresponding evaluated weapon.

Clearly, the WSAA matrix at least includes two objectives: an 
evaluation object and a desirability object. Here, the evaluation ob-
jects are the weapon systems which we have been tested, and the 
desirability object (or the design objective) is a virtual weapon sys-
tem that we desired it.

According to the above WSAA matrix, we use the WSAAC ma-
trix to the weapon systems accuracy evaluation. However, the 
WSAAC matrix based on the WSAA matrix includes more aspects 
of weapon systems accuracy.

5. Weapon systems accuracy attributes competition matrix

According to the WSAA matrix, let any two weapons ( j 
=
k ( j, k ∈ {1, · · · , N +1})) compare with each other. To be precise, let 
the j-th column values and the k-th column values be compared 
in pairs. Then denote mWSAAC( j, k; AWSAA

i( j,k)
) as the competition re-

sult with respect to the i-th attribute AWSAA
i( j,k)

(the total number of 
the competitions w.r.t. AWAM

i( j,k)
is m + 5), and

mWSAAC
(

j,k; AWSAA
i( j,k)

)

�

⎧⎪⎨
⎪⎩

1 ifAWSAA
i j is better than AWSAA

ik
0.5 if AWSAA

i j is equal to AWSAA
ik

0 if AWSAA
ik is better than AWSAA

i j

(25)

where AWSAA
i j is the i-th element of the j-th weapon systems 

within the WSAA matrix. In particular, AWSAA
i0 stands for the i-th 

attribute of the desired weapon.
Then, the WSAAC is given by

MWSAAC
(

j,k; AWSAA
(1,···,m+5)( j,k)

)
= 1

m + 5

m+5∑
i=1

mWSAAC
(

j,k; AWSAA
i( j,k)

)
(26)

where AWSAA
(1,···,m+5)( j,k)

is the vector of the WSAA between the j-th 
weapon system and the k-th weapon system. For MWSAAC( j, k;
AWSAA
(1,···,m+5)( j,k)

) > 0.5, we think that AWSAA
(1,···,m+5) j is WAC-better than 

AWSAA
(1,···,m+5)k . In addition, we also have the following relation.

MWSAAC
(

j,k; AWSAA
(1,···,m+5)( j,k)

)+ MWSAAC
(
k, j; AWSAA

(1,···,m+5)( j,k)

)
= 1 (27)

Furthermore, the non-transitive problem of the WSAAC is 
solved based on the WSAAC matrix.

XWSAAC

�

⎡
⎣ MWSAAC(1, 1; AWSAA

1(1,1)
) · · · MWSAAC(1, N + 1; AWSAA

1(1,N+1)
)

.

.

.
.
.
.

.

.

.

MWSAAC(N + 1, 1; AWSAA
(N+1)(N+1,1)) · · · MWSAAC(N + 1, N + 1; AWSAA

(N+1)(N+1,N+1))

⎤
⎦

(28)

Clearly, the WSAAC matrix contains the entire pairwise com-
petition results of all compared weapon systems. Moreover, since 
the WSAAC matrix is a positive matrix, according to the Perron–
Frobenius theorem [29], there exists an eigenvector Eig1×(N+1) > 0, 
we have

XWSAAC · Eig1×(N+1) = λ · Eig1×(N+1) (29)

where λ is the only eigenvalue on the spectral circle of XWSAAC, 
λ and is called the Perron root. Thus, the above eigenvector (i.e., 
Eig1×(N+1)) is applied to evaluate the weapon systems accuracy, 
because the elements of the eigenvector reflect how good the cor-
responding weapon systems accuracy is [28].

Remark 1. For the same type weapon systems, for any two tested 
weapon systems (p 
= q(p, q ∈ {1, · · · , N + 1})), we can conclude 
that the accuracy of the p-th tested weapon system outperforms 
the q-th tested weapon system if Eig1×(N+1)(p) > Eig1×(N+1)(q)

and vice versa. Certainly, if Eig1×(N+1)(p) = Eig1×(N+1)(q), we can 
say that the accuracy of the p-th tested weapon system nearly 
as well as the q-th tested weapon system. Here Eig1×(N+1)(1) is 
the eigenvalue of the desired weapon system. On the contrary, 
Eig1×(N+1)(p) < Eig1×(N+1)(1) implies that the p-th tested weapon 
systems accuracy cannot satisfy design requirement.

Remark 2. For the different type weapon systems, for p 
= q (p, q ∈
{1, · · · , N + 1}), if Eig1×(N+1)(p) ≥ Eig1×(N+1)(q), we think that 
the accuracy of the p-th weapon system is superior to the q-th 
weapon system and vice versa.

Clearly, the above evaluation method can not only evaluate the 
similar weapon systems but also to evaluate different types.

6. The new evaluation method for the weapon systems accuracy

As stated before, a schematic diagram of the new evaluation 
method for weapon systems accuracy is summarized as follows.

Step 1: Initializing the desired weapon fall points data (X0, Z 0), 
the tested data of the k batch weapon (Xk, Zk) (k = 1, 2, · · · , N , N
is the number of the evaluated weapon), and the attributes dis-
tance D;

Step 2: According to (4), transform the above tested data to the 
relative distance error data c̃k = (c̃1, ̃c2, · · · , ̃cB);

Step 3: Based on the new bootstrap method, we can obtain the 
new observations c̃∗

k = (c̃∗
1, ̃c

∗
2, · · · , ̃c∗

B);

Step 4: Compute the ES, the AES and the RES according to the 
new observations c̃∗

k = (c̃∗
1, ̃c

∗
2, · · · , ̃c∗

B), we can obtain the WSAA 
matrix;
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Fig. 3. The simulation data, test data1, test data2, and test data3.

Step 5: Based on the WSAA matrix, we have the WSAAC matrix;

Step 6: Calculate the eigenvector of the WSAAC matrix;

Step 7: According to the eigenvector, we can conclude that 
whether the tested weapon satisfied design requirement or not.

7. Numerical example

In this section, a numerical example using the synthetic data 
is provided to illustrate the weapon systems accuracy evaluation 
process of the proposed method.

7.1. The evaluation process using the proposed method

Step 1. As we know, based on the virtual proving ground, 
a great amount of simulation is carried out before the design of 
weapon systems. Therefore, we have a large number of simulation 
data (X s, Z s) = (xs

1, z
s
1), (xs

2, z
s
2), · · · , (xs

ns
, zs

ns
) where ns is the num-

ber of performed simulations. Here, assume that (X s, Z s) follows a 
bivariate normal distribution with mean μ = (μ1, μ2) and covari-
ance matrix

Σ =
[

σ 2
1 σ1σ2ρ(X s,Z s)

σ1σ2ρ(X s,Z s) σ 2
2

]
(30)

In addition, suppose that the target position is (x0, z0) = (0, 0)

and let μ = (3, 4), Σ = [ 4 1
1 9

]
, over 10 000 Monte Carlo runs, we 

obtained 10 000 fall points as shown in Fig. 3.
In practical applications, the first real experiment was carried 

out to evaluate whether the weapon system satisfied our design 
requirement. Then we obtained a tested data (test data1). Here, we 
assume that the first tested data are follows the bivariate normal 
distributions, as shown in Table 1. If the weapon system cannot 
satisfy our design requirement, we need to improve the weapon 
system. Assume that two more advanced technologies were used 
to improve the weapon system. In many real-life, to test the effec-
tiveness of the above technologies, we made two real experiments. 
At the same time, we obtain two tested data. Here, we named the 
two tested data as test data2 and test data3, respectively. Simi-
lar to the test data1, the two tested data are still generated from 
the bivariate normal distributions, which are summarized in Ta-
ble 1.

Similar to the simulation data, we have the above three test 
data over the Monte Carlo runs, as shown in Fig. 3.
Table 1
Test data of three times experiment.

Experiment classification Number Mean Covariance matrix

Test data1 10 μ1 = (4,4) Σ1 =
[

6 1
1 7

]

Test data2 12 μ2 = (2,5) Σ2 =
[

5 1
1 9

]

Test data3 15 μ3 = (3,3) Σ3 =
[

3 1
1 8

]

Step 2. According to (4), the above simulation data and test data 
are transformed to the relative distance error data, respectively, 
which are given by

c̃s = (c̃s
1, c̃s

2, · · · , c̃s
ns

)
c̃1 = (c̃1

1, c̃1
2, · · · , c̃1

10

)
c̃2 = (c̃2

1, c̃2
2, · · · , c̃2

12

)
c̃3 = (c̃3

1, c̃3
2, · · · , c̃3

15

)
(31)

Step 3. The new bootstrap method is applied to enrich c̃1
, ̃c2

, ̃c3. 
Thus, we have

c̃1∗ = (c̃1∗
1 , c̃1∗

2 , · · · , c̃1∗
B

)
c̃2∗ = (c̃2∗

1 , c̃2∗
2 , · · · , c̃2∗

B

)
c̃3∗ = (c̃3∗

1 , c̃3∗
2 , · · · , c̃3∗

B

) (32)

Furthermore, one replication and one thousand replications are 
performed to show the superiority of the new bootstrap method, 
as shown in Fig. 4 and Fig. 5, respectively.

Figs. 4(a), 4(c) and 4(e) show that one bootstrap replication 
from the above three test data, respectively. Similarly, we can see 
three groups of a new bootstrap replication from Figs. 4(b), 4(d)
and 4(f), respectively.

Before performing Step 4, we need to decide the attributes dis-
tance D . As discussed in Section 3.6, for r ∈ [−1, 2], if D = 0.75, 
then m = 4. Thus, the WSAA matrix reduces to

AWSAA

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0(rm = 2) = RMSE0 S1(rm = 2) = RMSE1 · · · Sn(rm = 2) = RMSEN

S0(rp = 1) = AEE0 S1(rp = 1) = AEE1 · · · Sn(rp = 1) = AEEN

S0(rq = 0) = GAE0 S1(rq = 0) = GAE1 · · · Sn(rq = 0) = GAEN

S0(r1 = −1) = HAE0 S1(r1 = −1) = HAE1 · · · Sn(r1 = −1) = HAEN

ME0 ME1 · · · MEN

EM0 EM1 · · · EMN

IMRE0 IMRE1 · · · IMREN

AES0 AES1 · · · AESN

RES0 RES1 · · · RESN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4+5)×(N+1)

(33)

Clearly, the WSAA matrix only used the HAE, the GAE, the 
AEE and the RMSE, which is the four special points in the ES 
curve. In this case, much information of the ES curve will be 
lost. What’s worse, we will obtain the different evaluation re-
sult because of the different attributes distance. Therefore, an 
appropriate attributes distance is designed to use more infor-
mation of the ES curve and to obtain a steady evaluation re-
sult.

In this is numerical example, the attributes distance is given 
by the following simulation. According to (23)–(29), for any fixed 
D ∈ [0, 1], substituting the above simulation data and the test 
data1 into the above measures, we obtained the WSAA matrix. 
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Fig. 4. One replication from three test data based on bootstrap method and new bootstrap method.
Then the WSAAC matrix is calculated by the WSAA matrix. Fur-
thermore, the eigenvector of the WSAAC matrix is computed 
to evaluate the weapon systems accuracy. Actually, the eigen-
vector of the WSAAC matrix depends on the elements of the 
WSAAC matrix. Therefore, if all the elements of the WSAAC ma-
trix tends to stable, the eigenvector of the WSAAC matrix will 
be stable which leads to a steady evaluation result. Therefore, 
for convenience, take the first element XWAC(1, 2, AWAM

(1,2,···,m+5(1,2))

as an example. Then the XWAC(1, 2, AWAM
(1,2,···,m+5(1,2)) curve with 

the attributes distance is shown in Fig. 6. Furthermore, the 
computation time curve with attributes distance is shown in 
Fig. 7.
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Fig. 5. Three test data resampling by bootstrap method and new bootstrap method.
It can be clearly seen from Fig. 6 that if D ∈ [0.2, 1], then 
XWAC(1, 2, AWAM

(1,2,···,m+5(1,2)) ∈ [0.2, 0.5], if, however, D ∈ [0, 0.2], 
then XWAC(1, 2, AWAM

(1,2,···,m+5(1,2)
) ∈ [0.35, 0.4]. Clearly, when D is 

approaching zero, the range of the XWAC(1, 2, AWAM
(1,2,···,m+5(1,2))

tends to a steady. Besides that, Fig. 7 shows that the computation 
time decreases as the increasing of the distance. Therefore, in this 
paper, we let the attributes distance equals to 0.005 (D = 0.005).

Step 4. Compute the ES, the AES and the RES according to the 
new observations c̃∗

k = (c̃∗
1, ̃c

∗
2, · · · , ̃c∗

B), we can obtain the WSAA 
matrix as follows:
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Fig. 6. The XWAC(1,2, AWAM
(1,2,···,m+5(1,2)

) curve.

Fig. 7. The computation time curve.

AWSAA

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RMSE0 = 6.1854 RMSE1 = 6.0038 RMSE2 = 6.0618 RMSE3 = 4.3320
.
.
.

AEE0 = 5.6106 AEE1 = 5.9678 AEE2 = 6.0410 AEE3 = 4.3094
.
.
.

GAE0 = 4.9187 GAE1 = 5.9321 GAE2 = 6.0208 GAE3 = 4.2872
.
.
.

HAE0 = 3.9867 HAE1 = 5.8966 HAE2 = 6.0014 HAE3 = 4.2656

ME0 = 5.4744 ME1 = 5.9868 ME2 = 6.0449 ME3 = 4.3293

EM0 = 5.3733 EM1 = 6.0728 EM2 = 6.1356 EM3 = 4.4429

IMRE0 = 5.6047 IMRE1 = 5.9729 IMRE2 = 6.0416 IMRE3 = 4.3121

AES0 = 15.7422 AES1 = 17.8540 AES2 = 18.0955 AES3 = 12.8978

RES0 = 3.2981 RES1 = 0.1607 RES2 = 0.0906 RES3 = 0.0995

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

Step 5: Based on the WSAA matrix, we have the WSAAC matrix:

X N B
WSAAC =

⎡
⎢⎢⎣

0.5000 0.8725 0.9118 0.0850
0.1275 0.5000 0.9967 0.0000
0.0882 0.0033 0.5000 0.0033
0.9150 1.0000 0.9967 0.5000

⎤
⎥⎥⎦ (35)

Since the above matrix exists zero elements, to satisfy the 
Perron–Frobenius theorem, it can be replaced by very small pos-
itive numbers. Therefore, (35) can be rewritten as
X N B
WSAAC =

⎡
⎢⎢⎣

0.5000 0.8725 0.9118 0.0850
0.1275 0.5000 0.9967 0.0001
0.0882 0.0033 0.5000 0.0033
0.9150 0.9999 0.9967 0.5000

⎤
⎥⎥⎦ (36)

Step 6: Calculate the eigenvector of the WSAAC matrix.
According to the Perron–Frobenius theorem [29], the eigenvec-

tor of the (36) is given by

ERVN B
WSAAC = [ 0.2715 0.1453 0.0520 0.5312 ] (37)

Similar to (34)–(37), we can obtain the following result based 
on the bootstrap method.

ERVB
WSAAC = [ 0.2500 0.1576 0.0366 0.5558 ] (38)

Step 7: According to the eigenvector, we can conclude whether 
the tested weapon satisfied design requirement or not.

Thus, according to (37), the evaluation results are:

WThird test > Wdesired > WSecond test > WFirst test (39)

Similarly, according to (38), the evaluation results are:

WThird test > Wdesired > WSecond test > WFirst test (40)

7.2. Analysis of the simulation results

Fig. 4 shows that the bootstrap replication data lost more in-
formation than the new bootstrap replication data. That is, it can 
be seen from Figs. 4(a) and 4(b) that one of bootstrap replica-
tion data1 only used four fall points information. The informa-
tion of the other six fall points was lost. However, based on the 
correlation coefficient criterion, one of new bootstrap replication 
data1 includes six fall points. Clearly, more information was con-
sidered in the new bootstrap replication data1. Similarly, as shown 
in Figs. 4(c)–4(f), both the new bootstrap replication data2 and the 
new bootstrap replication data3 are consider more information of 
the initial test data than the bootstrap replication data2 and the 
bootstrap replication data3, respectively.

Fig. 5 shows that the new bootstrap replication data are more 
concentration than the bootstrap replication data. Obviously, the 
reason is that each the new bootstrap replication data includes 
many different fall points by using the correlation coefficient cri-
terion, while the bootstrap replication data is generated by the 
Monte Carlo method that leads to the randomness of the repli-
cation data.

According to (39) and (40), when the three tested data are 
the same weapon, we can conclude that after the first experi-
ment, the weapon cannot satisfy the design requirement. Although 
the second experiment is still not meeting the design require-
ment, it shows that the second tested weapon outperforms the 
first tested weapon. In other words, the improve technology used 
in the second tested weapon is effective. Furthermore, the third 
tested weapon is superior to the desired weapon. Therefore, we 
think that the third tested weapon satisfy the design requirement. 
Certainly, when the three data are the different weapons, it can be 
easily concluded that the third weapon is the best; the next is the 
desired weapon and the second weapon, the first weapon is the 
poor.

8. Conclusion

The primary contribution of this paper is that a new evaluation 
method, based on error spectrum, is presented to the weapon sys-
tems accuracy. First, based on the correlation coefficient criterion, 
the new bootstrap method has faster convergence speed and lower 
square error than the bootstrap method under the small sample 
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case. Second, more attributes of the weapon systems will be con-
sidered by using the error spectrum. Third, the above evaluation 
method can not only evaluate the similar weapon systems before 
and after improvement but also to rank the accuracy of the de-
signed weapon systems to the other. Finally, simulation shows that 
the proposed evaluation method can efficiently handle the weapon 
systems accuracy problem. It is worth noting that the limitation 
of the proposed method is that the new evaluation method de-
pends on the test data. As a future work, a possible direction 
is to put the presented method to the weapon systems evalua-
tion.
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