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A generalized formulation to determine the stresses around the polygonal shaped hole in anisotropic
finite plate is presented in the paper. The stress concentration at the rounded corners of the polygonal
hole in finite plate subjected to in-plane loading is derived using complex variable approach in
conjunction with boundary collocation method. The influence of plate size, hole geometry and location,
material anisotropy and loading conditions on the stress concentration around the polygonal hole is
studied and presented in the paper. The results obtained through present method are validated by
comparing with literature and finite element solutions.
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1. Introduction

The polygonal shaped cutouts are provided in a plate like struc-
tural components for the requirement of service in many engi-
neering applications like windows panels of aircraft, openings in 
marine vehicles, opening for fixtures in space vehicle, perforated 
plates, etc. which are generally made of laminated composite ma-
terials. The presence of the sharp corners of polygonal hole ad-
versely affects the stress field in the plate when subjected to var-
ious loading. The material anisotropy and the size of plate also 
affect the stresses in the plate and raise the stress concentration 
around the hole. The high stress concentration may lead to the 
catastrophic failure of the components. To understand the catas-
trophe of the component it is necessary to estimate the stresses 
produced in the plate under different loading conditions.

Various methods have been used by different researchers to de-
termine the stresses around the cutout in a plate. Chen [1] used 
special finite element method to obtain the stress concentration 
around hole in infinite plate. Wang et al. [2] used complex bound-
ary integral method to obtain the stress field in an infinite plate 
with multiple circular hole. Muskhelishvili [3] has introduced a 
complex variable method to solve the problems of theory of elas-
ticity. Savin [4], Lekhnitskii [5], Rao et al. [6], Sharma [7–9], Batista 
[10], Rezaeepazhand and Jafari [11–13], Daoust and Hoa [14], etc. 
have presented the analytical solution to estimate the stress con-
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centration around various shapes of polygonal hole for isotropic 
and anisotropic plate subjected to remote loading using Muskhe-
lishvili’s [3] complex variable approach. The size of the plate is 
considered infinite compared to the size of hole in all these liter-
atures. But in many practical cases the size of plate is finite for 
which these solutions are inappropriate.

The derivation of the stress field in finite plate with circular 
and elliptical hole is presented by Ogonowski [15], Madenci et al. 
[16], Xu et al. [17], Lin and Ko [18], Durelli et al. [19], etc. for 
anisotropic and isotropic materials. The solution of deriving the 
stresses around rectangular hole and regular polygonal hole in fi-
nite plate is presented by Pan et al. [20] and Jafari and Ardalani 
[21] respectively for isotropic material. For anisotropic finite plate, 
the solutions of stress concentration factor around rectangular hole 
and stress intensity factors at cusp of hypocycloidal hole are pre-
sented by Chauhan and Sharma [22,23]. All these solutions have 
utilized the boundary collocation method proposed by Bowie and 
Neal [24] and Newman [25]. The study of the existing literatures 
reveals that the solution of deriving stresses around regular polyg-
onal hole in anisotropic finite plate has still not been attempted, 
within the best of author’s knowledge.

An attempt is made here to derive a generalized formulation 
to obtain the stresses around the regular polygonal shaped hole in 
anisotropic finite plate under the action of in-plane loading. The 
stress functions are derived using complex variable approach in 
conjunction with boundary collocation method. The effect of plate 
size, hole geometry, hole orientation and location, material proper-
ties and loading conditions on the stresses around the hole is also 
studied.
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Fig. 1. Collocation points on the plate and hole boundary.

2. Analytical formulation

A thin rectangular anisotropic plate of length L and height H
with a polygonal hole located at l and h distance from the bottom 
and left edge of the plate respectively is under the application of 
in-plane loading along X′0Y′ frame, as shown in Fig. 1. Assuming 
the plane stress condition, the stress components in an anisotropic 
plate [5] can be obtained as,

σx = 2 Re

[
2∑

j=1

μ2
jϕ

′
j(z j)

]
,

σy = 2 Re

[
2∑

j=1

ϕ′
j(z j)

]
,

τxy = −2 Re

[
2∑

j=1

μ jϕ
′
j(z j)

]
(1)

where μ j are the constants of anisotropy obtained by applying 
generalized Hooke’s law, Airy’s stress functions and compatibility 
conditions to anisotropic plate, ϕ′

j(z j) are the first derivative of 
Muskhelishvili’s complex stress functions ϕ j(z j) and z j = x + μ j y. 
To derive the stresses in a finite anisotropic plate, the complex 
stress functions are derived using Boundary Collocation Method as 
discussed in following section.

The solution begins with the generation of numbers of colloca-
tion points on the boundary of plate and hole as shown in Fig. 1, 
where K 1 = N1 + 1, K 2 = K 1 + N1, K 3 = K 2 + N1, K 4 = K 3 + N1
and N = K 4 + N2, N1 and N2 are number of points on the side of 
plate and boundary of the hole respectively. The x and y coordi-
nates of each collocation points are obtained as follows:

(xs, ys) = (L − l,−h) s = 1

=
(

xs−1, ys−1 + H

K 1 − 1

)
2 ≤ s ≤ K 1

=
(

xs−1 + L

K 2 − 1
, ys−1

)
K 1 + 1 ≤ s ≤ K 2

=
(

xs−1, ys−1 − H

K 3 − 1

)
K 2 + 1 ≤ s ≤ K 3

=
(

xs−1 − L

K 4 − 1
, ys−1

)
K 3 + 1 ≤ s ≤ K 4

= (
Re(zs), Im(zs)

)
K 4 + 1 ≤ s ≤ N

(2)

where Re and Im stands for Real and Imaginary part respectively 
and
Fig. 2. Geometry of polygonal hole.

zs = R

[
c0ζs +

∑
k

ck

ζ
pk
s

]
(3)

where R is the size factor, ζs = eiθs , θs = (s − K 4 − 1) + 2π/N2, 
c0, ck and pk are the constants parameters to define different 
polygonal shape. For the polygonal hole of side n, c0 = 1, ck =
(
∏k

j=1(( j−1)n−2))

nk(1−kn)k! and pk = kn − 1. To inscribe the polygonal hole in 

to a unit circle R = 1
1+∑

k ck
and to orient the polygon at angle α

with respect to X axis, the constants ck are multiplied with eiqkα

where qk = pk + 1. Eq. (3) is the mapping function that maps the 
polygonal shape conformally on to a unit circular hole (see Fig. 2).

The geometry of the plate with hole in a complex plane, 
z-plane is obtained by zs = xs + iys . For the plate made of 
laminated composite material the plate geometry is defined in 
z j -plane, due to affine transformation, as zsj = xs + μ j ys . Con-
sidering the constants of anisotropy, the mapping function Eq. (3)
takes form

zsj = R

2

[
a j

(
c0

ζs
+

∑
k

ckζ
pk
s

)
+ b j

(
c0ζs +

∑
k

ck

ζ
pk
s

)]
(4)

where a j = 1 + iμ j and b j = 1 − iμ j .
Multiplying Eq. (4) by ζ K (K is the maximum power of ζ ) and 

rearranging the terms,

Ra j

∑
k

ckζ
pk+K
sj + R(a jc0)ζ

K+1
sj − 2zsjζ

K
sj + R(b jc0)ζ

K−1
sj

+ Rb j

∑
k

ckζ
K−pk
sj = 0 (5)

Eq. (5) is polynomial equation of ζ that maps all the colloca-
tion points of z j -plane on to ζ j -plane. Out of pk + K number of 
roots of Eq. (5), the one that maps the polygonal shape to unit cir-
cular shape is selected and each zsj is mapped to corresponding 
ζsj points. On each of this point in ζ j -plane, the following force 
boundary conditions are imposed,

±Fx = ±Sx(ys − y0) = 2 Re
2∑

j=1

μ j
(
ϕ j(ζ js) − ϕ j

(
ζ 0

j

))
,

∓F y = ∓S y(xs − x0) = 2 Re
2∑(

ϕ j(ζ js) − ϕ j
(
ζ 0

j

)) (6)
j=1
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where Fx and F y are the components of resultant force acting on 
the segment of the boundary, xs and ys are the coordinates of the 
collocation point, x0 and y0 are the coordinates of reference point, 
φ j(ζ j) are Muskhelishvili’s complex stress functions, ζ js is mapped 
coordinates for corresponding collocation point z js , Sx and S y are 
applied loading on the boundary of the plate and obtained as

Sx = σ

2

[
(λ + 1) − Re

(
(λ − 1)e2iγ )]

,

S y = σ

2

[
(λ + 1) + Re

(
(λ − 1)e2iγ )] (7)

where σ is the applied load per unit length, λ is biaxial loading 
factor that can be set to 0 or 1 for uniaxial and equi-biaxial loading 
respectively and γ is load angle.

The complex stress functions φ j(ζ j) for the finite plate with 
circular hole can be represented in terms of Laurent series as

ϕ j(ζ j) = A j0 ln ζ j +
∞∑

m=1

(
A jmζ−m

j + B jmζm
j

)
(8)

where A j0, A jm and B jm are the unknowns of the series which are 
to be determined. Here the logarithmic terms are dropped hence-
forth for the stress free hole conditions and the infinite series is 
truncated to the finite terms M . Substituting Eq. (8) in to Eq. (6), 
simplifying and rearranging, the set of boundary equations are ob-
tained and represented in a matrix form as

[P ](2N×4M)[X](4M×1) = [F ](2N×1), (9)

where

[P ](2N×4M)

=
[

μ1(ζ−m
1 − ζ−m

10 ) μ1(ζm
1 − ζm

10) μ2(ζ−m
2 − ζ−m

20 ) μ2(ζm
2 − ζm

20)

(ζ−m
1 − ζ−m

10 ) (ζm
1 − ζm

10) (ζ−m
2 − ζ−m

20 ) (ζm
2 − ζm

20)

]
,

[X](4M×1) =

⎡
⎢⎢⎣

A1m

A2m

B1m

B2m

⎤
⎥⎥⎦ ,

[F ](2N×1) =
[

Fx

F y

]
(10)

In Eq. (9), 2N � 4M and hence a least square method is used to 
solve the overdetermined system of equations. Once the unknowns 
of the series stress functions are known, the stress components in 
the plate can be from Eq. (1).

It is convenient to present the stress components on the 
perimeter of the polygonal hole in polar coordinates by using fol-
lowing stress transformations:

σθ + σr = σy + σx,

σθ − σr + 2iτrθ = (σy − σx + 2iτxy)e2iθ (11)

3. Results and discussion

The mathematical formulation to derive the stresses around the 
polygonal hole in a finite anisotropic plate is presented in the 
previous section. A computer programme is prepare to evaluate 
the stresses in the finite plate based on the formulation. The in-
put to the programme are loading parameters λ and γ , material 
properties, stacking sequence of laminate, size of finite plate L
and H , number of sides of polygon n, orientation of hole α and 
location of the centre of the hole l and h. The materials con-
sidered here are Graphite/Epoxy (E1 = 182 GPa, E2 = 10.3 GPa, 
G12 = 7.17 GPa, ν12 = 0.28), Glass/Epoxy (E1 = 47.4 GPa, E2 =
16.2 GPa, G12 = 7 GPa, ν12 = 0.26), Plywood (E1 = 11.79 GPa, 
E2 = 5.89 GPa, G12 = 0.69 GPa, ν12 = 0.071), Boron/Epoxy (E1 =
Fig. 3. Convergence of the results.

282.77 GPa, E2 = 23.79 GPa, G12 = 10.35 GPa, ν12 = 0.27) and 
Isotropic steel (E = 205 GPa, G = 80 GPa, ν = 0.26).

According to the input, the programme calculates Sx , S y and 
constants of anisotropy μ j . It generates the x and y coordinates 
of N (= N1 + N2) number of collocation points and derives z j for 
each point. The mapped coordinate ζ j are then obtained from z j
and it is further used to generate the system of equations from 
boundary conditions. An iterative process of increasing the number 
of terms in series stress functions is employed during the solu-
tion of system of equations till the convergence of results. The 
converged solution is used to derive the stresses around the hole. 
The stresses around the hole is conveniently derived in polar coor-
dinates using coordinates transformations. Fig. 3 shows the good 
convergence of the stress concentration factor around different 
polygonal holes in Glass/Epoxy[0] plate of L = H = 10 subjected 
to uniaxial Y loading.

To validate the present solution, the comparison is made be-
tween the results obtained by present method and that of finite 
element solution through ANSYS as shown in Figs. 4 to 9 for tri-
angular, square, pentagonal, hexagonal, heptagonal and octagonal 
holes. The exact geometry of the plate with polygonal hole is gen-
erated in ANSYS by exporting the coordinates of keypoints through 
a computer programme. PLANE182 element is used to generate the 
finite element model in ANSYS as it supports the anisotropic ma-
terial properties and plane stress condition. The maximum stresses 
obtained by present method and ANSYS are 10.819 and 11.069 for 
n = 3, 7.49 and 7.74 for n = 4, 6.05 and 6.31 for n = 5, 5.26 and 
5.72 for n = 6, 5.11 and 5.25 for n = 7 and 4.58 and 4.94 for n = 8
respectively. The results are in close agreement with finite element 
solutions.

The stress distribution around polygonal shaped hole in finite 
plate subjected to different in-plane loading conditions are shown 
in Fig. 10(a) for Glass/Epoxy[0/90]s and Fig. 10(b) for Isotropic 
plate. It is observed that the stresses in Glass/Epoxy cross ply lam-
inate are more severe than the Isotropic plate for all the loading 
conditions due to anisotropy of the material.

It is also observed from Fig. 10, that the stress concentration 
is different at different vertices of the polygonal hole due to its 
location with respect to the loading direction. For the uniaxial Y
loading, the corners at 0◦ and 180◦ show the highest stresses com-
pared to other vertices while for uniaxial X loading the corners 
at 0◦ and 180◦ show the least stress concentration compared to 
other vertices. For the equi-biaxial loading, the stresses are equal 
at all the corners of all the polygonal hole in isotropic material 
(Fig. 10(b)) but the same is not true in Glass/Epoxy[0/90]s plate 
(Fig. 10(a)) due to material anisotropy except for square hole. The 
reason of this behavior of square hole may be the location of all 
the vertices on the axis while the other hole shapes have their ver-
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Fig. 4. Comparison of stress distribution around triangular hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.

Fig. 5. Comparison of stress distribution around square hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.

Fig. 6. Comparison of stress distribution around pentagonal hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.

Fig. 7. Comparison of stress distribution around hexagonal hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.



M.M. Chauhan, D.S. Sharma / Aerospace Science and Technology 58 (2016) 197–206 201
Fig. 8. Comparison of stress distribution around heptagonal hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.

tices at the place other than the axis also. It is seen from Fig. 10, 
that the vertices are the point of high stress concentration in a 
plate hence number of vertices, their location and sharpness may 
affect the stress filed in finite anisotropic plate.

Table 1 shows the values of maximum normalized stresses 
around the polygonal hole of sides 3, 4, 5, 6 and 7 in the plate of 
various dimensions and made of Glass/Epoxy[0], Glass/Epoxy[90], 
Glass/Epoxy[0/90]s and Isotropic material subjected to uniaxial X , 
uniaxial Y and equi-biaxial loading. Table 1 shows the effect of 
plate size, material anisotropy and number of vertices on the stress 
concentration. It is observed from Table 1 that as the plate size in-
creases the stress concentration decreases and approaches to that 
of infinite plate. For the comparison purpose, the results of infi-
nite plate are obtained here by using the methodology proposed 
by Ukadgaonker and Rao [26]. The close agreement of the results 
obtained by present method for large plate (L = 100) with that of 
infinite plate shows the capability of the present method to pro-
duce the satisfactory solutions for infinite plate also.

From Table 1, it is seen that the stress concentration in isotropic 
plate is higher for Y direction loading and lower for X direction 
loading for all the shapes of polygons. The same behavior is also 
observed for Glass/Epoxy cross ply laminate. But due to anisotropy 
the same is not true for Glass/Epoxy[0] and Glass/Epoxy[90] plate. 
The stress concentration in Glass/Epoxy[0] is higher for X direc-
tion loading while in Glass/Epoxy[90] it is higher for Y direction 
loading.

It is observed from Table 1 that as the number of vertices 
increases the stress concentration in a plate decreases gradually 
Fig. 9. Comparison of stress distribution around octagonal hole in finite anisotropic 
plate: (a) present method, (b) ANSYS.

for uniaxial Y loading but the same trend is not observed for 
uniaxial X loading. This can be clearly understood from Fig. 11, 
which shows the SCF for different polygonal holes in finite plate 
of Glass/Epoxy cross ply and Isotropic material subjected to uniax-
ial X and uniaxial Y loading. For uniaxial Y loading, the vertex at 
0◦ i.e. on X axis, shows the highest stresses in all the polygonal 
hole. While for uniaxial X loading, the vertex of highest stress is 
not necessarily on X or Y axis but it may be in a plane depending 
on the geometry of the polygonal shape. As a special case, square 
hole having all the vertices on the principle axis only, shows the 
same stress concentration for X and Y direction loading.

The change in number of sides, changes the location of vertices 
in the plate with respect to loading direction and that alters the 
stress field. To study the effect of vertices location on stress con-
centration, the vertices location of a given polygonal hole is altered 
by three different ways.

In the first case, the vertices location is altered by orienting the 
hole at angle α varied from 0◦ to 180◦ in Glass/Epoxy[0/90]s finite 
plate L = 10 subjected to uniaxial Y loading. SCF is obtained for 
different polygonal shapes as shown in Fig. 12. It is observed that 
the curve is repetitive in nature. The curve repeats at an interval 
of 90◦ , 72◦ , 60◦ and 45◦ for square, pentagonal, hexagonal and oc-
tagonal shape respectively. This is because of the geometry of the 
hole shape. It is also noted from Fig. 12 that the SCF is maximum 
at such orientations when one of the vertices coincide with X axis, 
as the load is along Y direction.

In the second case, the centrally located hole is kept at 0◦
orientation and the loading angle γ is varied from 0◦ to 90◦ . 
Here, 0◦ corresponds to X axial loading while 90◦ corresponds 
to Y axial loading. The SCF around different polygonal holes in 
Glass/Epoxy[0/90]s and Isotropic material are evaluated for each 
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Fig. 10. Stress distribution around polygonal hole in finite plate: (a) Glass/Epoxy plate, (b) Isotropic plate.

Table 1
Stress concentration around centrally located polygonal hole in a plate.

N L Glass/Epoxy[0] Glass/Epoxy[90] Glass/Epoxy[0/90]s Isotropic

Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi

3 5 14.35 11.87 13.53 9.30 23.24 18.52 11.36 18.61 14.53 10.56 13.44 11.49
6 13.24 11.37 12.74 8.72 20.92 17.30 10.82 17.60 14.58 9.89 12.66 10.95
7 12.46 11.14 12.25 8.39 19.51 16.53 10.33 16.15 13.97 9.50 12.19 10.66
8 12.02 11.02 11.99 8.20 18.59 16.01 10.03 15.29 13.50 9.26 11.90 10.49
9 11.80 10.95 11.85 8.06 17.98 15.63 9.86 14.74 13.14 9.10 11.70 10.38
10 11.71 10.95 11.76 7.98 17.51 15.36 9.74 14.41 12.92 8.99 11.56 10.30
100 10.87 10.11 11.32 7.83 16.46 14.77 9.35 13.52 12.49 8.53 10.97 10.02
Inf. 10.77 10.09 11.29 7.82 16.55 14.84 9.29 13.55 12.55 8.55 10.92 10.03

4 5 16.41 8.88 10.55 9.05 17.34 9.74 13.04 13.08 8.77 10.90 10.59 7.01
6 14.97 8.34 9.85 8.34 15.49 9.45 11.88 11.97 8.30 9.90 9.69 6.66
7 14.03 7.93 9.47 7.95 14.48 9.32 11.27 11.24 8.05 9.33 9.16 6.48
8 13.52 7.69 9.21 7.81 14.05 9.10 10.79 10.86 7.95 8.97 8.82 6.37
9 13.13 7.62 9.08 7.64 13.72 9.06 10.55 10.66 7.91 8.73 8.59 6.29
10 12.95 7.54 8.95 7.54 13.41 9.01 10.39 10.43 7.84 8.55 8.44 6.24
100 10.75 6.63 8.64 6.63 10.76 8.64 8.83 8.83 7.59 7.44 7.36 6.04
Inf. 10.33 6.45 8.62 6.45 10.33 8.62 8.53 8.53 7.53 7.08 6.95 6.06
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Table 1 (continued)

N L Glass/Epoxy[0] Glass/Epoxy[90] Glass/Epoxy[0/90]s Isotropic

Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi

5 5 9.77 6.67 7.93 6.89 13.57 6.68 8.28 9.78 6.77 7.83 8.69 5.46
6 9.11 6.44 7.38 5.97 12.50 6.58 7.69 9.26 6.40 7.00 7.78 5.20
7 8.69 6.27 7.04 5.74 11.85 6.53 7.39 8.98 6.19 6.53 7.24 5.09
8 8.48 6.12 6.86 5.60 11.42 6.52 7.15 8.72 6.03 6.28 6.94 5.02
9 8.34 6.06 6.71 5.50 11.09 6.52 7.02 8.57 5.93 6.13 6.77 4.97
10 8.21 5.99 6.59 5.43 10.84 6.53 6.89 8.41 5.90 6.04 6.67 4.93
100 7.15 5.33 5.90 4.82 8.49 6.56 6.03 7.03 5.90 5.27 5.79 4.69
Inf. 7.03 5.24 5.88 4.76 8.26 6.55 5.96 6.86 5.86 5.20 5.63 4.69

6 5 5.95 6.14 4.87 4.29 11.01 7.32 5.08 8.72 6.51 4.47 6.44 4.57
6 5.47 5.76 4.70 4.17 10.39 6.89 4.77 8.03 6.25 4.27 6.09 4.41
7 5.20 5.53 4.61 4.10 9.88 6.58 4.60 7.66 6.11 4.18 5.89 4.31
8 5.03 5.38 4.55 4.04 9.47 6.33 4.45 7.36 5.98 4.10 5.75 4.25
9 4.91 5.28 4.51 4.00 9.21 6.25 4.39 7.19 5.89 4.07 5.66 4.20
10 4.83 5.19 4.48 3.95 9.03 6.16 4.36 7.04 5.83 4.01 5.58 4.17
100 4.82 4.74 4.25 3.69 7.53 5.45 4.23 6.19 4.93 3.73 5.15 4.00
Inf. 4.50 4.64 4.17 3.56 7.22 5.51 4.00 6.02 5.02 3.83 4.97 4.01

7 5 6.81 5.15 6.81 4.98 10.19 6.41 5.97 7.68 5.60 5.23 5.88 4.18
6 6.45 4.77 6.00 4.70 9.18 5.89 5.89 7.05 5.34 5.06 5.54 3.97
7 6.28 4.55 5.55 4.55 8.58 5.60 5.72 6.54 4.78 4.95 5.36 3.86
8 6.21 4.43 5.28 4.45 8.19 5.41 5.63 6.33 4.68 4.87 5.23 3.79
9 6.18 4.34 5.10 4.39 7.92 5.28 5.56 6.19 4.62 4.81 5.15 3.75
10 6.17 4.29 4.98 4.34 7.72 5.20 5.51 6.08 4.57 4.76 5.08 3.72
100 6.11 4.20 4.56 4.09 6.64 4.85 5.15 5.54 4.46 4.43 4.65 3.61
Inf. 6.03 4.27 4.60 4.06 6.60 4.89 5.10 5.52 4.52 4.42 4.57 3.62
Fig. 11. Effect of number of vertices.

Fig. 12. Effect of hole orientation on stress concentration.

loading angle and plotted as shown in Fig. 13(a) and Fig. 13(b) re-
spectively. The minimum SCF is observed for the load angle ranges 
from 65◦ to 70◦ for different polygonal holes located centrally in a 
finite plate.
Fig. 13. Effect of load angle on SCF around polygonal hole: (a) Glass/Epoxy, 
(b) Isotropic.

In the third case, the centre of hole is varied by varying the di-
mensions l and h with respect to plate boundary in a finite plate. 
The SCF is evaluated at each position of hole in a plate and a sur-
face plot is produced as shown in Fig. 14 for different polygonal 
shapes. The X and Y axis show the offset distance of the hole cen-
tre from the centre of the plate along length (L) and height (H)

respectively. The maximum normalized stress for each location is 
plotted on Z axis. Fig. 14(a), (b) and (c) show the surface plot for 
Glass/Epoxy[0] finite plate (L = H = 10) subjected to uniaxial Y
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Fig. 14. Effect of hole location on stress concentration around hole: (a) uniaxial X loading, (b) uniaxial Y loading, (c) equi-biaxial loading.
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Fig. 15. Effect of corner radius on stress concentration around polygonal hole.

loading, uniaxial X loading and equi-biaxial loading respectively 
for n = 3, 4, 5 and 6. For uniaxial X loading, the pick values of SCF 
are observed at 3, 4, 5 and 6 locations for n = 3, 4, 5 and 6 respec-
tively as shown in Fig. 14(a). But for uniaxial Y loading, the pick 
values are observed for right most positions of hole in the case 
of n = 3 and n = 5 while it is for left most and right most loca-
tions of holes with n = 4 and n = 6 as shown in Fig. 14(b). This 
may be because triangle and pentagon have only one vertex on 
X axis (at 0◦) and the rest of the vertices are in the plane while 
square and hexagon have two vertices on X axis (at 0◦ and 180◦) 
and others are in the plane. From Fig. 14(c), for equi-biaxial load-
ing, it is observed that the high stress concentration locations are 
similar in square (n = 4) and hexagon (n = 6), as both the shapes 
are symmetric with respect to X–Y axis. While for triangle, the 
high SCF is observed at the locations nearer to left and right edges 
of the plate and for pentagonal hole, it is at the locations nearer 
to top and bottom edges of the plate. Form Fig. 14, it can be ob-
served that the corners nearer to the loaded boundary show the 
high stress concentration.

In addition to the location of corners, the sharpness of the cor-
ners may also affect the stress concentration around polygonal hole 
in anisotropic finite plate. Fig. 15 shows the effect of corner radius 
on the stress concentration around the polygonal hole of differ-
ent sides in Glass/Epoxy[0/90]s plate L = 10, subjected to uniaxial 
Y loading. The corner radius of the polygonal hole is varied by 
varying the mapping function parameter ck by considering more 
number of terms. The corner radius is evaluated based on the for-
mula given by Sharma [7]. It is observed that as the corner radius 
decrease, the corners become sharper and the stress concentration 
increases. However for the same corner radius, the SCF for differ-
ent polygonal hole are different due to the different number of 
vertices.

Apart from the hole geometry, vertex locations and sharpness 
of corners, the material anisotropy also affect the stress distribu-
tion around the hole. To study this effect, the stress distribution 
on the perimeter of the different polygonal hole is obtained for 
Glass/Epoxy laminated plate with different stacking sequences of 
[0], [90], [0/90]s, [04/ ± 45]s, [904/ ± 45]s and [04/ ± 45/904]s
subjected to uniaxial Y loading as shown in Fig. 16. The stress 
concentration is minimum in [04/ ± 45]s laminate and maximum 
in [90] laminate for the uniaxial Y loading. However, for different 
loading conditions, the behavior may alter.

The effect of ration of E1/E2 on SCF around the polygonal hole 
is shown in Fig. 17. The SCF varies as E1/E2 changes for given 
loading conditions and other material property.

4. Conclusion

The stress distribution around polygonal hole in finite lami-
nated composite plate is obtained using complex variable method 
in conjunction with boundary collocation method. The attainment 
of well converged results in time efficient manner and ease of 
parametric study, make the boundary collocation method suitable 
for the solution of the present problem. The results obtained by 
present method are in close agreement with that of finite ele-
ment solution and the literature. The corners of the polygonal 
shaped holes are the points of stress concentration in the plate. 
The number, location and the curvature of the corners significantly 
affect the stress field in the finite anisotropic plate. The stresses 
around the polygonal hole is also affected by plate size, material 
anisotropy and the loading direction. The present generalized solu-
tion is capable to produce the satisfactory results for infinite plate 
by considering large plate size and also for isotropic plate by con-
sidering suitable material properties.
Fig. 16. Effect of stacking sequence on stress distribution around the hole.
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Fig. 17. Effect of anisotropy on stress concentration.

Conflict of interest statement

None declared.

References

[1] H.C. Chen, Special finite element including stress concentration effects of a 
hole, Finite Elem. Anal. Des. 13 (1993) 249–258.

[2] J. Wang, S.L. Crouch, S.G. Mogilevskaya, A complex boundary integral method 
for multiple circular holes in an infinite plane, Eng. Anal. Bound. Elem. 27 
(2003) 789–802.

[3] N.I. Muskhelishvili, Some Basic Problem of Mathematical Theory of Elasticity, 
Noordhoof Ltd., The Netherlands, 1963.

[4] G.N. Savin, Stress Distribution Around Holes, Pregamon Press, New York, 1961.
[5] S.G. Lekhnitskii, Anisotropic Plate, Gordon and Breach Science Publishers, New 

York, 1968.
[6] D.K.N. Rao, M.R. Babu, K.R.N. Reddy, D. Sunil, Stress around square and rectan-

gular cutouts in symmetric laminates, Compos. Struct. 92 (2010) 2845–2859, 
http://dx.doi.org/10.1016/j.compstruct.2010.04.010.

[7] D.S. Sharma, Stresses around polygonal hole in an infinite laminated compos-
ite plate, Eur. J. Mech. A, Solids 54 (2015) 44–52, http://dx.doi.org/10.1016/
j.euromechsol.2015.06.004.
[8] D.S. Sharma, Moment distribution around polygonal holes in infinite plate, 
Int. J. Mech. Sci. 78 (2014) 177–182, http://dx.doi.org/10.1016/j.ijmecsci.
2013.10.021.

[9] D.S. Sharma, Stress distribution around polygonal holes, Int. J. Mech. Sci. 65 
(2012) 115–124, http://dx.doi.org/10.1016/j.ijmecsci.2013.10.021.

[10] M. Batista, On the stress concentration around a hole in an infinite plate sub-
ject to a uniform load at infinity, Int. J. Mech. Sci. 53 (2011) 254–261, http://
dx.doi.org/10.1016/j.ijmecsci.2011.01.006.

[11] J. Rezaeepazhand, M. Jafari, Stress concentration in metallic plates with special 
shaped cutout, Int. J. Mech. Sci. 52 (2010) 96–102, http://dx.doi.org/10.1016/
j.ijmecsci.2009.10.013.

[12] J. Rezaeepazhand, M. Jafari, Stress analysis of perforated composite plates with 
non-circular cutout, Key Eng. Mater. (2008) 4365–4368.

[13] J. Rezaeepazhand, M. Jafari, Stress analysis of perforated composite plates, 
Compos. Struct. 71 (2005) 463–468, http://dx.doi.org/10.1016/j.compstruct.
2005.09.017.

[14] J. Daoust, S.V. Hoa, An analytical solution for anisotropic plates containing tri-
angular holes, Compos. Struct. 19 (1991) 107–130.

[15] J.M. Ogonowski, Analytical study of finite geometry plates with stress concen-
trations, in: AIAA/ASME/ASCE/AHS 21st SDN Conf., Washington, 1980.

[16] E. Madenci, L. Ileri, J.N. Kudva, Analysis of finite composite laminates with 
holes, Int. J. Solids Struct. 30 (1993) 825–834.

[17] X. Xiwu, S. Liangxin, F. Xuqi, Stress concentration of finite composite laminates 
with elliptical hole, Comput. Struct. 57 (1995) 29–34.

[18] C.C. Lin, C.C. Ko, Stress and strength analysis of finite composite laminate with 
elliptical hole, J. Compos. Mater. 22 (1988) 373–385.

[19] A.J. Durelli, V.J. Parks, V.J. Lopardo, Stresses and finite strains around an ellip-
tical hole in finite plates subjected to uniform load, Int. J. Non-Linear Mech. 5 
(1970) 397–411.

[20] Z. Pan, Y. Cheng, J. Liu, Stress analysis of a finite plate with a rectangular hole 
subjected to uniaxial tension using modified stress functions, Int. J. Mech. Sci. 
75 (2013) 265–277, http://dx.doi.org/10.1016/j.ijmecsci.2013.06.014.

[21] M. Jafari, E. Ardalani, Stress concentration in finite metallic plates with regular 
holes, Int. J. Mech. Sci. 106 (2016) 220–230.

[22] M.M. Chauhan, D.S. Sharma, Stresses in finite anisotropic plate weakened by 
rectangular hole, Int. J. Mech. Sci. 101–102 (2015) 272–279, http://dx.doi.org/
10.1016/j.ijmecsci.2015.08.007.

[23] M.M. Chauhan, D.S. Sharma, J.M. Dave, Stress intensity factor for hypocycloidal 
hole in finite plate, Theor. Appl. Fract. Mech. 82 (2016) 59–68.

[24] O.L. Bowie, D. Neal, A modified mapping collocation technique for accurate cal-
culation of stress intensity factors, Int. J. Fract. Mech. 6 (1970) 199–206.

[25] J.C. Newman, An improved method of collocation for the stress analysis of 
cracked plates with various shaped boundaries, NASA Tech. Note. D6376, 1971.

[26] V.G. Ukadgaonker, D.K.N. Rao, A general solution for stresses around holes 
in symmetric laminates under inplane loading, Compos. Struct. 49 (2000) 
339–354.

http://refhub.elsevier.com/S1270-9638(16)30463-1/bib31s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib31s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib32s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib32s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib32s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib33s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib33s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib34s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib35s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib35s1
http://dx.doi.org/10.1016/j.compstruct.2010.04.010
http://dx.doi.org/10.1016/j.euromechsol.2015.06.004
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.021
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.021
http://dx.doi.org/10.1016/j.ijmecsci.2011.01.006
http://dx.doi.org/10.1016/j.ijmecsci.2009.10.013
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3132s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3132s1
http://dx.doi.org/10.1016/j.compstruct.2005.09.017
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3134s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3134s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3135s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3135s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3136s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3136s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3137s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3137s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3138s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3138s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3139s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3139s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3139s1
http://dx.doi.org/10.1016/j.ijmecsci.2013.06.014
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3231s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3231s1
http://dx.doi.org/10.1016/j.ijmecsci.2015.08.007
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3233s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3233s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3234s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3234s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3235s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3235s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3236s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3236s1
http://refhub.elsevier.com/S1270-9638(16)30463-1/bib3236s1
http://dx.doi.org/10.1016/j.euromechsol.2015.06.004
http://dx.doi.org/10.1016/j.ijmecsci.2013.10.021
http://dx.doi.org/10.1016/j.ijmecsci.2011.01.006
http://dx.doi.org/10.1016/j.ijmecsci.2009.10.013
http://dx.doi.org/10.1016/j.compstruct.2005.09.017
http://dx.doi.org/10.1016/j.ijmecsci.2015.08.007

	Stress concentration at the corners of polygonal hole in ﬁnite plate
	1 Introduction
	2 Analytical formulation
	3 Results and discussion
	4 Conclusion
	Conﬂict of interest statement
	References


