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1. Introduction

Data dependence analysis is one of the main concerns of statistical inference. Proposed by Hotelling [17],
canonical correlation analysis (CCA) is a powerful method of multivariate data analysis, which aims at
seeking a pair of linear transformations associated with the two sets of variables such that the projected
variables are maximally correlated. The optimal pair of linear transformations can be solved by a generalized
eigenvalue problem [2]. Due to linearity, CCA cannot capture nonlinear relations. Hence, kernelization of
CCA (kernel CCA) was introduced [1,12]. A pattern function in a Euclidean space was defined to study
convergence analysis of kernel CCA via Rademacher complexity [15], while statistical consistency of it
was investigated under a decay condition of regularization parameters [10]. Cai and Sun [4] conducted
convergence rates of it under AC condition. Currently, kernel CCA has been widely used in many fields of
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science and technology, including: biology and neurology [14,22], bioinformatics [23], image retrieval [13],
cross-language text retrieval [24], etc.

The notion of conditional correlation arises from the problems of, e.g., chaotic time series, graphical
modeling of medical data [11] and causal learning [21]. Causal learning detects the causal structure of the
events. Causal knowledge and beliefs play a significant role in much of our everyday cognition. A lot of
theoretical analysis has been done to explain human causal learning. Thus, usually we need to consider the
dependence between X and Y given another variable Z. This is essentially different from kernel CCA, which
only focuses on describing the relations between two variables. Fukumizu et al. [11] proposed a new measure
of conditional dependence based on the normalized conditional cross-covariance operators. However, to the
best of our knowledge, no literature gives a systematic study about the model, convergence analysis and
geometry structure of conditional kernel CCA, which involves three variables. Hence it is more complicated.
This paper extends their work (Theorem 5) and aims at providing a suitable measure to characterize the
consistency of estimated functions from i.i.d. sample to their population counterparts when they are not
unique. Furthermore, the convergence rates of empirical normalized conditional cross-covariance operator
(NCCCO) to the NCCCO are also addressed in the sense of Hilbert—Schmidt norm under mild conditions,
which is the extension of Theorem 5 in [11]. Meantime, we generalize conditional kernel CCA to multiple
setting by means of the trace operator, and the conclusion stated in Theorem 3 can be viewed as an extension
of Theorem 3.1 in [5].

The rest of the paper is organized as follows. In Section 2, we give a brief review of kernel CCA problem
and introduce a new notion of conditional kernel CCA. The key analysis and main results will also be
investigated. Section 3 devotes to the extension of multiple conditional kernel CCA. Proof of main results
goes to Section 4. Finally, some concluding remarks are given in Section 5.

2. Theoretical background and main results

In this section, we make a new and systematic study on conditional kernel CCA, and develop a new
appropriate consistency analysis elaborately. Let us first review the kernel CCA problem.

2.1. Brief review of kernel CCA

Define the norm of a bounded linear operator A from a Banach space (H1, || - [[3,) to another Banach
space (Ha, || [|#,) as [[A]l = supy ), —1]|Af[l2,- The null space and the range of an operator A are denoted
by N(A) and R(A) respectively, where N'(A) = {f € H1|Af =0} and R(A) = {Af € Hao|f € H1}.

Throughout the paper, (X,Bxy), (V,By) and (Z,Bz) are measurable spaces. (Hx,kx), (Hy,ky) and
(Hz,kz) are RKHSs (see [7,8] and the references therein) of real-valued functions on X, Y and Z respec-

tively, endowed with measurable positive semi-definite kernels kx, ky and kz, respectively. We assume that
they satisfy

k1= sup |kx (X, X)| < oo, ko= sup lky(Y,Y)| <oo and k3= sup |kz(Z,Z)| < occ. (2.1)
Xex Yey Zez

Given two random variables X and Y, kernel CCA aims at providing nonlinear mappings f(X) and g(Y)
such that their correlation is maximized, where f # 0 and g # 0 belongs to Hx and Hy, respectively. That
is [10]:

o Coli(X)gv)
feta,geMy Var[f(X)]Y/2Var[g(Y)]1/2"

(2.2)
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Kernel CCA problem can be well-formulated using cross-covariance operators [3,10].

(9: By x [ny = Cov[f(X),9(Y)] = Exy |(f, kx (-, X) = mx)p (by(Y) = my, g)n, |, Vf € Hx,g € Hy,
where the mean element myx € Hy (similarly for my ) with respect to X is defined as

<f7mX>HX = EX[f(X)] = EX[<f, kX(WX»HX]ﬂ Vf S HX-

Cross-covariance operators are introduced on RKHSs (reproducing kernel Hilbert spaces) where the theory
is much simpler while they are generally defined for random variables in Banach spaces [3]. Therefore

mx =Ex[kx(» X)),  Byx =Exy[(kx(, X) —mx) @ (ky(-,Y) —my)].

It is easy to see that Xy x = X%, where A* denotes the adjoint of an operator A. If Y = X, Yxx is
called the covariance operator, which is self-adjoint and positive. Hence, (2.2) can be reformulated as

. (9, 2vx f) .
FeHx 961y /(g, Byy g)\/{f, Bxx [)

(2.3)

This yields the following conclusion immediately. The proof is simple and obvious, we will omit it here.
Proposition 1. (1) For any f,g € Hx, there holds
(Exxf g9)n. = E[(f(X)g(X))] - E[f (X)][E[g(X)];

(2) For any g € Hy, assume Ey x[g(Y)|X =] € Hx and kx (X, X), ky(Y,Y) satisfy Eq. (2.1), then
there holds

ExxEyx[g(Y)|X =] =Zxyg.

Remark 1. In essence, Ey | x[g(Y)|X = -] € Hx can be satisfied as shown in Proposition 4, [9] without
any reference to a specific g. The assumption for conclusion (2) in Proposition 1 could be relaxed to
Ex[k‘x(X,X)] < oo and Ey[k‘y(Y,Y)] < 00.

Employing the ideas of cross-covariance operators, a comprehensive description about conditional kernel
CCA will be presented in the next section.

2.2. Conditional kernel CCA algorithm

In this paper, our purpose is to analyze the effect of variable Z to the dependence between X and Y. We
define our conditional kernel CCA algorithm as

max Ez[Covxy z[f(X), g(V)]|Z]
fetx.gety Var[f(X)]/2Var[g(Y)]V/2 ~

(2.4)

which are motivated from the expression forms of kernel CCA in [10] and the theory of conditional cross-
covariance operator in [9]. Theoretical consistency about this algorithm will be given in the sequel. The
reason why we did not consider conditional variances in the denominator, viz, Var[f(X)|Z] and Var[g(Y)|Z]
will also be explained from the operator viewpoint. A one-step analysis shows that
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(9, By x|z )y = Ez[Covxy z[f(X),9(Y)]|Z]
=Ez [Exy[f(X)g(Y)|Z] — Ex|z(f(X)|Z)Ey z(9(Y)|2)]
= Exy [f(X)g(V)] - Bz ([Bx |2 ((X)|12)][Ey 2(9(V)|2)])
=9, By x[)ny — (2zzEx1z(f(X)|2),Ey12z(9(Y)|Z)) 22

Applying Proposition 1, we get

(9, Zyx1z0)ny = (9, By x [uy — (Bzx [ Eyiz(9(Y)|Z))n-
=(9: Sy x Ny — (Z7zZ2x [, Z2v 9 n-
= {9, (Bvx — Byz5,,22x) uy-
The operator Xz is typically not invertible, in which scenario, one can use the right inverse of 3,7 on

(N(Zzz))* to replace £, as it did in [9]. Alternatively, one may represent Xy y as E%%VYXE;/;,

where Vyx : Hxy — Hy is a unique bounded operator such that |[Vyx| < 1, and Vyx = QyVyxQx
(Theorem 1, [3]), here @x, Qy are the orthogonal projections that map Hx onto R(Exx) and Hy onto
R(Zyvy), respectively. It is called normalized cross-covariance operator (NOCCQO). Similar properties hold
for EYZ and sz. Thus

Syx1z = Sy (Vyx — VyzVzx ) EYx

Denote VYX|Z = VYX — VYZvZ)(, then

Yyx|z = E%//)zVYX|ZE§(/)2(-

If we rewrite (2.4) as

(9, By x|z f)
ferracty /g Syy g/ Sxx )|

and let f = E%; , g = EY/Y g, the above expression can be reformulated as

_ max (@, Vyxzf).
1l =L 13l ey =1

Recall in the theoretical analysis of kernel CCA, namely (2.3) which is equivalent to

_ max (3, Vyxf).
113 =1, 113113y, =1

Therefore, our model (2.4) was motivated by replacing Vy x with Vy x|z. One advantage of this approach is
that conditional variances are circumvented and conditional dependence information is included in Vy x|z.
Hence algorithm (2.4) is meaningful from the operator viewpoint.

Given an i.i.d. sample (X1,Y1, Z1), -+, (Xm, Y, Zm) drawn from an unknown probability distribution p,
classical methods aim at providing efficient estimates for algorithm (2.4) based on a finite sample. Recall [10]

i=1 t=1 Hx Hy

—

= Cov[f(X),g(Y)].
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Therefore
S0 = 3 (k¥ — Y k(¥ @ (Rl X0 — 3 k(L X)),
) s=1 t=1

Obviously, f)g,n}g is a finite rank operator. ERM scheme with Tikhonov regularization yields an empirical
estimate of (2.4). But here we consider a slightly different one:

. ... [Covxy izl (X), 9|2 2.5
rerxgety (Varlf(X)] + el FIZ,) V2 (Varlg(V)] + ellglF, ) /2 '

where ¢, > 0 is the regularization coefficient, \A/ar(f(X)) = LS (f(X) = L3 F(Xe)? (\A/ar(g(Y))
similarly), and

~

E.,, [Covxy z[f(X), g(V)]1Z] = (9,2V% 2 £) = (0. V) = (0. VY (T + enD) BT ).

The operator EAJ(Z"}) is not invertible, therefore modified Tikhonov regularization scheme was used to per-
form the approximation. That is, we use regularization terms not only in the denominator but also in the
numerator, and we replace (2(27}))71 with (EA](ZT"Z) + emI)71. The regularization terms make the problem
well-formulated in order to avoid trivial learning [15]. Recall

VI = (S0 4 e, )T V2ETUETE + e ) 72

Define VYTZ()‘Z = \Afg,n;g Vg,mZ)V(m) (empirical NCCCO), then \Afg,n;()‘z is a good approximation of Vy x|z.

Direct calculation yields that

Vi, = E +enD) 2SN (EY +eml) T2
The solution of (2.5) can be expressed using the idea of Gram matrices. Let u; € Hy, v; € Hy and
w; € Hz be functions defined by u; = kx (-, X;) — % S k(LX) vi = ky(n,Y) — % S ky(L YY), w =
kz(, Zi)— L 3" kz(-, Z), and Gx, Gy, Gz are centered Gram matrices, such that (Gx);; = (ui, u;)wx,
(Gy)ij; = (vz, Vi) 4y, (Gz)ij = (wi,wj)n .. Intuitively, employing the methods that discussed for (2.4), we
can reformulate (2.5) as

)

= max
loll# 5 =Ny =1

= max (W, (S0 ren ) V2ENY - SUNSYY) +en D) IETY(ETR +eml) TV 20).
@l 5 =l 2y, =1

Cause R(X (m)) R(f]g,";/)) R(E(ZT%)) are spanned by (u;)™, (v;)",; and (w;)"™,, respectively, then the unit

eigenfunction pair (qﬁ 1/1) of VY x|z corresponding to the largest singular value can be given by a linear
combination of u; and v;. Let d) =3 G, 1/) =>", @UZ. Recall

S0 = L3 (b0 - k1) @ (ke X0 Skl Xt)%iwm,
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hence f]g/ngguj = L5 (Gx)ijvi- Moreover, (1#,2%,”2 ) = (B, LGyGxa) for all ¢ = 37" au;, ¢ =

m

2211 [B;v;. Similar expressions hold for Eg,mz), E(Z";() and ;V\J(Zwé) Therefore [10],
W, (B 4 £, )RS 42 1)7V26) = (B, (Gy + mem) V2GyGx (Gx + menl) 2a).
Applying the conclusion in [9], we can get a similar result

(W, (B + emD)TV2BU) (ST + e D TIEGUEL + e D) 7V 20)
= (B,(Gy +menI) 2GyGz(Gz + menl) 'GzGx(Gx +meyI) 2a).

The coefficients &, B therefore should satisfy

rgaﬂz (B, (Gy +m€m1)_1/2éxyz(GX +m5m1)_1/2a>,
a,BER™
OLTGx(l:ﬂTGyﬁil

where éXyz = GyGx — GyGz(Gz + men, 1) *GzGx. By the theory introduced in [2], we can see that
the solution of (2.5) can be expressed as

F=CE" +e,,0)7 12 = Z@u“ §= () 4 enl) V2 = sz

Simple calculations lead to
0 = vm(Gx +menI)" 24, i = vm(Gy +menI)" V23,
where é, ¢ are the solutions of

max LTéxyze.
6,LeR™
0T (G% +memGx)0=tT (G% +men Gy )t=m
Also note that we can use different regularization parameters for algorithm (2.5), but here we consider a
simpler one.
The Hilbert—Schmidt norm of empirical NCCCO Vy x|z and NCCCO Vyx |z encodes the dependence

structure of random variables X and Y given Z. Ref. [11] states the convergence of H\Afg,wg‘z —Vyxiz HHS, but
the convergence rates of it remain open and will be elucidated under mild conditions. Another contribution
of this paper is that a new consistency measure is proposed for the multidimensional feature learning (the
unit eigenfunctions corresponding to the largest singular value of Vy x|z are not unique), which generalizes
the classic consistency measure involving variance. Furthermore, key analysis extends to a more general case
(multiple setting).

2.3. Consistency analysis

Let (1;,&:), i € N be the unit eigenfunction pairs of Vy x|z, and
Vyxiz = fomi ® &is
i=1

where the singular values o;, i € N are arranged in nonincreasing order, &;,7; (i € N) are the orthonormal
systems of Hx and Hy, respectively, and
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o1 = (i, Vyxz8) 1y = max (9, Vy x|z )ny (i=1,---,1),

feHx  gEH
N2 =111y, =1

where o1 is the largest singular value of Vy x|z. Similarly, in the empirical case, let f:, i=1,---,7 (M,

similarly) be the unit orthonormal eigenfunctions of the finite rank operator Vg, )gl 2

singular values 7;, i = 1,---,7 are arranged in nonincreasing order. Our purpose is to learn f, g, hence we

where the corresponding

can take the estimators as follows

G=CEMW 4o, )V, F=E0) + e, D) V. (2.6)
In our setting, we focus on the case that o with multiplicity, i.e., 01 =00 =--- =0, > o141, l €N, [ > 1.

The target function is in the subspace S; = span{¢;}!_,. Analogous discussion holds for n; (i = 1,---,1). This
leads to additional difficulty in the theoretical analysis, and makes it challenging to establish appropriate
measure to characterize the statistical consistency. It is meaningless to consider the convergence of

IS¥ZF =Dl IBH G0y,

as the traditional way in [4] and [10], because the solutions (g, f) and (g, f) are not unique. A natural
approach is to consider the distance between feature subspaces spanned by the corresponding eigenfunctions.
. 1 1 z ~
That is d(S1, S2) = \/l =D im1 2=1(6i: &5)?, where Sy = span{&;}:_,
This measure is motivated from the one that introduced in the community of document retrieval anal-

ysis. It is well known that semantic space models provide a numerical representation of words’ meaning
extracted from corpus of documents. Semantic association between words in a semantic space is crucial.
When considering semantic space as a subspace of a more general Hilbert space, the relationship between
semantic spaces are captured by means of subspace distance [25]. If we consider eigenfunctions of Vy x|
and Vg, )2| , as different word vectors from different corpus of documents, we therefore can use this measure
to characterize the consistency of conditional kernel CCA. Our purpose is to learn the [ unit eigenfunc-
tions & (i = 1,---,1). So we define Sy to be the span of [ unit eigenfunctions fAJ (j = 1,---,1). Note
that g] (j = 1,---,1) may corresponding to the second or third largest singular values of \Afg/n;gl 5z In
fact, let P be a projector operator, Ps, and Pg, are the projection onto S; and Sa, respectively. We
have

l l
d(S1,82) = \[1= 3D (6.65)% = /1 — trace(Ps, Pg,).
i=1 j=1

Hence the proposed distance measure is the generalization of the measure for one-dimensional set-
ting (see below in Remark 4). Therefore the distance comparison between different spaces (especially
for semantic spaces) will give insights to a better understanding about the geometry structure of fea-
ture subspaces for conditional kernel CCA. Main results concerning d(S7,S2) will be given in the se-
quel.

Let {132, {us}22q, {vs}32, be the set of nonzero eigenvalues of Xxx, Xyy and Xz respectively,
satisfying A1 > Ao > ... >0, p1 > poe > ... >0and vy > v > ... > 0. {Ps}s>1, {¥s}s>1 and {ps}s>1 are
the corresponding unit eigenfunctions respectively. Then Zxx = > oo | A\sds @ @5, Dyy = Do Hss ® Vs
and X7z = > 00| Vsps @ ps.

The following assumption establishes some connections between the normalized cross-covariance oper-
ators (NOCCOs) and the eigenvalues of covariance operators. It plays significant role in the theoretical
analysis.
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Approximation Assumption (AA): Suppose that there exist r,q,t > 0 satisfying

2
My érnax{(i%%)l/?7 (i M)IM} “ oo,

2r
s=1 s=1 s

> IV SE N2 2V G2 N 1/2
M, & max{(z IVyze. ||7-Ly> ’ (Z IV zy, “Hz) < 00,

2q 2q
s=1 Vs s=1 Hs

[ Vzxdsll3 N2 /= [Vxzes|lF, | /2
MSémaX{(Z N2 HZ) 7(2 20 HX) < 00

s=1 s=1

Remark 2. Firstly, we give some explanations about AA. The first condition involves M; was used to achieve
a convergence rate of ||{\7§,”;() — Vyx||, the others are similar. Let us give a detailed explanation about Mj.
The first assumption condition is equivalent to that there exist operators Wy, Wy € HS(Hx — Hy) such
that Vyx = W1 X% and Vxy = 3%, Ws, where HS(Hx — Hy) means Hilbert—Schmidt operator from
Hx — Hy. Ty, XYy are the r-th power of X x x and Zyy, respectively, take form X% = Y00 | AT ¢ @4,
XYy = Zzil Hips ® . It can be rewritten as Vyx € HSHx — ’Hy)zg(x and Vxy € ZQYHS(’HX —
Hy). It also means Vyx X'y and 337 Vxy are both Hilbert-Schmidt operators, which are a little bit
stronger conditions than the ones proposed in [11]. But these conditions are mild and motivated from the
discussions made in the community of learning theory. In the theoretical analysis of learning algorithms
generated by regularization schemes, where approximation assumption f, € L‘;{(L?)X) is often considered
(see [7,18,19] and the references therein). The index 6 (6 > 0) characterizes the decay of the approximation
error. The other conditions are analogous. Here 7, g, t play the same role as 6. In order to derive convergence
rates, AA are imposed on Vy x, Vyz and Vzx. In the sequel, one would see that these conditions are mild
and can be constructed by means of mean square contingency.

Before proceeding to the details of AA, let us state the convergence rates of empirical NCCCO {/'g,";()‘ 7
to VYX|Z'

Theorem 1. Assume that the compact operators Vyx, Vyz, Vzx satisfy AA. Take ¢, = m™% with 0 <
0 < % For any 0 < § < 1, with confidence at least 1 — §, we have

HV%AZ — Vyxiz|lys < Cm~? log(54/5),

where ¥ = min{% — %9,9,r9,q0,t0}, C is some constant independent of m or § and will be presented
explicitly in the next section.

Remark 3. Here we extend the conclusion of [11] and address the convergence rates under decay conditions
on Vyx, VYZ and VZX«

In fact, the conditions imposed on Vyx, Vyz and Vzx are mild. One can construct Hilbert—Schmidt
operators Vyx, Vyz, Vxz by means of mean square contingency which is closely related with mutual
information [10]. Taking Vyx as an example, assume (X,By) and (Y, By) admit measures py and py,
respectively. p(z,y) is absolutely continuous w.r.t px X py with a probability density function pxy (x,y).

Let px(x), py(y) be the probability density functions of the marginal distributions px, py, respectively.

_ b (z,y)
Let w(z,y) = ;20520

defined by C(X,Y) = {[ [ @?(z,y)dpx (z)dpy (y)}'/2. We will see that if C(X,Y) is finite, then Vyx
is Hilbert—Schmidt. Although the detailed proof was given in [10], we provide a sketched description for
the reader’s convenience. Let {¢;}32; and {t;}52, be the complete orthonormal systems of Hx and Hy

— 1 be a function defined on X x Y. The mean square contingency C(X,Y) is
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respectively, such that (¢;,Xxxdi) = Nidij, (Vj, Byys) = pidij, \i, i are nonnegative eigenvalues of
Y xx and Xyy, respectively. J;; is Kronecker’s delta, therefore

o0
—l 2 1/2
”VYX”%{S = Z<’¢)J’ Yy EYXEX)é i>%{y
ij=1

¥j
ZJZI< \/7

= Z {EXY Gi(X); (Y )}}2

,j=1
i,j=1 //d)Z (;C/)(IUYZZZ)/)dede}2

< |lw + 13-

>

(pxXpy)’

where ¢; = (¢; — Ex[¢s(X)])/VNi, ¥

2
(z,y) // pXY 1) dpx (x)dpy (y // pXY duxduyfl—ﬂ*lxy[ (z, y)]-

Hence Vyx is a Hilbert—Schmidt operator under the finiteness of mean square contingency C(x,y). Similar

(s — Ey[¥;(Y)])/\/1i- Simple calculation gives that

argument can be elucidated for Vyz and V zx. Now we are in a position to state the result concerning the
consistency of conditional kernel CCA. Recall d?(S1,Ss) =1 — 22:1 Zé-:l(fi, &;)?, then we can see

Theorem 2. Assume that the compact operators Vyx, Vyz, Vzx satisfy AA. Take e, = m~? with 0 <
0 < % For any 0 < § < 1, with confidence at least 1 — 9, we have

d(Sy, S2) < C'm™ 7 log(54/6),
provided that m satisfies

m > (max{g g}log(&l/é)) "

‘71

Here C' is a constant depends on r, o1 and independent of m or 6. ¥ is defined the same as that in
Theorem 1, T is a lower bound between o1 and o111 (the second largest singular value of Vy x|z ).

Remark 4. Here we propose a new measure to describe the consistency for multidimensional conditional
kernel CCA problem. When m — oo, d(51, Sg) — 0. In fact, our consistency measure is the generalization
of the one described in [10]. That is, ||§]1/2 f ) ||H Note that

IZY%(F = Dl < ISYE{ETR +emD) ™% = (Sxx +emd) "2}l

ISR (Sxx +emD) Y2E = Ol + ISR (Sxx + eml) 7126 — €l
ISV2{EW +en) ™2 = (Sxx +emD) 2} Elmn + 1€ = Elria

+ =% (Sxx +eml) 26— €l

=1+ 1T+ 1II.

IA
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Terms I and II1 are determined by the properties of 3 x x and b3 )zn ))(, the bounds of them can be achieved eas-
ily [4 } Statistical consistency of conditional kernel CCA are mainly determined by Term 7. When (¢, f} > 0,
||£—£||2 =2-2(¢, §>. If | = 1, our consistency measure corresponds to the one-dimensional learning: d(S1, S2)

takes form d(Sy,S2) =4/1 — (&, @2 Therefore our analysis is a generalization of ||§]1/2 (f Fl#s- In the
sequel, the relationship between d(S1,S2) and ||V§,";ﬂ 7~ Vyx| ZH HS will be addressed. Hence we conclude
that ||V§,")Lq 72— Vyx|z || can be regarded as a surrogate for testing the statistical learning ability of condi-

tional kernel CCA. Furthermore, Hi\/'g,”;g —Vyx H can be used for measuring the convergence rates of kernel
CCA when Z is null.

3. Extension to multiple setting

In the last section, we confined the consistency analysis to the spaces spanned by the eigenfunctions cor-
responding to the largest singular values. In dimension reduction or information retrieval related problems,
one often consider the k-largest singular values for high-dimensional data processing problems [6]. Multiple
CCA was widely considered in the literature [5,13,20]. Employing the eigenspaces spanned by the eigen-
functions corresponding to the largest singular values only, is not enough for most practical problems [5],
especially in the coming of big data era. In this section, we will address an algorithm for multiple conditional
kernel CCA, which extends the results of the last section. Recall conditional kernel CCA problem for the
population case can be formulated as

(9, 21/X|Zf> _
= max
fEHX»QEHy \/ f7 2XXf>\/<gszXg> 1€l13  =LlImll ey, =1

(n, Wwx28)-

Applying the ideas for multiple CCA [13], multiple version of conditional kernel CCA can be normally
formulated as

(M, k) = argimax (1, VYX\Z§>
€l =1, lInllny=1

s.t. EeLl{&, -, &1}
meL{ny, - me—1}

Accordingly, we can approximate multiple conditional kernel CCA via ERM scheme with modified Tikhonov
regularization and come to

(g5 fr) = argmax (g, S, )
fEHX,QGHy

st. (LEW 1. f) =19, S0 +e,D)g) =1

(BT +en)V2fL{(E Xx+sm DY2f, o (B0 + e D)Y2 1}

(B3 4 enD) 2 L{EYY + ) 2g1, - (B9 + D) 2ge). (3.1)
Here k =1,---,d,d <7 (7“ are the numbers of nonzero singular values of Vg,";()‘z) For F = (f1,--+, fa)s
if we define EYWQ‘Z ( XIZfl’ e YX\Zfd) The above problem can be reformulated in terms of the

trace operator. Detailed proof will be postponed to Section 4.

Theorem 3. Let (gx, fx) (k=1,---,d) be a solution of the k-th problem (3.1) with 1 < d <7, then (G, F)
is the solution of
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Trace(GTS(™ F
F:(Ifrllé)iﬁ()fd) race( YX|7 )

G=(g1,",94) R
s.t. FT(E(”‘}( ten)F =1,

On the other hand, If (G, F) is a solution of problem (3.2), and (g, fr) (k=1,---,d) is the solution of the
k-th problem (3.1), then there exist orthogonal matrices Q3, Q4 such that

(gla"'agd):GQ3a (fla"'afd):FQ4~

When d =1, (3.2) reduces to (2.5). Theorem 3 reveals that solutions of problem (3.1) and that of problem
(3.2) are equivalent subject to orthogonal matrices. When Z is null, the conclusion here is similar to the one
given as Theorem 3.1 in [5] for CCA problem. We will analyze the consistency of the above algorithm. Assume

01> 09 > -+07 >0 (1 <7 < m) are the nonzero singular values of \Afg’;glz, (ﬁi7j7é\i7j) (i=1,---,7,j =
1,-- -,%) are the unit eigenfunction pairs of & Os~iz1 4 (denote 2?21 v =0),7= Z;l ~;. Accordingly,
01 > 032+ are the singular values of Vy x|z Wlth eigenfunction pairs (1, ;,&;) (¢ = 1,---,j = 1---,1;).
That is,

Vyxz&ij = osizty,mig (=1, j=1--,1),

V()2|Z£Z] Zt 17t+j771’j (i:]-v"'afvj:]-"'v’yi)'

Similarly, denote Z?Zl ly = 0. We only discuss the subspaces spanned by & ; (¢ =1,---,7=1,---,1;) and
& (i=1,---,F,j=1,---,7), respectively. Analogous argument can be addressed for the ones spanned
by n;; and 7; ;. Employ{ng the ideas for Eonsistenf:y argument in the last section, denote I = >0, [;,
let 7 = span{{fi,j}?:l}f:l, St = span{{fi,j}?zl};:l, according to the definition for distance of feature
subspaces, we get

li

(S, 95) =13 3" (GieG0)?

i=1 j=1 s,t=1

]
]

b I o s
<h - ZZ (€10 €)% + 12— Z Z<f2,syg2,t>2 ol = ZZ<€f,sagﬂt>2

s=1t=1 s=1t=1 s=1t=1

The above expression implies that we only need to consider the distance of subspaces between S; and So,
which are spanned by {&11,---,&1,0, } and {11, -, €14, }, respectively. The other terms can be investigated
analogously. Then the consistency problem of multiple conditional kernel CCA reduces to that of “single”
conditional kernel CCA.
4. Proof of main results

In this section, main results Theorems 1, 2 and 3 will be proved. We firstly give the proof of Theorem 1.
4.1. Proof of Theorem 1

Recall that

Vyxiz=Vyx —VyzVzx, V%AZ = \7%2 - ‘Afglnz)v(;)l()
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Hence

A(m
IV

vxiz = Vyxizllys = [V = Vix = (V) = Vy) VI = Vi z(VEY = V)|l

< ||\7§/ VYXHHS + HV(m) VYZHHSHV(m)H + HV VZXHHSHVYZH'

Note that ||[Vyz|| < 1 and HV H =|( E(m +eml)” 1/2E(m)(2( })( + eml)7Y/2|| <1 (the proof of this
bound will be given as Proposition 2 in Appendix A). This yields that

VX2 = Vxizllus < [VER = Vyxllug + [IVV2 = Vyzllys + [VEY = Vx| s
We only give the estimation of va/n;g —Vyx ||HS, the others are analogous. Since

VI~ Vyx = {(2@ +eml) V2= (Byy + 6m1)71/2}§3§7§3(§§7§ +eml) /2
+ (Byy +enl) 2SI - 5y (BT 4+ 6,0 0) 2
+ (Syy +end) 2y x { (B + enD) V2 = (Bxx +enl) 2}
+ (Byy +eml) V2 [Syx (Bxx +enl) 2 = B Vyy]
F(Syy +end) V222 — IVyx. (4.1)

Thus we can see that

Lemma 1. For any 0 < § < 1, with confidence at least 1 — &, we have

_ =~(m m 24k3 (ko + 1)
H{EW +emD) ™2 = (Byy +end)V2ETUETR + ) 72 g < 5715 108(6/9),
m

24k3 (K1 + 1)
—————~1og(6/9).
EIEmy g(6/9)

[(Zyy + Emf)_l/zzyx{(i()g)( tend) V2 — (Sxx + EmI>_1/2}HHS

Proof. Note that
A-Y2 _pg-1/2 — A_1/2(33/2 _ A3/2)B—3/2 (A B)B_?’/Q,
then

H{ (m)+(€ I) 1/2—(2yy+€m 1/2}2(m (m)+(E I 1/2HHS

= |(Syy +em)2{( S 4 e D2 = (Syy +emD)?? + (Syy + emD) Y2 (Syy — i@@)}

><(2(7ﬂ)_|_€ I~ 3/22("1)( (M)+6m1 1/2HHS

Recall B3 = LY (ky (-, Vi) — 5 30 ky(-Y2) @y (-, Y:) — & 7, ky(-,Y4)). Applying Lemma 8
n [10], for any 0 < § < 1,

H{(fl%) +eml) V2= (Syy + Em-’)_l/Q}ig/nQ(ig@( +eml) 1/2HHS

< g max {[Syy +end |72 e HIEE - By

22

24K32 1

< 20 4 D) 1o 6/6),
322
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holds true with confidence at least 1 — d. The last inequality follows by applying Lemma 5 in the appendix
for the special case Y = X. Similarly, for any 0 < d < 1,

|(Byy +end)” 1/2EYX{ Zg(X +eml) V- (Bxx +5m1)71/2}||Hs

— 1/2 1/2 1/2 m _ _
= |(Syy +end) VPRV VYEEVRIED +en]) V2 — (Sxx +emd) Y2} |4

IN

HEI/Q 2( )3+5 I) 1/2—(2)(X+5m1)_1/2}“HS

24r3 (k1 + 1)
W log(6/5),

holds with confidence at least 1 — 4. O
Next we give the estimation of the last two terms in Eq. (4.1).

Lemma 2. Assume that the compact operator Vy x satisfy AA, then

|’VYX[2§(/)2((2XX + 57”])71/2 - I]HHS S 0152111{7“71}7

I(Evy +emD) 28 — [Vyx | yq < Cremintnt),
where Cy is some constant independent of m.

Proof. According to AA, there exist operators Wy, Wy € HS(Hx — Hy) such that Vyx = W1 X% ¢ and
Vxy = X}y Ws. We only prove the first inequality, the second is similar.

_ 2 —_
[Vyx[BX% (Bxx +eml) ™2 = 1] 1g = Z W15 x (EYX (Bxx +eml) 2 = D3y,

Recall Ay, ¢4 are the eigenpairs of X x x. Spectrum theorem of compact operators yields that

AT = (A +em)V/?)

. 1/2
WiE%x (B3 Sxx +end) V2~ D¢, = s 1 2m) 12 Wids.
Therefore
/ > _ N\
1/2 ~1/2
[Vyx[E{x (Exx +eml) /_I]HHS Z 2)\ + 2||W1¢SHH
s=1

Simple calculation shows that when 0 < r < 1,

A2rel 1 op T o2 2-2
s m < T =) T
(2)\s+€m) 4 m( ) ( T) ’

and if » > 1, then

2r2
)‘ 14r42

D ten)E 1 e

Combining the above estimations, we prove the result. 0O
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Proof of Theorem 1. Employing Lemmas 1, 2 and 5, for any 0 < § < 1, with confidence at least 1 — ¢, we

see
2 2
Vi - < Hrp(ka 1) 24r1(k1 + 1) Braka
V5 = Vrxlhs =< 1y 0BUS/0) g log(18/0) + 5 log(18/9)
+ 201€$in{r,1}.
This yields that
HVYX|Z - VYX|ZHHS < Cm™"log(54/4),

holds true with confidence at least 1 — § by taking €,, = m~?. O
4.2. Proof of Theorem 2

Now we are in the position to give the proof of Theorem 2.

Denote A = vg;ng‘zvg:;glz, A = VxyzVyx|z, we have

1A = Allys = VA 2 (VPR 2 = Vvxiz2) + (VY = Vavi2) Vixizlls
HVXY|ZH ||VYX\Z VYX|ZHHS+HVXY\Z VXY\ZHHS’HVYX\ZH'

From the definitions of \Afg?;zlz and Vxyz, it is obvious that H\Afgg)lZH < 2, [[Vxyzll < 2. Therefore a
rigorous bound shows

HVXY|ZV§/".Q\Z VXY\ZVYXIZHHSSQHV‘(YQM VYX|Z||HS+2HVXY\Z VXY|ZHHS'

Moreover, note that

VY12 = Vavizllus = (VY12 = Variz) [lus

= H(\A/%) - VE’?Z)V(’”) Vxy + VXZVZY>*HHS
= [V = VEDVIY = Vyx + Vyz Vx|
= V%12 = Vyxizlls:

Hence

H‘K - AHHS < 4HV§/W)L2|Z VYXIZHHS'

Firstly, we describe the relationship between o;, o; (1 < i < 7) and A, A. From now on, we re-

arrange {51 1" 351 l13£2 1" 352 lay " } as {51, o ,§l1a§ll+17/'\' : 7£ll+l/2\7 Tty }7 /S\O that two indexes are
changed to one for blmphClty Analogoubly, {51 L&y €1, &y, &Ry} are rearranged as

{517 ~-7571,571“,~~~,§V1+72,~~~,£T} For any 1 < k < 7, denote Hy = span{&,---,&}, and ﬁk =
span{gl, -,§k} then we see that
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Lemma 3. For any 1 < k <7, there holds |0} — 62| < ||A — Al.
Proof. Since dim Hy, = k > dim Hj_; = k — 1, there exists & € Hy, s.t., & L Hy_1 and |\§‘H = 1. Then,
IA — A > |[(A - A)E|| > |AE|| — | A = 67 — o},
Similarly, we can prove that ||A — A|| > 2 — 62. The conclusion therefore holds. 0
Assume that o7 — o7, =7 >0, then for any 1 <14 <1,
G7 = G1 =07 — 07 + 01, — O + 01 — 01 > 7 — 2| A — A

Lemma 4. Suppose that P, and Pﬁl are the projection operators onto subspaces H;, and fIll respectively,
1

and ||A — A\H < min{%%, T+ Then for any 0 < § < 1, with confidence at least 1 —§, we have

8lA — Al

- 12
(T - Py, )&l -

IN

V].S’Lgll,

8lA — Al

1T =P, &P <

IN

V1<i<ly,

- 1/9
provided that m > (max {@, %} log(54/6)> .

T

Proof. We only prove the first inequality. For any 1 <1i <y,

o} = |A&] < [[(A — A)g | + [|AL]

<|A-A|+/IAP; &2+ AU - Py )2

< |A—A|+,/6l1Pg, &I2 +54, 1 - Py &l

‘1

This estimate gives that
SN2~ o~
(oF — A = Al)" <5 — (31 -4l — Py, )&l
and
o~ ~ ~ 2
(@1 = G )T =Py )&ilI* <57 — (of — [|A = A]))",
this yields that

(3 + 0t~ |A— A@E? - o + A~ Al)
@ +57.11)6 —57..)

2@ +ot—|A-A|A- Al

5H(r —2A - A

IN

17— Py )al

1

ya-A|
o T=2|A-A]|



J. Cai, H.

Recall

and note that m > (max {@

T

1A — Al < 5 and [|A - Al| <
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HA AHHS<4HVYX|Z VYX|ZHHS’

m

71

N

91

2

2
For the second inequality, when HA A| <%, Lemma 3 results in

Therefore,

Also note that

1A - Al > 02 - 52

I\.'?

2ot |A-Alz D 2|A-A|

a1 = |A&] < I(A - A& + | Ag]|

<[A-Al+ \/le”tPHll&H2 + AL =P, )&l

Following the same steps as above mentioned for proving the first inequality, we get that

This completes the proof. O

~2_S|A-A
I~ P, 82 < AL

Now we are in the position to give the proof of Theorem 2.

Proof of Theorem 2. Theorem 1 gives that when m > (max{—é, —?}10g(54/5 )

mm{ 5, 7 1+ A rigorous estimate shows that

A — Alf}g = Z (A - A |”

It can be decomposed further as

=1
=313 02 -3, )6
i=1 j=1
=3 -5, &)
i=1 j=1
:ZO’;L—F 8?_222010’7<§l7€.7>2
i=1 j=1 =1 j=1

TNV SR Bt E) 59 D ICHCIENED Db P C Nt
i=1 j=1

=1 j=1 =1 j=l1+1

707

1/9 .
8C}10g(54/5)) , combining with Theorem 1 yields that HA — AH <

A = Allys <
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—2 Z Za“a,@ -2 Z Z 0?52, )

i=l1+1 j=1 1=l1+1j=l1+1
oo (oo} 1 1
4 2A2 242 2
>y o4y 5 -2) Y 6l5)G, &) ahHlef Pg )l
i=1 j=1 i=1 j=1 i=1

U1

_2010l1+12|| I PHzl f]” Z Z 0 +0 52’ £]> ’

Jj=1 i=l1+1j=l1+1

which, together with Lemma 4 yields that

11 I > N

~ ., SU|A-A] ., SL|A—A]

1A — Allfs >1101+Z o} —2) ) 0l5}(& &)° — 2015 2 SlA AL e A=A
Jj=1

T T
=1 5=1

i b i I

_21101+Zo — o) =201 Y D (6.6)2 2D 062 — o) (6. &)

i=1 j=1 =1 j=1

22 =2 2
_ 16l1(0707, 41 + 07107, 41)
T

1A - Al

ll l1 22 ~2 2
~ 1611 (0707 11 + 0107 1) ~
> 20t — 208 D0 Y (6 ) - (T s 400? ) A - Alls,

: : T
=1 j=1

holds true with confidence at least 1 — §. Recall d?(S;1,S) = 11 — Zi;l Zélzl(@,@)? and note that
(m)
HA AHHS < 4HVYX|Z VYX\ZHHS' Hence

22 ~2 9
641, (0% o1t 01011+1)

201d*(51,52) < ( + 16107 + T) H\Afgfn%z — Vyxiz|lys:

T

Combining this with Theorem 1, the proof is completed by replacing I; with [. O
4.3. Proof of Theorem 3

This section is devoted to prove Theorem 3. The ideas of proof are inspired from the ones for Theorem 3.1

n [5]. Recall V%ﬁlz (S0 4 e D)™ 1/22§,n;()|z(2§n;2 + &, 1)~1/2. Obviously, it is a finite rank operator.

Hence we have Vg, )2‘ g = Zz 107 ® fz, where fl, 7; are the unit eigenfunctions corresponding to 7; (i =
1,---,7). Therefore, problem (3.2) can be converted into

max Trace(GTVg';ngﬁ)
F,G

st. G'G=I1FTF=1I, (4.2)

where F = (f](m) +enm)V2F, G = (8% + £,,1)1/2G. Moreover, note that Trace(GTVg/n}lz F) =
ZZ 19 ~1TV§,X‘ZfZ, from matrix theory [16], we can see that Z 101 = max Trace(GTVYn;g‘Zﬁ), where
G, F satisfy the above mentioned constraints, and G= (G1,-+,0a), F = (fl, cee fd). Now we give the proof
of Theorem 3, and only need to prove the equivalence of (3.1) and (4.2).
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Proof.

e If (G, Fy) is a solution of (4.2), then cigenvalues of GTVY)glel are positive.

Let 61 > 69 > G5 > G141+ > G4 be the eigenvalues of GTVY)glel. Firstly, we prove that they are

nonnegative. Otherwise, if 65 < 0, let GTV;";AZ = Q3CQT, where Q3, Q4 are orthogonal matrices,
01
I,_
C= . Denote B = [ 571 0 , then
_ ) 71{1—5-&-1
04
s—1
’I‘[‘ace[(GlQ3)TVYX|ZF1Q4B] —0s —0s41 — -+ — 04+ Zéi > TI‘aCe(GTvg/n;ﬂZ )

i=1

Since (éng) (éng) = I, (FLQ4B)T(F1Q4B) = I. This is a contradiction with the fact that
Trace(GTV v )2‘ ZFl) is the maximum objective function value of problem (4.2). Now we prove that

01, ,0q are the eigenvalues of GTV;mX)Mﬁl. Firstly, since Zf 105 = maXTrace(G)TV;”Q‘Z~ =
Trace(él)T\Afg,@‘Zﬁﬁ, and &1 > -+ > &4 are the eigenvalues of (él)TVg/";g‘ZFl. Then by induction, we
have &; < 7;, i = 1,---,d (see [16]), and Trace(GTVYX‘Z 1) = Zgzl 0 = Zle G; < Z?Zl 0;. This
imphes 01 =05,1=1,---,d.

® <gz7 YX\Zf1> 6—\1 (Z:L,d)
If (gk, fr) (k = 1,---,d) is a solution of the k-th problem (3.1). Assume §i (fx respectively) are the

unit orthonormal eigenfunctions of V%ng (k=1,---,d), take gy = (ggfn;/) temD) Y25, fr = (flg’{?( +

emD) Y2 f, then (i, (W0 +emD) i) = 1, Gk, (BT + emDge) =1, Vk =1---,d, and

(EXL +emD 2Rl E +enD)2F, (B0 4+ emD) 20 LEY + o) 255 (k # j).
Hence

Next, we will prove that oy

(gk,flg,";g‘sz) by induction. When d = 1, it is obvious that
(gl,ﬁg/ng‘zfﬁ = 01. Assume 1 < k < d, and <gl’E§ZLX|Z'f7’> = 0; for all 1 < i < k, we shall prove

(Grt1, E%‘meﬁ = Okt1-
For any (g, f) satisfying

<f (E(Tn) +5mj>f> =1, (E(m) +e )1/2fL{( +5m )1/2f, . (E(m) +em )1/2flc}

(9, (B + enD)g) = 1,(E0) + e D)V2g LIS + enD) 201, (B0 + )2 g1}

. T v

Then F = (fi, - fe, f), G = (g1, -, gk, g) satisfy F'T(E(m) +en)F =1, GT ( Y +enl)G =
this yields that

k+1
Zm > Trace GTZ;mX‘Z 2 ZJZ ,E(m)|Zf>.
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Thus, (g, f]g:’;g‘zf) < Ok+1, which means (g1, ig”?lsz+1> < Gk+1.- Combining this with Eq. (4.3), we
get

(Gr+1, Ei’ﬁ‘zfﬂﬁ = Okt1-

From the above argument, we can see that if (gx, fz) (Vk = 1,---,d) is a solution of the k-th problem
(3.1), then G = (g1,-+-,94), F = (f1,- -, fa) is the solution of problem (3.2).
e Let (G, F) be a solution of problem (4.2), then there exist orthogonal matrices @3, Q4 such that

GTVY, ,F = QsCQT.

Hence

(5Q3)T‘7(y”§3\zf624 =C.
Then ng\Afg"Q‘ka =G k=1,---.d, (Gr, fr) (k~: E, --+,d) satisfies constraints of the k-th problem
(3.1), and thus is the solution of it. Therefore, if (G, F') is a solution of problem (4.2), then there exists
orthogonal matrices Q3, Q4 such that (i, fx) is the solution of the k-th problem (3.1), and

(gla"'héd):é@:ﬁa (fl,"'7fd):ﬁ‘Q4-
This completes the proof. O
5. Conclusions

In this paper, we introduce a new conditional kernel CCA algorithm motivated by the conditional depen-
dence measure presented in [11] and the discussion about kernel CCA in [10]. The algorithm and theoretical
analysis for conditional CCA are elegantly conducted under mild conditions on Vyyx, Vyz and Vzx. We
demonstrate that these conditions are closely related with mean square contingency as indicated in Sec-
tion 2. Meantime, the convergence rates of empirical NCCCO to NCCCO are conducted under the above
conditions in the sense of Hilbert—Schmidt norm, which is the extension of Theorem 5 in [11]. Moreover, the
multiple extension of conditional kernel CCA has also been addressed in Section 3, which can be viewed as
a generalization of Theorem 3.1 in [5].

There are some practical problems that remain to be addressed for conditional kernel CCA. One is how to
choose the regularization constant e, in practice. The final convergence rates of our algorithm are “dragged
slow” due to the sufficient condition of ¢,,,. That ise,, =m™*, 0 < a < % This problem should be studied
more in our future work. Moreover, how to find simpler conditions than AA and improve the convergence
rates of conditional kernel CCA will be investigated in the future. Another important unsolved problem is
the choice of kernel. Kernel method is efficient for detecting nonlinear relations between variables. Successful
applications of kernel-based algorithms are widespread in the community of learning theory. Thus, in order
to improve the learning rates of conditional kernel CCA, how to choose an optimal combination of kernels is
crucial in the literature of CCA related problems. A combination of Gaussian kernel and polynomial kernel
was studied in [26] for kernel CCA problem, which shows good performance in the community of kernel
learning. But the theoretical analysis of it is still not clear and this will be investigated in the future work.
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Appendix A

We need the following lemma to bound ||\7§,";ng — VYX\ZHHS'

Lemma 5. For any 0 < § < 1, with confidence at least 1 — &, we have

6%1/@210g(6/5)
m 9

6%2%310g(6/5)

Higfmz) _ZYZHHS < NGD )

[ZVX = Srxllys <

6K I€310g(6/5)

The other two inequalities can be derived by following the same ideas as shown in the proof of the first

IZ5% — Bzx s <

inequality. More details can be found in [4].

Proposition 2. The cross-covariance operator ¢ X) can be represented as E(Z")Lg = ( (Zn;))l/QV(m)(Ag?))l/Q,

where V( m) is a bounded linear operator such that V :Hx — Hz and V <1.1If V(m = f] m) +
zZX zZX
emD) 1280 (B 4o 1)7Y2, then | VU < 1.

Proof. Let s be any fixed element in R((E(m))1/2) with f any element of Hx satisfying (E )1/2f =s.
Define a linear functional hs; on R(( m))1/2) by

he ((f}(m))l/Z ) :< ﬁ(m)ﬁ

o Bl Ee)

1/2
< (rsen)” ( 2779
_ H Z:(m) 1/2fH H 1/2gH Vg € Hz.
Hence ((E(m 1/2g) ’ < |Is]| -1I¢ E(Z"; 172¢||, hs is bounded on R((Z m))1/2) and thus can be extended by
continuity to a bounded linear functional on R( m)) the extension has norm < ||s||. By Riesz’ theorem,

there exists a umque element h such that hy(w) = (h,w), YV w € R(E(Z”é)) and [|A|| < ||s|-
Define a map V :Hx — Hz by V(Z")L()s = h, then V(ZX) is defined for all s in R((E(m))l/Q) It is
linear, single-valued and bounded because HVZ Xs|| < ||s||- Thus V( ™) can be extended by continuity to a

bounded linear operator \NI(ZW)L() defined on R(f]gg)() and hg(w) = (\N/'(Z")L() s, w). We can extend the domain of
——\ L
V) 4o all of Ha by defining VU f = 0 for f € ( (zg?;g))
Hence for any f € Hy, s = (2&?2)1/2]‘ and for any g € Hz, we have

he((£59)1%9) = (0, SF01) = (S5 29, VIR ETHY21).
Thus

S = BV RER
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and |[VY| < 1, then

VG = (852 + end) 22T (ETY + end) V2
= ||(2(ZW2) + EmI)_l/Q(E(ZT%))l/QV(Z@-() (22’({”}2)1/2(22?2 + EmI)_1/2||
<1

The conclusion follows. O
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