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Bayer–Stillman showed that reg(I) = reg(ginτ (I)) when τ
is the graded reverse lexicographic order. We show that the 
reverse lexicographic order is the unique monomial order τ
satisfying reg(I) = reg(ginτ (I)) for all ideals I. We also show 
that if ginτ1(I) = ginτ2(I) for all I, then τ1 = τ2.
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1. Introduction

If we have a homogeneous ideal I and a monomial term order τ , then there is a Zariski 
open dense subset U of coordinate transformations where the initial ideal is fixed [1,11]. 
This initial ideal is called the generic initial ideal denoted ginτ (I) or simply gin(I) if
the monomial order is specified before. It can be shown that the generic initial ideal 
is Borel-fixed. Then, we can analyze the structure of gin(I) by the good combinatorial 
properties of Borel-fixed ideals. For example, the minimal free resolution is given by 
the Eliahou–Kervaire theorem and the regularity is given by the maximum degree of a 
minimal generator [1,10]. Also, the Betti numbers of an ideal I are bounded by the Betti 
numbers of generic initial ideals [3,5].
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A well known result of Conca on generic initial ideals is that if I is Borel-fixed, then 
ginτ (I) = I for any τ [5]. There are more results on the algebraic properties and the 
structure of specific monomial ideals [4,5,13]. In the case where I is not a monomial 
ideal however, these methods are not directly applicable. In this paper, we introduce the 
notion of τ -segment ideals, which is the generalization of lex-segment ideals. We show 
that if inτ (I) is a τ -segment ideal, then ginτ (I) = inτ (I). Here, we do not require I to 
be a monomial ideal. Consequently, we will construct an ideal which has different generic 
initial ideals for two given monomial orders. This implies that the generic initial ideals 
fully characterize monomial term orders.

When regarding the degree complexity of an ideal, the regularity of an ideal is a 
good invariant. An ideal I is m-regular if the jth syzygy module of I is generated in 
degrees ≤ m + j, for all j ≥ 0. The regularity of I, reg(I), is defined as the least m
for which I is m-regular [9]. Since graded Betti numbers are upper-semicontinuous in 
flat families, we have reg(inτ (I)) ≥ reg(I) for any τ [14]. However, Bayer and Stillman 
showed that reg(inτ (I)) = reg(I) in general coordinates and when τ is the graded reverse 
lexicographic order(rlex) [1]. This means that rlex is an optimal order for the computation 
of the Gröbner Basis. Bayer and Stillman also suggested a method of refining monomial 
orders by the reverse lexicographic order, which will give faster computation [2]. We 
show that for any other monomial order τ besides rlex, there exists an ideal I such that 
reg(ginτ (I)) > reg(I). This implies that the graded reverse lexicographic order is the 
unique optimal monomial order that gives minimum regularity.

Acknowledgments

The author would like to thank his adviser Donghoon Hyeon for teaching the state-
ment of the main theorem, and for suggesting a general idea of the proof. He would like 
to thank the anonymous reviewer and Donghoon Hyeon for giving valuable comments 
and references to improve the quality of the paper. The author would like to thank 
Hwangrae Lee for suggesting the idea of Lemma 3.6, which helped to shorten the proofs 
considerably. The author would also like to thank Jeaman Ahn for helpful conversations. 
The explicit computations in the paper were performed using Singular and Macaulay2 
[7,12]. The author was supported by the following grant funded by the government of 
Korea: NRF grant NRF-2013H1A8A1004216.

2. Notation and terminology

Let S = K[x1, . . . , xn] be a polynomial ring over an algebraically closed field K with 
charK = 0. Let xα =xα1

1 . . . xαn
n be the vector notation. For a homogeneous ideal I, let 

G(I) be a Gröbner basis of I.
In this paper, we assume all monomial orders to be graded multiplicative orders with 

x1 > x2 > · · · > xn. A monomial order τ is graded if deg(f) > deg(g) implies f >τ g. 
A monomial order τ is multiplicative if f >τ g implies fh >τ gh. Then fh >τ gh also 
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implies f >τ g. Let rlex denote the graded reverse lexicographic order and lex denote 
the graded lexicographic order. Define the Borel order as a partial order on monomials 
by fxi >Borel fxj if i < j and f is a monomial.

Let B = {f1, . . . , fk} ⊂ Sd be a set and V = K〈f1, . . . , fk〉 ⊂ Sd be the vector space 
spanned by B. Then, define inτ (B) = {inτ (f1), . . . , inτ (fk)} and inτ (V ) = K〈inτ (f) |
f ∈ V 〉.

Definition 2.1. Let M be a finitely generated graded S-module and

0 → ⊕jS(−alj) → · · · → ⊕jS(−a1j) → ⊕jS(−a0j) → M → 0

be a minimal graded free resolution of M . We say that M is d-regular if aij ≤ d + i for 
all i, j. Let the regularity of M , denoted reg(M), be the least d such that M is d-regular.

Remark 2.2. The regularity of an ideal I is defined by the minimal free resolution of the 
following form.

0 → ⊕jS(−alj) → · · · → ⊕jS(−a1j) → ⊕jS(−a0j) → I → 0

Then the minimal free resolution of M = S/I follows from that of I.

0 → ⊕jS(−alj) → · · · → ⊕jS(−a1j) → ⊕jS(−a0j) → S → S/I → 0

Hence have reg(S/I) = reg(I) − 1. Note that if I has a minimal generator of degree d, 
then reg(I) ≥ d.

3. Generic initial ideals and τ -segment ideals

The notion of generic initial ideals was introduced by Galligo [11]. He showed that 
generic initial ideals have a good combinatorial property called the Borel-fixedness. Since 
then, generic initial ideals have been studied extensively in commutative algebra and 
geometry. We introduce the theorem of Galligo. For a more detailed introduction, see [8].

Definition 3.1. A monomial ideal I is Borel-fixed if m ∈ I and m xi

xj
∈ S for i < j implies 

m xi

xj
∈ I.

Theorem 3.2 (Galligo, Bayer–Stillman). For a given ideal I and monomial term order 
τ , there exists a Zariski open subset U of GLn such that ginτ (I) := inτ (gI) is constant 
over all g ∈ U and ginτ (I) is Borel-fixed.

We will say that I is in general coordinates if id ∈ U where inτ (gI) is fixed for 
g ∈ U . For example, Conca showed for any τ if I is Borel-fixed, then ginτ (I) = I and 
thus I is in general coordinates. However, if I is not a monomial ideal, we cannot use 
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similar methods because there is no concept of Borel-fixedness. Taking the initial ideal 
also does not work well because syzygy computations are not preserved under coordinate 
transformations. We slightly extend Conca’s results to some non-monomial ideals using 
the notion of τ -segment ideals. This is a generalization of Segτ (I) introduced in [6] that 
we do not require the ideal to be a τ -segment in every degree. In the rlex case, it is also 
known as the weakly rlex property. We show that if inτ(I) is a τ -segment ideal, we have 
ginτ (I) = inτ (I).

Definition 3.3. Let B = {f1, . . . , fk} be a set of monomials with deg(fi) = di. If g ∈ B

for all monomials g ∈ S such that deg(g) = di for some i and g >τ f for some f ∈ B, call 
B a τ -segment. If an ideal I = (f1, . . . , fk) is generated by a τ -segment B = {f1, . . . , fk}, 
then call I a τ -segment ideal.

Example 3.4. Let S = K[x, y, z] and w = (10, 5, 3) be a graded weight order with tie 
breaking by lex. The ideal I = (x2, xy, y5) ⊂ S is a w-segment ideal generated in degrees 
2 and 5. The bases of I2 = K〈x2, xy〉 and I5 = K〈f | deg(f) = 5, f ≥w xyz3〉 are both 
w-segments. I3, I4 are not w-segments since y3 >w xyz ∈ I3 and y4 >w, xyz2 ∈ I4 but 
y3, y4 /∈ I.

When τ is the graded lexicographic order, the lex-segment ideals have good combi-
natorial properties [15]. If I is a lex-segment ideal, then the generating set of Id is a 
lex-segment for every d. There follows a one-to-one correspondence with lex-segment 
ideals and Hilbert functions satisfying a particular growth criterion by Gotzmann. For 
τ 
= lex, there always exists some d where Id is not a τ -segment. For general τ , the 
τ -segments and τ -segment ideals have the following property.

Lemma 3.5. Let τ be any graded monomial order.
(a) A τ -segment is Borel fixed.
(b) A τ -segment ideal is Borel fixed.

Proof. (a) Let B be a τ -segment. Let f ∈ B and f xi

xj
∈ S for i < j. Then we have 

f xi

xj
>τ f since xjf

xi

xj
= xif >τ xjf . By the definition of τ -segments, f xi

xj
∈ B. So B is 

Borel-fixed.
(b) Let I = (f1, fk) be a τ -segment ideal. Suppose F = hft is a monomial in I for some 
t and F xi

xj
= hft

xi

xj
∈ S for i < j. If ft xi

xj
∈ S, we have ft xi

xj
∈ I by the definition of 

τ -segment ideals. Otherwise if ft xi

xj
/∈ S, we have h xi

xj
∈ S. Therefore, F = h xi

xj
ft ∈ I. �

Let inτ (I) be a τ -segment ideal where I is a homogeneous ideal. Since τ -segment 
ideals are Borel-fixed, inτ (I) is already in general coordinates. Moreover, we show that 
if inτ (I) is a τ -segment, then ginτ (I) = inτ (I). This means that I is also in general 
coordinates.

Lemma 3.6. If inτ (I) is a τ -segment ideal, then ginτ (I) = inτ (I).
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Proof. We shall prove that gin(I)d = in(Id) for all d. Let inτ (I) be a τ -segment ideal 
with minimal generators in degree d1, . . . , dt.

First suppose that d = di for some i. Let M1 > M2 > . . . be the total ordering of 
degree d monomials with respect to τ . Since in(I) is a τ -segment ideal, we have in(I)d =
〈M1, . . . , Mr〉 for some r. Then, ∧r(in(Id)) = 〈M1 ∧· · ·∧Mr〉. Let g = [gij ] ∈ GL(S1) be 
a coordinate transformation. Since the dimensions of Id and in(gI)d are the same, the 
degree d part of gI is given by ∧r(gI)d.

We have ∧r(gI)d = 〈g(M1) ∧ · · · ∧ g(Mr)〉 = 〈Pd(g11, . . . , gnn) M1 ∧ · · · ∧ Mr +
lower terms〉 for some Pd(g11, . . . , gnn). However, ∧r(in(Id)) = 〈M1 ∧ · · · ∧Mr〉. This is 
the largest standard exterior monomial in ∧r(Sd), which means that Pd(g11, . . . , gnn) of 
M1 ∧ · · · ∧ Mr is nonvanishing for g = id. Hence Ud = {g | Pd(g11, . . . , gnn) 
= 0} is a 
nonempty Zariski open subset where in(gI) is fixed. Therefore gin(I)d = in(Id).

Now let d 
= d1, . . . , dt. Since there are no degree d elements of the Gröbner basis, we 
have in(Id) = in(Id−1)S1. Then, gin(I)d ⊃ gin(I)d−1S1 = in(Id−1)S1 = in(Id). Since 
in(I) and gin(I) have the same dimension in every degree, we have gin(I)d = in(Id). 
Since gin(I)d = in(Id) for every d, we conclude that gin(I) = in(I). �

Remark 3.7. Even if in(I) is Borel-fixed, gin(I) may differ from in(I). Let S = K[x, y, z]
and I = (x3, x2y + xy2, x2z). Then inrlex(I) = (x3, x2y, x2z, xy3, xy2z) but ginrlex(I) =
(x3, x2y, xy2, x2z2).

Now we have a class of ideals which are already in general coordinates. We use this 
lemma for the proof of our main results. The following theorem shows that generic initial 
ideals fully characterize monomial orders.

Theorem 3.8. ginτ1(I) = ginτ2(I) for all ideals I ⊂ S, if and only if τ1 = τ2.

Proof. One way is trivial. For the other way, we show that if τ1 
= τ2 then there exists 
some I such that ginτ1(I) 
= ginτ2(I). Let xd

1 = M1 >τ1 M2 >τ1 . . . be the total ordering 
of degree d monomials with respect to τ1 and xd

1 = M ′
1 >τ2 M ′

2 >τ2 . . . be the total 
ordering of degree d monomials with respect to τ2. Let k be the least integer such that 
Mk 
= M ′

k. Define the ideal I = (M1, . . . , Mk−1, Mk + M ′
k).

By symmetry, it suffices to show that ginτ1(Id) = (M1, . . . , Mk−1, Mk). We use Buch-
berger’s algorithm on I. Since I is generated by degree d homogeneous elements, all 
syzygies have degree larger than d. Then, inτ1(I)d is generated by the initial parts of 
the degree d elements of the Gröbner basis. These are just the initial terms of the 
generators of I. Then inτ1(I)d = 〈M1, . . . , Mk〉. Since M1, . . . , Mk are the largest k
monomials in degree d with respect to τ1, inτ1(Id) is a τ1-segment. By Lemma 3.6, we 
have ginτ1(I)d = inτ1(Id) = 〈M1, . . . , Mk〉. �
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4. The reverse lexicographic order

We have reg(I) = reg(gI) for any ideal I and a coordinate transformation g ∈ GLn

because the Betti tables of I and gI coincide. However, taking the initial ideal does not 
commute with coordinate transformation because syzygy calculations are not preserved 
under coordinate transformations.

Where reg(I) ≤ reg(inτ (I)) for any order τ , the following theorem of Bayer and 
Stillman shows that the graded reverse lexicographic order gives the lowest possible 
regularity for generic initial ideals.

Theorem 4.1 (Bayer–Stillman). [1] If I is a homogeneous ideal, then reg(I) =
reg(ginrlex(I)).

Thus the graded reverse lexicographic order is an optimal order in Gröbner basis 
computation. Conversely, we show that if reg(I) = reg(ginτ (I)) for all ideals I ⊂ S, then 
τ = revlex. This proves the unique optimality of the graded reverse lexicographic order 
in Gröbner basis computation. However, this does not show that general coordinates give 
the lowest regularity. If I = (x2+y2, xyz) ⊂ S = K[x, y, z], we have reg(inlex(I)) = 4 but 
reg(ginlex(I)) = 5. Before the main theorem, we give a characterization of the graded 
reverse lexicographic order.

Lemma 4.2. τ = rlex if and only if xd+1
k−1 > xd

1xk for all k, d.

Proof. One way is trivial. We show that if xd+1
k−1 >τ xd

1xk for all k, then τ is the re-
verse lexicographic order. Let f = xa1

1 xa2
2 . . . xan

n , g = xb1
1 xb2

2 . . . xbn
n be degree d + 1

polynomials. If K is the largest i such that ai 
= bi, let aK < bK . We show that f >τ g.
Since τ is multiplicative, the term order is preserved under factoring out common 

terms. We factor out c = xaK

K . Any monomial order τ with x1 >τ · · · >τ xn in-
cludes the Borel order in the way that if M >Borel N then M >τ N . We have 
f/c = xa1

1 . . . x
aK−1
K−1 >τ xd+1−aK

K−1 >τ xd−aK
1 xK >τ xb1

1 xb2
2 . . . xbK−aK

K = g/c. There-
fore, f >τ g. This is the defining property of the reverse lexicographic order. Hence τ is 
the reverse lexicographic order. �
Lemma 4.3 (Conca). [5] Let I be a Borel-fixed ideal and let m1, . . . , mk be its monomial 
generators. Let g ∈ GLn be a generic matrix. Then gI is generated by polynomials 
f1, . . . , fk of the form fi = mi + hi such that the monomials in hi are smaller than mi

in the Borel-order. The polynomials f1, . . . , fk form a Gröbner basis of gI with respect 
to any term order.

Now we prove our main theorem.

Theorem 4.4. If reg(ginτ (I)) = reg(I) for all homogeneous ideals I ⊂ S, then τ = rlex.
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Proof. Suppose τ 
= rlex. By Lemma 4.2, there exist some k, d such that xd
1xk > xd+1

k−1. 
We show that reg(ginrlex(I)) 
= reg(ginτ (I)) for the ideal I = (xd+1

1 , . . . , xk−2x
d
k−1,

xd+1
k−1 + xd

1xk). This ideal I is generated by xd+1
k−1 + xd

1xk and all degree d + 1 monomials 
in K[x1, . . . , xk−1] except xd+1

k−1.
First, consider the graded reverse lexicographic case. Let xd+1

1 = M1 >rlex M2 >rlex
· · · >rlex ML+1 = xd+1

k−1 be the total ordering of degree d +1 monomials in K[x1, . . . , xk−1]. 
Then we can write I = (M1, . . . , ML, x

d+1
k−1 + xd

1xk). We use Buchberger’s algo-
rithm and show that no syzygy is added to the Gröbner basis. The syzygies for 
the first L generators are 0. Also for any possible syzygy S = f1Mi − f2(xd+1

k−1 +
xd

1xk) = f2x
d
1xk, we have f2x

d
1xk ∈ (x1, . . . , xk−1)d+1 since f2 | Mi and Mi ∈

(x1, . . . , xk−1). Therefore, {M1, . . . , ML, x
d+1
k−1 + xd

1xk} is a Gröbner basis of I. Con-
sequently, inrlex(I) = (x1, . . . , xk−1)d+1. Since this is a rlex-segment ideal, we have 
ginrlex(I) = (x1, . . . , xk−1)d+1 by Lemma 3.6. Then reg(ginrlex(I)) = d + 1, which is 
the maximum degree of a minimal generator of ginrlex(I).

Now, let τ 
= rlex with xd
1xk >τ xd+1

k−1. Let I ′ = (M1, . . . , ML) and M0 = xd
1xk +xd+1

k−1. 
Then, inτ (g(∧L+1Id+1)) = inτ (g(M1) ∧ g(M2) ∧ · · · ∧ g(ML) ∧ g(M0)). Take g a general 
coordinate for Id+1 and I ′d+1. Since I ′ is Borel-fixed, inτ (g(∧LI ′d+1)) = M1∧· · ·∧ML. This 
means that g(M1) ∧· · ·∧g(ML) = P (g)(M1∧· · ·∧ML) +(lower terms) for P (g) 
≡ 0. We 
take a generic g such that g(M0) has nonzero coefficients for all degree d +1 monomials. 
This can be done by expanding g(M0) and taking the coordinate transformation avoiding 
the zero locus of each coefficient of the monomial terms. Since xd

1xk is the largest degree 
d +1 monomial besides M1, . . . , ML, we obtain inτ (g(∧L+1Id+1)) = M1∧· · ·∧ML∧xd

1xk. 
This exterior monomial may not be in standard form because we don’t know the order 
in τ .

We observe that S = xd+2
k−1 = xk−1(xd

1xk + xd+1
k−1) − xk(xd

1xk−1) ∈ I. Then we add 
this redundant basis so that I = (M1, . . . , ML, M0, x

d+2
k−1). Let J = (M1, . . . , ML, x

d+2
k−1)

then J is Borel-fixed. By Lemma 4.3, G(g(J)) = {M1 +N1, . . . , ML +NL, x
d+2
k−1 +NL+1}

where the Ni are linear sums of terms smaller than Mi in Borel-order. Then gI =
(M1 + N1, . . . , ML + NL, g(M0), xd+2

k−1 + NL+1).
Since we have shown that inτ (g(∧L+1Id+1)) = M1 ∧ · · · ∧ML ∧ xd

1xk, we rewrite this 
as gI = (M1 +N1, . . . , ML+NL, xd

1xk +N0, x
d+2
k−1 +NL+1). The syzygy S = xk−1(xd

1xk +
xd+1
k−1) − xk(xd

1xk−1) = xd+2
k−1 in I is not reducible by M1, . . . , ML, M0 using τ . Since the 

initial terms of the generators of gI and I coincide, we also cannot reduce xd+2
k−1 +NL+1

by lower degree generators of gI. Hence, this is a proper Gröbner basis element of gI. 
Consequently, ginτ (I) = inτ (gI) has a generator of degree d + 2 and therefore has 
regularity ≥ d + 2. �
Example 4.5. Let K be a field with any characteristic. Let S = K[x1, . . . , x6] and 
I = (x3

1, x
2
1x2, x1x

2
2, x

3
2 + x2

1x3). Then, ginlex(I) = (x3
1, x

2
1x2, x1x

2
2, x

3
1x3) + (x4

2) and 
ginrlex(I) = (x3

1, x
2
1x2, x1x

2
2, x

3
2). We have reg(ginlex(I)) = 4 and reg(ginrlex(I)) = 3.

Using the theorem, we directly obtain the converse statement of Bayer and Stillman.
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Corollary 4.6. If reg(ginτ (I)) = reg(I) for all ideals I ⊂ S, then τ = rlex.

Proof. This follows from the result of Bayer–Stillman: reg(ginrlex(I)) = reg(I) [1]. �
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