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We address the problem of the number of permutations that 
can be sorted by two stacks in series. We do this by first 
counting all such permutations of length less than 20 exactly, 
then using a numerical technique to obtain nineteen further 
coefficients approximately. Analysing these coefficients by a 
variety of methods we conclude that the OGF behaves as

S(z) ∼ A(1 − μ · z)γ ,

where μ = 12.45 ± 0.15, γ = 1.5 ± 0.3, and A ≈ 0.02.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the late 1960s Knuth [8] introduced the idea of classifying the common data struc-
tures of computer science in terms of the number of permutations of length n that 
could be sorted by the given data structure, to produce the identity permutation. Knuth 
demonstrated the usefulness of this approach by showing that a simple stack could 
sort all such permutations except those which had any three elements in relative or-
der 231. This restriction meant that of the n! possible permutations of length n, only
Cn ∼ 4n/(n3/2√π) could be sorted by a simple stack. Here Cn denotes the nth Catalan
number. Knuth went on to pose the same question for more complex data structures, 
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Fig. 1. Two stacks in series.

such as a double-ended queue or deque, which is a linear list in which insertions and 
deletions can take place at either end. In a later volume of his celebrated book [9], he 
asked the same question about compositions of stacks.

The three most interesting, and most intensively studied permutation-related sorting 
problems associated with data structures relate to permutations that can be sorted by 
(i) a deque, (ii) two stacks in parallel (2SIP) and (iii) two stacks in series (2SIS). The 
data structure corresponding to two stacks in series is shown in Fig. 1. A permutation 
of length n is said to be sortable if it is possible to start with this permutation as the 
input, and output the numbers 1, 2, . . . , n in order, using only the moves ρ, λ and μ in 
some order. Here ρ pushes the next element from the input onto the first stack, λ pushes 
the top element of the first stack onto the top of the second stack, and μ outputs (pops) 
the top element of the second stack to the output stream, as shown in Fig. 1.

Recently Albert and Bousquet-Mélou [2] solved the problem relating to two stacks in 
parallel, while subsequently we [5] related the solution of the 2SIP problem to the solution 
of the deque problem. This leaves only the 2SIS problem unresolved. Significant progress 
has been made on subsets of that problem. For example Atkinson, Murphy and Ruškuc 
[3] solved the problem in the case of sorted stacks, while Elder, Lee and Rechnitzer [4]
solved the problem in the case when one of the stacks is of depth 2. Unfortunately, both 
these cases correspond to an exponentially small subset of the full set of stack-sortable 
permutations. In [12], Pierrot and Rossin give a polynomial algorithm to decide if a given 
permutation is sortable by two stacks in series.

In all cases we’ve mentioned, the number of permutations of length n that can be 
sorted by the given data structure grows exponentially (just as in the simple stack case 
discussed above). Indeed, the Stanley–Wilf conjecture, subsequently proved by Marcus 
and Tardos [10], states that for every permutation π, there is a constant μ such that 
the number of permutations of length n which avoid π as a permutation pattern is at 
most μn. Additionally, it is expected, but not proved, that pn, the number of permu-
tations of length n sortable by any of the afore-mentioned data structures, behaves as 
pn ∼ const · μn · ng in general. The dominant exponential growth term is a consequence 
of the Marcus–Tardos theorem, but the sub-dominant term ng is conjectural. In [1], rig-
orous upper and lower bounds on μ are given for deque sorting, and also for 2SIP and 
2SIS. For 2SIS the bounds are 8.156 < μ < 13.374.

In this paper we give an alternative approximation. We have evaluated the exact 
number of stack-sortable permutations of length n for n < 20, and describe numerical 
techniques that give the approximate number for 20 ≤ n ≤ 38. We then apply a range 
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of standard and specialised series analysis techniques [6] to conjecture the asymptotics 
of the generating function coefficients. This is a computationally difficult problem. The 
only existing series we can find are for n ≤ 10 in the PhD thesis of Pierrot [11], and the 
last two values are incorrect.

If

S(z) =
∑
n≥0

sn · zn

is the ordinary generating function for the number of permutations sortable by two stacks 
in series, then we find

S(z) ∼ A(1 − μ · z)γ ,

where μ ≈ 12.4, γ ≈ 1.5, and A ≈ 0.026.
In the next section we describe the derivation of the coefficients sn, and in the subse-

quent section we give our analysis of the data.

2. Generating coefficients of OGF

2.1. Basic algorithm

We start with a simple, but inefficient algorithm to calculate the coefficients of the 
OGF, on which our more efficient algorithm is based. Consider the three moves ρ, which 
pushes the next element from the input onto the first stack, λ, which pushes the top 
element of the first stack onto the second stack, and μ, which outputs the top element 
of the second stack as shown in Fig. 1. We have already defined sortable permutations. 
We call a permutation of length n achievable if it is possible to output that permuta-
tion, starting with the numbers 1, 2, . . . , n in order. Rather than enumerating sortable 
permutations directly, we will instead enumerate achievable permutations, since the two 
classes share the same OGF. We call a word w over the alphabet {ρ, λ, μ} an operation 
sequence if w corresponds to a permutation. That is, w is called an operation sequence 
if w contains an equal number of occurrences of each of the three letters, and after any 
point in w, the letter ρ has appeared at least as many times as λ, which has appeared 
at least as many times as μ. Call two operation sequences equivalent if they produce the 
same permutation. Note that this also means that they sort the same permutation. The 
basic algorithm, which we will call algorithm 1, works as follows:

• Define the function addreachableperms which takes in the state S of the sorting ma-
chine, and a set of permutations and adds every permutation which can be achieved 
from that state to the set, by recursively calling the same function on each of the 
three or fewer states which can be reached from S by one of the moves ρ, μ, or γ.

• Create an empty set P of permutations.
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• Call the function addreachableperms on the initial state of the stack and the set P .
• Then the nth coefficient of the OGF is equal to the size of P , since the permutations 

in P are exactly the achievable permutations of size n.

This algorithm is very slow because it has to consider all operation sequences of size 
3n separately, and the number of operation sequences of length 3n grows like 27n.

2.2. Forbidden words and regular languages

The first improvement which we make is to reduce the number of operation sequences 
which the algorithm has to consider by removing many operation sequences which create 
the same permutation. Call two operation sequences equivalent if they create the same 
permutation. We define the ordering ρ < λ < μ, and we call an operation sequence 
optimal if it is lexicographically larger than any other equivalent operation sequence. 
Rather than parse all operation sequences of size 3n, we now only insist that we parse 
all optimal operation sequences, since these will still create all achievable permutations. 
Call a word v over the alphabet {ρ, λ, μ} forbidden if there is another word v′ > v, which 
has the same effect on the sorting machine as v. Note that if an operation sequence w has 
a forbidden subword v, then we can change v to v′ in w to create an equivalent operation 
sequence w′. Moreover, w′ > w, so w is not optimal. Hence, any optimal operation 
sequence contains no forbidden words. Note that ρμ is a forbidden word, since it has the 
same effect on the sorting machine as μρ. Also, ρλμλ is a forbidden word since it has 
the same effect on the sorting machine as λρλμ. For letters x and y, we call a word v
over the alphabet {x, y} an x, y-Catalan word if the following conditions hold:

• v contains an equal number of x’s and y’s
• for any leading subword u of v, the word u contains at least as many x’s as y’s.

In other words, if we replace each x in v with an up step and each y in v with a down step, 
we get a Dyck path. Note that if u is a ρ, λ-Catalan word, and v is a λ, μ-Catalan word, 
then the effect of u on the sorting machine is to move and permute items from the input 
to the second stack. The effect of v is to move and permute items from the first stack to 
the output. Hence, these two operations commute, so uv and vu are equivalent. Since u
begins with ρ and v begins with λ, we have uv < vu, so uv is a forbidden word.

We now construct the deterministic infinite state automaton Γ shown in Fig. 2, which 
accepts all words which are not forbidden. Note that Γ also accepts some words which 
are forbidden. For an operation sequence w of size at most 3n, the word w is accepted 
by Γ if and only if w does not contain any of the words ρμ, ρλμλ or any word of the 
form uv, where u is a ρ, λ-Catalan word, and v is a λ, μ-Catalan word. Since all of these 
words are forbidden, any operation sequence w which is not forbidden is accepted by Γ. 
For any integer m, at least m occurrences of the letter ρ are required to reach any of 
the states am, bm or cm, and at least m + 2 occurrences of the letter λ are required to 
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Fig. 2. The infinite state automaton Γ.

reach the state dm. Hence, for operation sequences of size n, we only need to construct 
the finite state automaton Γn, consisting of the 4n states s0, s1, a1, . . . , an, b1, . . . , bn,
c1, . . . , cn, d1, . . . , dn−2.

Next, we create two functions to construct a more restrictive DFA Γ′
n, which still 

accepts all optimal operation sequences. The first function inputs a list of words over the 
alphabet {ρ, λ, μ} and outputs a DFA which accepts the regular language of all words 
which do not contain any elements of the input list as subwords. This DFA contains one 
state for each possible suffix of length at most k − 1, where k is the maximum length 
amongst words in the input list. The second function inputs two DFAs and outputs 
the DFA which accepts the intersection of the languages accepted by each of the two 
input DFAs. Now, using a simple brute force algorithm, we make a list l of all forbidden 
words of length at most 14 which contain no other forbidden words, and which are 
accepted by Γ. Using the first function, we construct the DFA Γl which accepts the 
language of all words which do not contain a subword in l. Then every word which is not 
accepted by Γl contains some forbidden word u in l, and is hence forbidden. We then 
use the second function to construct the DFA Γ′

n, which accepts the intersection of the 
languages accepted by Γl and Γn. In total there are 207 words in l, made up of 2, 4, 8, 
13, 22, 81 and 77 of lengths 7, 9, 10, 11, 12, 13 and 14, respectively. The two of length 7 
are ρλρλμμλ and ρλλρλμμ, which are forbidden since they have the same effect on the 
sorting machine as λρλρλμμ and λρρλμμλ, respectively.

Now, our new algorithm works as before, except that the function addreachableperms

also takes in the current state A of Γ′
n, and only recursively calls itself using one of 
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the letters which is accepted from state A. Now, rather than considering all operation 
sequences of size 3n, the new algorithm only considers those operation sequences which 
are accepted by Γ′

n.
The improvements to the algorithm so far significantly decrease the exponential factor 

in the time requirement, from 27 to about 13. However the algorithm still stores every 
achievable permutation of length n in memory at the same time. In the next section we 
see that the number of such permutations is approximately 12.4n, so any improvements of 
the form which we have presented so far will not reduce the time or memory requirements 
below this factor.

2.3. Increment avoiding permutations

Our next improvement to the algorithm decreases the exponential factor by 1, and 
we do not improve on the factor for time any more than this. Let p = a1 . . . an be a 
permutation and let I ⊂ {1, 2, . . . , n}. We define the subpermutation p|I to be the pattern 
of the elements from I in p, and define p̂|I = p|{1,...,n}\I . For example, ̂24315|{2,3} =
24315|{1,4,5} = 213. Note that any subpermutation of an achievable permutation is also 
achievable. Let p be a permutation such that aj+1 = aj + 1 for some j (sometimes 
called an increasing bond). Since p is achievable, p̂|{aj} is achievable. On the other hand, 
if p̂|{aj} is achievable, then there is some operation sequence w which creates it. Now 
replace each letter which moves aj in w with two copies of that letter, to form a new 
word w′. Then the two copies of each letter will move aj and aj +1, and aj will enter the 
first stack immediately before aj +1, then aj +1 will enter the second stack immediately 
before aj and finally, aj is output immediately before aj+1. Since the order of everything 
else stays the same, the word w′ creates the permutation p. Therefore, p is achievable if 
and only if p̂|{aj} is achievable.

Now, instead of considering all achievable permutations with the algorithm, we only 
consider permutations a1 . . . an for which there is no j such that aj+1 = aj +1. Call these 
increment avoiding permutations (sometimes called plus-irreducible permutations). Let 
tn be the number of these permutations, and define the generating function T (x) =
t0 + xt1 + . . .. Then we can uniquely create any achievable permutation by choosing a 
permutation q counted by T and replacing each number in q with any positive number 
of consecutive integers. Hence S(x) = T (x/(1 − x)). By taking the coefficient for xn on 
both sides of this equation, we deduce that

sn =
n∑

i=1

(
n− 1
i− 1

)
ti.

The only change we make to the algorithm presented previously to instead calculate the 
number of increment avoiding permutations, is to forbid an item from being output if it 
is exactly one greater than the previous item output.
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2.4. Memory consumption and parallelisation

Using the algorithm described so far, it is still necessary to list every achievable, 
increment avoiding permutation of size n at the same time. To avoid this restriction, we 
choose some positive integer m < n, and write a function numpermswithstartsequence, 
which inputs n and a sequence s of m distinct elements of {1, . . . , n} and outputs the 
number of achievable, increment avoiding permutations of size n which begin with the 
sequence s. This algorithm works in the same way as before except that the first m
elements output must be the correct elements of s. We then run this function on all 
such sequences s and add up the results. For small values of m this algorithm only takes 
a little longer than the original algorithm because most of the time is spent while the 
operation sequence is long and the output is nearly complete. Since we call the function 
on different sequences s separately, it is only necessary to store all of the (achievable, 
increment avoiding) permutations which begin with some sequence s at any one time. 
Note also that we only have to remember the last n −m elements of each permutation. 
As a result, the limiting factor for this algorithm is now the time requirement.

We now parallelise the algorithm, by running the numpermswithstartsequence on 
different sequences s at the same time on different cores.

2.5. Results

We ran this algorithm for n < 20 using m = 6. The program ran for 43 days on 64 
cores. The coefficients of the OGF for n < 20 are given as a list below.

[1, 1, 2, 6, 24, 120, 720, 5018, 39374, 337816, 3092691, 29659731, 294107811, 2988678546,
30935695794, 324832481490, 3450158410649, 36993206191004, 399827092167771,
4351269802153188].

3. Series analysis

3.1. Series extension and subsequent analysis

We have obtained approximate values of the next nineteen coefficients, effectively 
doubling the length of the series, which are sufficiently accurate to be used in the ratio 
analysis we describe below. Our method for obtaining these approximate values uses 
differential approximants [6], which are linear, inhomogeneous ODE’s of 2nd, 3rd or 4th 
order, constructed to yield all the exactly known coefficients in the series expansion under 
consideration. By varying the degrees of the polynomials multiplying each derivative, as 
well as the degree of the inhomogeneous polynomial, we can construct a family of such 
approximants. Because every differential approximant (DA) that uses all the available 
series coefficients implicitly predicts all subsequent coefficients, we can calculate, approx-
imately, all subsequent coefficients. Of course the accuracy of these predicted coefficients 
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Table 1
Series coefficients pN for two stacks in parallel. Approximate, predicted coefficients p20
to p38 from several 4th order inhomogeneous DAs, the estimated and exact error.
N pN estimate 1 std. devn. Actual error
20 1.36000505625858 × 1014 81 28
21 9.90406677134907 × 1014 5285 1778
22 7.258100272044 × 1015 187074 64212
23 5.349517582877 × 1016 4807109 1358815
24 3.9634005851 × 1017 9.9546 × 107 3.924 × 107

25 2.95046460646 × 1018 1.7832 × 109 5.767 × 108

29 9.435573118 × 1021 7.2824 × 1013 2.222 × 1013

32 4.15469546597 × 1024 1.1960 × 1017 3.569 × 1015

35 1.873198683303 × 1027 1.5136 × 1020 4.030 × 1019

38 8.613038855 × 1029 7.2824 × 1022 2.222 × 1021

decreases as the order of the predicted coefficients increases, but, as we show by example 
below, we can get useful estimates of the next nineteen or so coefficients.

For every DA using all known coefficients, we generated the subsequent nineteen 
coefficients. We take the mean of the predicted coefficients, with the outlying 10% or 
15% of estimates rejected, as our estimate. We quote one standard deviation as the error. 
That is to say, assume we know the coefficients an for n ∈ [0, Nmax]. We then predict 
the coefficients aNmax+1, aNmax+2, · · · , aNmax+19. Our estimate of each such coefficient 
is given by the mean of the values predicted by the differential approximants. We reject 
obvious outliers, by discarding the top and bottom 10% of estimates. Not surprisingly, 
we find the smallest error is predicted for aNmax+1, with the error slowly increasing as 
we generate further coefficients.

These predicted coefficients are well-suited to ratio type analyses, as discrepancies in 
say the seventh or eighth significant digit will not affect the ratio analysis in the slightest. 
This is particularly useful in those situations where we suspect there might be a turning 
point in the behaviour of ratios or their extrapolants with our exact coefficients, as these 
approximate coefficients are more than accurate enough to reveal such behaviour, if it is 
present.

As an indication of the validity of this method, we give two applications. In the first, 
we take the series for two stacks in parallel, for which we actually have more than 1000 
coefficients [5], but assume we only have the first 20 coefficients, just as in the present 
case for the generating function of two stacks in series. In Table 1 we show a selection 
of the estimated coefficients p(20) to p(38). It can be seen that we predict the next 
coefficient with an accuracy of 13 digits, decreasing to 7 digit accuracy for the last 
predicted coefficient. In every case the actual error is seen to be less than one standard 
deviation, indeed, it is typically 1/3 of a standard deviation.

As a second demonstration of this method, assume we only have 19 terms in the 
generating function for two stacks in series, and we’ll predict the next coefficient, 
which is the last known coefficient. The predictions produced by fourth-order DAs 
are averaged, deleting the top and bottom 10% of estimates. In this way we estimate 
s19 = 4.351269803411739 × 1015. The correct answer is 4351269802153188, which is 
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Table 2
Series coefficients sn for two stacks in series. Approximate, 
predicted coefficients p20 to p38 from several 4th order inho-
mogeneous DAs and the estimated error.
n sn estimate 1 std. devn.
20 4.764211695346 × 1016 9.207 × 106

21 5.24460896431 × 1017 9.83 × 108

22 5.8016808762 × 1018 7.962 × 1010

23 6.446525027 × 1019 2.241 × 1012

24 7.192361922 × 1020 7.34 × 1013

25 8.05485154 × 1021 2.05 × 1015

26 9.05248613 × 1022 5.10 × 1016

27 1.02070684 × 1024 1.17 × 1018

28 1.15442858 × 1025 2.47 × 1019

29 1.30944006 × 1026 4.95 × 1020

30 1.4893068 × 1027 9.38 × 1021

31 1.6982322 × 1028 1.17 × 1023

32 1.941173 × 1029 2.98 × 1024

33 2.2239807 × 1030 5.05 × 1025

34 2.5535645 × 1031 8.36 × 1026

35 2.938088 × 1032 1.345 × 1028

36 3.387209 × 1033 2.106 × 1029

37 3.91235 × 1034 3.219 × 1030

38 4.52711 × 1035 4.945 × 1031

estimated with an error of 1 part in the 10th significant digit by the differential approxi-
mants. The standard deviation of the estimates is 7979922, which is six times the actual 
error.

In an identical manner to that described above to estimate the coefficients of the two 
stacks in parallel series, of course using the exact value of s19, we have obtained estimates 
of the next 19 coefficients. These are given in Table 2. We also give the standard deviation 
of the estimates, and based on the examples already discussed, we expect coefficient errors 
to be less than this. It can be seen that fewer significant digits are predicted than for 
the two stacks in parallel series–typically 3 or 4 fewer digits at each order. Nevertheless, 
the precision (4 significant digits at worst), is sufficient for a simple ratio plot.

If we wish to plot the ratios, we can do better by extrapolating the sequence of 
ratios produced from the coefficients predicted. That is to say, for each approximating 
differential approximant one calculates the ratio of successive coefficients and averages 
these across all differential approximants using all known coefficients – as usual discarding 
the outlying 10% or 15% of entries. As shown in [7] this generally gives more accurate 
ratios than taking ratios of predicted coefficients. In this way we have obtained the next 
30 ratios, and these are shown in Table 3. We see that we have 10 digit accuracy in the 
first predicted ratio, decreasing to 4 digit accuracy in the 30th predicted ratio.

3.2. Series analysis of extended series

We first performed a simple ratio analysis, under the assumption that the coefficients 
behave as sn ∼ const · μn · ng. Then the ratio of successive coefficients, rn behaves as
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Table 3
Predicted ratios rn = sn/sn−1 and their standard deviation for 
two stacks in series, from 4th order inhomogeneous DAs.

n rn estimate 1 std. devn.
20 1.094901468298879e+01 2.11772356e−09
21 1.100834576534045e+01 1.85143285e−08
22 1.106218007359570e+01 8.68930350e−08
23 1.111147816281692e+01 2.96091135e−07
24 1.115695963791318e+01 8.01235631e−07
25 1.119917449576340e+01 1.85222167e−06
26 1.123855154825218e+01 3.82169883e−06
27 1.127543165860235e+01 7.19040042e−06
28 1.131009082195476e+01 1.25541540e−05
29 1.134275634825540e+01 2.05420282e−05
30 1.137361924070142e+01 3.24451987e−05
31 1.140284018941137e+01 4.79461475e−05
32 1.143055939166936e+01 6.84547697e−05
33 1.145689689567404e+01 9.36110721e−05
34 1.148196167309631e+01 1.27067931e−04
35 1.150584576102606e+01 1.65506944e−04
36 1.152863546691212e+01 2.12677243e−04
37 1.155040666870830e+01 2.66928864e−04
38 1.157122649222079e+01 3.29184438e−04
39 1.159116101123194e+01 3.99718853e−04
40 1.161026217312874e+01 4.79900592e−04
41 1.162858140362701e+01 5.64407415e−04
42 1.164616370369958e+01 6.53792233e−04
43 1.166306461316009e+01 7.55633579e−04
44 1.167930152412725e+01 8.55570943e−04
45 1.169494749603971e+01 9.75376673e−04
46 1.171001288824953e+01 1.09733642e−03
47 1.172454051929511e+01 1.22834662e−03
48 1.173852889188502e+01 1.35210096e−03
49 1.175203710982201e+01 1.48442613e−03

rn = sn
sn−1

= μ

(
1 + g

n
+ o

(
1
n

))
,

so plotting the ratios against 1/n should, for sufficiently large n, give a straight line 
intercepting the abscissa at μ, and with gradient g · μ. We show this plot in Fig. 3. One 
sees some low n curvature, and this suggests the presence of a confluent singularity. That 
is to say, the generating function probably behaves as

S(z) ∼ A(1 − μz)γ + B(1 − μz)γ+Δ,

where 0 < Δ < 1. Such behaviour implies, at the coefficient level,

sn ∼ A

Γ(−γ)μ
nn−γ−1 + B

Γ(−γ − Δ)μ
nn−γ−Δ−1,

and for the ratios

rn ∼ μ

(
1 − γ + 1

n
+ const.

n1+Δ

)
.
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Fig. 3. Plot of ratios against 1/n.

From Fig. 3 it is seen that μ ≈ 12.4. Assuming this value, and estimating the gradient 
from the last plotted point, we find g ≈ −2.5. With μ = 12.3, we get g = −2.1, and with 
μ = 12.5, we get g = −2.9 by this procedure, so it is clear that the estimate of g is very 
sensitive to the estimate of μ.

Calculating linear intercepts usually gives a more precise estimate of μ. One has

n · rn − (n− 1) · rn−1 = μ

(
1 + O

(
1
nΔ

))
.

For a simple power-law singularity, there is no confluent singularity at z = zc = 1/μ, 
so that Δ = 1 in the above equation. Then the subdominant term is O

( 1
n2

)
, and con-

vergence to μ is usually more rapid. However a plot of linear intercepts against 1/n2, 
shown in Fig. 4 has gradient that changes sign for the last few values of n, and which 
may change sign again as n increases, making it difficult to extrapolate, and strongly 
suggesting the presence of one or more confluent terms. It also implies that we would 
really need many more series coefficients in order to make more precise estimates of the 
critical parameters. It also reinforces the usefulness of the sequence extension procedure 
we have undertaken, as these approximate coefficients are essential to see this change of 
gradient. Despite these qualifications, a limiting value around μ = 12.4, consistent with 
the value found by a simple ratio plot, seems plausible.

One can also calculate the gradient directly, from

(rn − rn−1) · n(n− 1) = g

(
1 + o

(
1
))

.

μ n
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Fig. 4. Plot of intercepts of successive ratios against 1/n2.

Fig. 5. Plot of estimators of exponent g against 1/n2. The top curve assumes μ = 12.3, the middle curve 
assumes μ = 12.4 and the bottom curve assumes μ = 12.5.

Assuming the values μ = 12.3, μ = 12.4, and μ = 12.5 we have plotted these estimators 
of g against 1/n2, as we don’t know the correct sub-dominant exponent to use (see 
Fig. 5). Again one sees the necessity of estimating the last few terms, as otherwise the 
gradient change would not be observed, and a quite inaccurate estimate of g would be 
obtained. As it is, we don’t know how this plot will behave as n increases, so cannot give 
any extrapolation with much confidence. However, if present trends continue, a value of 
g ≈ −2.5 is plausible.
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It is clear that the o 
( 1
n

)
term is significantly affecting our extrapolation attempts. In 

an effort to address this, we make comparison with two similar problems whose asymp-
totics we have recently studied [5]. These are the corresponding problem of enumerating 
the number of permutations of various sizes that can be sorted by a deque, and by two 
stacks in parallel (2SIP).

We have shown [5] that these two OGFs appear to have the same radius of convergence, 
which is quite accurately estimated as xc = 1/μd ≈ 0.120752497575574.1 The generating 
function coefficients in the two cases are believed to behave as dn ∼ const · μn

d · ngd , 
and pn ∼ const · μn

d · ngp , for deques and 2SIP respectively. Further, we have estimated 
that gd = −1.5 and gp ≈ −2.47327. All these data are based on an analysis of series 
of length 1200 terms, so are vastly more reliable and precise than the estimates of the 
corresponding critical parameters in the current problem.

If we form the coefficient-by-coefficient quotients sn/dn and sn/pn, these will behave 
as

sd(n) = sn/dn ∼ const · λn · ngs−gd

and

sp(n) = sn/pn ∼ const · λn · ngs−gp ,

respectively, where λ = μ/μd.
Now we can apply simple ratio analysis to the ratios r1(n) = sd(n)/sd(n − 1), and 

r2(n) = sp(n)/sp(n − 1). When plotted against 1/n, these should approach a common 
limit λ, with gradient λ(gs − gd) and λ(gs − gp) respectively.

The ratio plots are shown in Fig. 6, and it can be seen that the common limit is 
around 1.50–1.52, and that the gradients are of opposite sign. In fact the difference in 
gradients is λ(gp − gd), and we know that gp − gd ≈ −0.97327. So we can tune the value 
of λ to be consistent with this value, as

λn = n(r1(n) − r2(n))
gd − gp

(
1 + O

(
1
n

))
.

Plotting λn against 1/n, shown in Fig. 7, we estimate λ = 1.51 ± 0.01, which implies 
μ = 12.5 ± 0.1, which is just consistent with previous analyses discussed above.

This gives μ ≈ 12.5, and gs ≈ −2.5. Thus we take as our final estimates μ = 12.45 ±
0.15 and gs = −2.5 ± 0.3, where the quoted errors are uncertainty estimates, and not in 
any sense rigorous error bounds.

Alternatively expressed, the OGF for two stacks in series behaves as

S(z) ∼ const · (1 − μ · z)−gs−1 ≈ const · (1 − 12.45z)1.5 .

1 This is more precise than the estimate in [5], and is based on an analysis by Nathan Clisby of longer 
series.
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Fig. 6. Plot of coefficient ratios, as explained in text, against 1/n. Upper plot is for two-stacks-in-series/two-
stacks-in-parallel, lower plot is for two-stacks-in-series/deques. The common intersection point on the 
abscissa is estimated to be at 1.51.

Fig. 7. Plot of λn estimate, as explained in text, against 1/n.

Our estimate of μ is of course consistent with the rigorous bounds given in [1], which 
are 8.156 < μ < 13.374. It is not inconceivable that the exponent could be the same 
as for two stacks in parallel, that is, 1.47327, but we have insufficient data to estimate 
the exponent with anything like this precision. This would correspond to the two prob-
lems being in the same universality class, when viewed from a statistical mechanical 
perspective.
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Assuming the central estimates of both μ and the exponent g, one can estimate 
the amplitude by simple extrapolation. That is to say, if sn ∼ a · μn · ng, then a can 
be estimated by extrapolating the sequence sn/(μn · ng) against 1/n. In this way we 
estimated a ≈ 0.008. Note however that this estimate is very sensitive to the estimates 
of both μ and g. Writing the singular part of the generating function as S(z) ∼ A ·
(1 − μ · z)−g−1, we have A = aΓ(g + 1) ≈ 0.02.

4. Conclusion

We have given an algorithm to generate the number of permutations of length n
sortable by two stacks in series. We have obtained the coefficients in the corresponding 
generating function up to and including permutations of length 19. We have used differ-
ential approximants to calculate the next 19 coefficients approximately, and the next 30 
ratios of successive terms, and then analysed the extended series. In this way we have 
estimated the asymptotics of the generating function. We believe that the series length 
needs to be at least doubled in order to get much more significant accuracy in estimates 
of the critical parameters.

It is a source of some frustration that this problem appears to be so much harder than 
the corresponding problem of two stacks in parallel, for which an exact solution [2] is 
now available, as well as more than 1000 terms in the generating function.
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