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In the present study, a new approach is proposed to predict the occurrence of squeal in brake systems.
This strategy, called Modal Amplitude Stability Analysis (MASA), is based on the calculation of the first
harmonic state-space system of nonlinear original equations using a specific linearization of the nonlin-
ear contact forces at the frictional interfaces. An estimation of the occurrence and generation of increas-
ing self-excited vibration is proposed on the basis of monitoring and the evolution of the real parts of the
dynamic system considered as a function of modal amplitudes.

ls(eﬁ‘év:lriz:ise The application of the proposed MASA methodology to a real industrial brake system is presented. The
F(r]iction occurrence of unstable modes and the generation of increasing self-excited vibrations strongly depends

on the initial predefined modal amplitudes. The occurrence of new unstable modes (not predicted by
classical stability analysis) can be detected. Therefore the MASA methodology appears to be a good com-
promise in terms of computing time and ease of implementation between the classical Complex
Eigenvalue Analysis (CEA) and more complex nonlinear methods (such as the Generalized Constrained

Automotive brake system
Complex Eigenvalues Analysis

Harmonic Balance Method used to predict periodic and quasi-periodic motion).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of friction-induced vibration has been the subject
of many investigations over recent decades. Overviews on friction-
induced vibration can be found in [ 1-4]. Several experimental and
numerical investigations have been carried out for studying the
significant impact of contact surface topography, the local contact
pressure distribution or the frictional contact model [5-7]. Some
researchers applied uncertainty analyses by conducting Monte
Carlo simulations [8] or polynomial chaos expansions [9] for brake
squeal propensity estimations. Butlin and Woodhouse [10] applied
the 1st-order perturbation method to study the sensibility and
uncertainty of friction-induced vibrations. Uncertainty quantifica-
tion of squeal instability via kriging surrogate model of brake sys-
tems was also investigated to estimate the probability of brake
squeal [11-13]. The modeling of the variability of brake lining sur-
faces was carried out by Heussaff et al. [14]. Numerical simulations
in the past decade have been also focused on the prediction of
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unstable vibration modes by investigating the effects of damping
[15-17] or multilayer viscoelastic insulators [18] on coalescences
patterns. Recently, more research has been aimed at calculating
the acoustic radiation of brake squeal using models of simplified
brake systems with friction contact [19,20]. Despite all these stud-
ies, it is still difficult to predict the occurrence of squeal noise early
enough to reduce development costs in the manufacturing process
of brake systems. As a result, squeal is still responsible for a large
number of nuisances in the field of automotive engineering. The
problem of predicting squeal noise and understanding the mecha-
nisms at the origin of squeal are a current challenge for the scien-
tific community and the automotive industry.

In general, the numerical strategy for predicting squeal noise
can be decomposed into two main parts: the Complex Eigenvalue
Analysis (CEA) and the transient and nonlinear analysis. The first
concerns the stability analysis around nonlinear static sliding equi-
librium points. The classical Complex Eigenvalue Analysis (CEA) is
performed on the linearized system to predict the squeal propen-
sity of the brake in a given frequency range. Although this first step
is commonly used in industry, it only allows predicting the onset of
instability around a given equilibrium point for a nonlinear system.
Calculations of the transient and nonlinear vibrations are mostly
performed by numerical integrations [21-23]. Recently, Iroz et al.
[24] emphasized the potential of an elastic multibody approach
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to predict the amplitudes of the friction-induced vibrations and the
contact forces at the disc-pad interfaces.

As previously explained in [25], more realistic results can be
achieved via the nonlinear analysis if the brake system model is
sufficient. Sinou et al. [21,26] pointed out that CEA may lead to
under- or over-estimation of unstable modes due to the contribu-
tions of the nonlinearities (such as nonlinear contact) and sug-
gested both CEA and time domain analysis need to be considered
in brake squeal analysis. Oberst and Lai [23] applied transient anal-
ysis to a finite element pad-on-disc brake model. They showed the
CEA both over- and under-predicts instability. In [27], they also
pointed out the nonlinear character of brake squeal and the poten-
tial of using nonlinear statistical analysis tools to analyse brake
squeal. They also indicated that brake squeal can be treated as a
chaotic phenomenon [28]. While it is standard practice to use
the complex eigenvalue analysis to predict unstable vibration
modes in an industrial context, the transient nonlinear time
domain analysis can become computationally so expensive that
it is now considered impractical. Consequently, other methods
for estimating approximated nonlinear dynamic steady-state solu-
tions for autonomous systems subjected to single and multi-
instabilities have been proposed and developed by Coudeyras
et al. [29] to reduce automotive squeal noise. This strategy, known
as the Generalized Constrained Harmonic Balance Method
(GCHBM), allows predicting both periodic and quasi-periodic solu-
tions and the associated unstable frequencies. Although this
method has many advantages and, more specifically, predicts non-
linear signature squeal, we are obliged to admit that this approach
requires many computational developments and its use in finite
element models remains rare.

In this paper, we propose an approach to provide a simplified
estimation of the occurrence of squeal for brake systems, by esti-
mating not only the stability of the equilibrium point but also
the emergence of unstable frequencies at the initial increase of
divergence. This new strategy is based on an approximation of
the evolution of an eigenvalue real part when the amplitudes of
the initial nonlinear vibrations increase. The objective here is not
to find and estimate the non-linear dynamic behavior but to pro-
vide additional analysis for the Complex Eigenvalue Analysis.

The paper is organized as follows. Firstly, the brake system
under study, the general nonlinear equations of the numerical
model and the classical stability analysis (based on a Complex
Eigenvalue Analysis) of the complete brake system are presented.
Next, the Modal Amplitude Stability Analysis (MASA) is defined
using the first harmonic equations of the Harmonic Balance
Method (HBM) and a new linearization for nonlinear forces.
Finally, the results obtained by MASA are presented.

2. Automotive braking system and the formulation of the
problem

2.1. The finite element model under study

In this study, we consider a finite element model of an indus-
trial automotive brake system (see Fig. 1). The numerical model
used in this paper was explained previously in detail in [36]. The
latter study presented a numerical process based on modal reduc-
tion to minimize the size of a model through specific nonlinear
modeling at the frictional interface to correctly predict both the
nonlinear static equilibrium and the stability analysis of large finite
element models.

In the present work, the nonlinear equation of the brake system
can be written in the following form:

MU + CU + Ky U + Fyy (U) = Fey (1)

where M and C are the classical mass and damping matrices,
respectively. Fy is related to the nonlinear forces occurring at the
disc/pad interfaces. These nonlinear forces contain contributions
from both the contact nonlinear forces and frictional forces at the
pad/disc interface. A more detailed description of these nonlinear
contributions will be given later. F. defines the piston pressure
force (i.e. the vector of external forces) which acts on the pads
entering into contact with the disc. K, is the stiffness matrix due
not only to the structural components of each component of the
automotive brake system but also the three contact interfaces
between the piston and the pad, the bracket and the pad and the
caliper and the pad. This contribution is described by the following
mathematical function:

KnlU =KU + Fpiston/pad (U) + Fbracket/pad (U) + Fcaliper/pad (U) (2)

where K is the classical stiffness matrix and vectors
Fpiston/pad (U), Foracket/pad(U) and Feaper/pad(U) define the equivalent
stiffness contributions for the interfaces of the two sub-systems in
question. Two states are feasible for each of the three interfaces
described previously: the possibility of linear contact or loss of con-
tact for each interface. On the assumption of a contact state, not
only normal forces but also friction forces due to the presence of
friction at the interfaces are generated (i.e. the friction forces are
deduced from the normal contact forces using the classical Coulomb
law).

We recall that the role of damping remains an extremely impor-
tant issue in the squeal problem. Recently, several new studies on
the effect of damping on stability and on self-excited vibrations
have been proposed. However, considering that investigating the
role of damping is out of the scope of the present study, we refer
to the following studies for those researchers interested
[15,17,30]. More specifically, the contribution of gyroscopic terms
are neglected in the present work (see the following papers for
more comments on the effects of gyroscopic terms [16,30,31]).
Readers interested in the influence of velocity-dependent forces
on the stability of non-conservative systems and the effects of non-
linearities or “‘following forces™ can refer to O'Reilly et al. [32], Kir-
illov and Seyranian [33] and Hermann and his colleagues [34,35].

As previously explained in [36], an implicit reduction at the fric-
tional interface by generating an assembly of Super-Elements (SE)
is proposed. This strategy was developed previously to define an
original reduced contact interface at the disc/pad interface with a
reduced number of nodes on both sides of the pad and disc that
can be used later for condensation and node to node contact (for
more details and a complete description of the Super-Element cre-
ation and Super-Element assembly, please refer to [36]). Further-
more, a classical Craig and Bampton reduction [29] is computed
while the reduced number of nodes used in the disc/pad contact
interface are kept as reduction nodes. Therefore the generation of
nonlinear contact forces at the disc/pad interface contacts can be
considered in our finite element model.

Considering the experimental data [29], we assume that the
nonlinearities at the friction interface between the pad and the disc
are both the cubic nonlinear terms and the possible loss of contact
between the disc and the pad. The formulation can be summarized
as follows for each reduced contact node:

k(Ui — Uj) + k(Ui — U if Uy —U; >0
0 otherwise

Fcontact,disc/pad = { (3)

where U; and U; are, respectively, the displacements of the coinci-
dent nodes i and j from the master and slave sides of the contact,
respectively. k; and k; are the linear and the non-linear stiffnesses,
respectively. As explained previously in [29,36], a velocity field cor-
responding to the disc rotation is imposed on the disc surface.
Therefore the friction forces at the pad/disc interface are deduced
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Fig. 1. Brake system details.

from the normal contact forces (previously defined in Eq. (3)) using
a simplified Coulomb law with a constant friction coefficient.

2.2. Stability analysis at nonlinear static equilibrium

Firstly, the nonlinear static equilibrium point Us of the nonlin-
ear equation of the brake system (1) has to be calculated. Us is
obtained by solving the following relation:

Knl,US Us + l:nl (Us) = Fext (4)

where Ky, corresponds to the linearized stiffness matrix at the
vicinity of the nonlinear static equilibrium. It can be noted that this
contribution contains both the classical stiffness of the structural
components of each component of the brake system and the lin-
earized stiffness contributions with respect to the possibility of con-
tact or no-contact for the three contact interfaces between the
piston and the pad, the bracket and the pad and the caliper and
the pad. Therefore, as previously explained in [36], all these con-
tacts (except for the disc/pads interfaces) are linearized as a con-
stant value in the stiffness matrix Ky y,. Then, Fy (Us) corresponds
to the generation of the nonlinear contact and friction forces at
the disc/pad interfaces around the static equilibrium.

By substituting a small perturbation AU around the static equi-
librium Uy in Eq. (1) and by considering the previous relation of Eq.
(4), we obtain:

MAU + CAU + Ky, AU + Fyy (Us + AU) — Fyy (Us) = 0 (5)

As proposed by Fazio et al. [36], the nonlinear law used in Mat-
lab is tuned according to the Abaqus results (contact forces and
gaps) for each contact element (see Eq. (3)). It is important to note
that this tuning procedure is dependent on the friction coefficient
1 and external loads as they affect the static equilibrium state.

Then, the system is linearized around the nonlinear static equi-
librium and the associated eigenvalue problem is solved by resolv-
ing the following equation:

(M + € + (K, +Ju))$ = 0 (6)

where ], corresponds to the nonlinear force linearization of Fy
around the nonlinear static equilibrium point Us. The complex
eigenvalues can then be written as follows: 1; = a; + jw; where j
defines the imaginary unit. w; represents the angular frequency of
the associated eigenmode ¢;. If the real part g; of an eigenvalue is
positive, the corresponding eigenmode is considered unstable and
can thus generate brake squeal. The results on the stability analysis
for the undamped industrial representative brake system under
study are given in Fig. 2: the evolutions for the six main instabilities

(for both real parts and frequencies) at 1.98 kHz, 3.69 kHz, 3.85 kHz,
4.72 kHz, 4.94 kHz and 5.34 kHz on the 0-6 kHz range are shown by
increasing the friction coefficient u of the disc/pad interfaces. For
the sake of clarity, these results indicate one of the main contribu-
tions of the previous study [36]: it illustrates that it is possible to
drastically reduce the number of contact nodes at the frictional
disc/pad interfaces while being able to estimate the stability of
the brake system. In the present study, the reduced models with
104 and 212 contact elements at the disc/pad frictional interface
(called RM104 and RM212 respectively) are in good agreement with
the Abaqus reference for which all the contact nodes are preserved
(see Fig. 2). Moreover, the results of the damped reduced finite ele-
ment model (called RM212-damping) that will be used in the next
sections are shown in Fig. 2.

3. Modal Amplitude Stability Analysis (MASA) methodology

In this section, the approach proposed to estimate the occur-
rence and triggering of the initial increase of self-excited vibration
under predefined amplitudes of one unstable mode is presented.
First, a new linearization for the first harmonic approximation of
the contact forces using the relative displacements in the contact
elements will be introduced. Then, the complex modal shape will
be defined using the first harmonic displacements. Finally, the
Modal Amplitude Stability Analysis (MASA) methodology will be
developed. We recall that the objective of the methodology pro-
posed here is not to predict the self-excited vibration of the brake
system but to provide an additional analysis for the Complex
Eigenvalues Analysis. These additional results are based on the pre-
diction of the onset of unstable modes generated at the initiation of
squeal instability. Algorithm of the MASA methodology is given in
Fig. 3.

3.1. First harmonic state-space system using a new linearization of
contact forces

Considering the previous expressions, Eq. (5) can be rewritten
in the following form:

MAU + CAU + (Knu, +]J) AU+ Q =0 (7)
where
Q= Fnl(Us + AU) - Fnl(Us) _JnlAU (8)

Then, if Q@ = 0, the associated eigenvalue problem corresponds to
Eq. (6).
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Fig. 2. Evolution of eigenvalues, frequencies and real parts according to the friction coefficient u for all instabilities. A new superelement is generated at each u for the
complex eigenvalue analysis on reduced models. A damping coefficient of ¢ = 1e — 6 is applied for RM212-damped.

For the sake of clarity, the reason for separating the terms of
the previous equation of motion (7) in this way is to ensure con-
tinuity during the numerical calculation of the MASA methodol-
ogy for AU = 0 (which implies Q = 0 for Eq. (8)). Regarding the
formulation proposed and the separation of the terms for the

equation of motion (7), the stability analysis for AU = 0 refers
to Eq. (6).

The nonlinear solution of Eq. (7) can be assumed to be a trun-
cated Fourier series leading to an approximation of the nonlinear
solution AU(t):
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Np Np Np
AU(t) = ;AUk(t) = ;AUg cos(kwt) + ;Aui sin(kot) 9)
—| k= k=

AU, (t) is the kth harmonic in the time domain with AUS and AU}
the associated vectors of Fourier coefficients. @ corresponds to
the final angular frequency of the nonlinear limit cycles.

Then, the nonlinear forces ©(t) can also be assumed to be a
truncated Fourier series:

Np, Ny, Ny,
Q(t) = gﬂk(t) = ;gg cos(kwt) + ;Qz sin(kot) (10)

It is noteworthy that the vectors of Fourier coefficients Qf and
©QF can be calculated by applying an Alternate Frequency/Time
domain method (AFT-method) via the evaluation of Q(t) in the
time domain (see [29] for more details).

By carrying over Egs. (9) and (10) in Eq. (7) and extracting the
first harmonic component, we obtain:

MAU; + CAU; + (Kyu, +J,)AU; +Q; =0 (11)
where

AU; = AUS cos(wt) + AUS sin(wt) (12)
Q; = QS cos(wt) + @ sin(wt) (13)

Then, we propose to linearize ©; such that:
Q; = K AU, + G AU, (14)

This previous form and more specifically the associated hys-
teretic damping allows taking into account the phase between
the load component ©; and the displacement component Uj.
Moreover, it can be observed that the coefficients of K; and C;
can be evaluated for each contact element independently. For a

given contact element, we can define the normal relative displace-
ment as:

3" (t) = ¢ cos(wt) + s sin(wt) (15)

and, the effort between two degree-of-freedom according to a
direction ¢ which can be tangential or normal as in:

Q4(t) = 1. cos(wt) + Tssin(wt) (16)
Then, for each direction 9, to check the following equation:
Qd(t) = K" (t) + cn5" (1) (17)

we can define k*" and ¢®" such as:

{l(d‘" _ &;ﬂiirs cdn — &t ot if § £ 0 or §g #~ 0

¢ +05 w(égﬂg) (18)

kK" =0 cin=0 otherwise

Using Eq. (14) in Eq. (11), the system can easily be rewritten in a
state-space (i.e. Y; = (AU, AU1)T) such as:
Y; = AY; (19)
where

0 I

A= {—M" (Kniu, +Jo + K1) —M(C+Cy) (20)

Matrix A can be used for a stability analysis including modal
dynamics by retaining only the first harmonic component, which
makes sense since the first harmonic is directly linked to the unsta-
ble mode (i.e. the instability frequency).

3.2. Complex modal shape using first harmonic displacements and
MASA methodology

Eq. (12) can be rewritten for the ith eigenvalue such as:

{ AU; = Xeit + X el

R(i) =0 @D

where X; = (AU — jAU3)/2. Here, we note that this first harmonic
solution naturally introduces the stability condition given by
R(4) = 0 (see [29] for more details). If we have AU; # 0 (AU; being
a known quantity) for an unstable mode (i.e. with the associated
eigenvalue /4;), 4; can be extracted directly from the matrix A; by
considering the following form:

Ji = i A (22)
where

1/ X4 >
== . 23
v ﬂ(]wixl (23)
and

Xi
= 24
=[x | 24

Finally, the global strategy of the Modal Amplitude Stability
Analysis method is based on a sweep according to the modal
amplitude pi", assuming that " = ¢? and w" = ? are indepen-
dent of the modal amplitude. m refers to the sweep index. These
assumptions are valid at very low amplitudes (i.e. we try to assess
the evolution of instabilities in the first micro-impacts by assuming
that mode shapes do not change too much). For each value of
p", X' can be approximated using Eq. (23) such as:

Xr]n m. 0
jwoxm =pi'Vi (25)
i™M
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Since y{" is not updated according to the modal amplitude, i7" is
not deduced from the previous Eq. (22) but extracted from a Com-
plex Eigenvalue Analysis performed on A" (see Eq. (20)).

4. Results

In this section, we consider the reduced damped model
RM212-damped in the 0-6 kHz range due to the performance of
the RM212 model compared to the reference model. As explained
previously in the work of Fazio et al. [36] superelements are gener-
ated for each step of the unfolding parameter u (i.e. from p = 0.1 to
1 =0.9 with Au=0.1) due to the fact that each reduced model
depends on the value of the friction coefficient p.

The numerical approach is defined as follows: for each value of
the unfolding parameter , instabilities on the frequency range of
interest (i.e. 0-6 kHz) are detected by using CEA (see the previous
Section 2.2 for more details). Then, for each instability, the modal
amplitudes of the nonlinear system are evaluated independently
using the MASA methodology by performing an incremental modal
amplitude sweep (with a step Ap) for a chosen unstable mode. For
a given value of the unfolding parameter (4, all the eigenvalues real
parts of the matrix A (see Eq. (20)) are calculated. If a real part is
higher than zero, it corresponds to the increase of the unstable
modes for a given initial modal amplitude.
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In the following, the results will be presented for the sixth
instabilities in the 0-6 kHz range as indicated previously in Sec-
tion 2.2 (at 1.98 kHz, 3.69 kHz, 3.85 kHz, 4.72 kHz, 4.94 kHz and
5.34 kHz). First, the three main instabilities at 1.98 kHz, 3.85 kHz
and 4.72 kHz will be discussed in detail. Then, the results for the
three other instabilities at 3.69 kHz, 4.94 kHz and 5.34 kHz will
be given.

First, Fig. 4 show the evolution of the real parts of the dynamic
system versus different initial modal amplitudes of the first insta-
bility (around 1.98 kHz as seen in the previous section) and various
frictional coefficients (from u=0.6 to u=0.9 with a step of
Ap = 0.1). It can be seen that the occurrence and generation of
increasing self-excited vibrations (i.e. evolution of the real parts)
can be different depending on the amplitude of the unstable mode
(i.e. modal amplitude) for a given friction coefficient value. Several
unstable modes can occur even if the initial conditions take into
account only the amplitudes for the first unstable mode. For exam-
ple, five unstable modes are generated in some configurations: see
Fig. 4(b) for 4 = 0.7 and a modal amplitude between 10 and 210
(with five unstable modes at 2 kHz, 3.85 kHz, 4.7 kHz, 4.9 kHz
and 5.4 kHz) and Fig. 4(d) for £ =0.9 and a modal amplitude
between 0 and 300 (with five unstable modes at 2 kHz, 3.7 kHz,
3.85 kHz, 4.7 kHz and 5.4 kHz). Also, new unstable modes which
were not predicted with the classical stability analysis for a specific
value of the friction coefficient may appear. For example, in the
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Fig. 4. Evolution of real parts according to modal amplitude for the instability at 1.98 kHz - the colorbar is associated with the real part of the eigenvalues. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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case of u=0.7 (see Fig. 4(b)), one unstable mode at 5.3 kHz
appears when the modal amplitude is between [10-200]. Similarly,
instability at 4.9 kHz appears for ;= 0.8 and p = 0.9 while the
classical stability analysis indicates that there is no unstable mode
around this frequency for the friction coefficients considered. It is
interesting to note, however, that the unstable modes that emerge
at 4.9 kHz and 5.3 kHz were predicted by CEA (see Fig. 2(e)-(k) and
(f)-(1)), but not for the same friction coefficient values. This illus-
trates the fact that the appearance of new unstable modes can be
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observed due to the evolution of the stability of an unstable solu-
tion. The evolution of the frequency of unstable modes as a func-
tion of the evolution of the modal amplitude can also be seen.
This is particularly evident for the unstable mode around
4.7-5 kHz.

Figs. 5 and 6 show results for the two instabilities at 3.85 kHz
and 4.72 kHz as initial contributors for the modal amplitudes. Once
again, it can be seen that the occurrence and generation of unstable
vibrations depend on the initial modal amplitudes. More or less
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unstable modes can appear due to the evolution of both the value
of the friction coefficient and the modal amplitudes. We can also
conclude that the choice of the unstable mode used to initiate
unstable amplitudes drastically influences the occurrence and evo-
lution of all the unstable modes (compare Figs. 4-6 for a selected
friction coefficient value). For this specific case, a new unstable
mode (at 5.7 kHz) that has never been predicted by CEA is present

(see Fig. 6(b)-(f)). This new contribution appears only for signifi-
cant modal amplitudes. Some unstable modes can be seen to disap-
pear when the modal amplitudes of the unstable modes chosen
increase (see, for example, the unstable frequencies at 3.8 kHz
and 4.7 kHz in Fig. 5(a) and (b); 5.2 kHz and 5.6 kHz in Fig. 5(c)
and (d); 4.7 kHz in Fig. 6(a) and (b)). Finally, we note that for these
two cases (instability at 3.85 kHz or 4.72 kHz as a unique initial
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contributor, respectively), the unstable modes selected to initiate
movement (i.e. the modal amplitudes) may disappear and there-
fore no longer be present in the contribution of the increasing
vibration, despite the fact that they triggered the instability. This
is clearly shown in Fig. 5(a)-(d) (in Fig. 6(a) and (b), respectively)
for which the initial unstable mode at 3.85 kHz (at 4.72 kHz,
respectively) disappears if the modal amplitudes increases. There-
fore it is obvious that the initial unstable mode does not necessar-
ily lead to the vibrational motion and may, in some cases, be only
an initial contributor to instability. This also demonstrates the lim-
itations of CEA. It can be concluded that the initial increasing
unstable vibrations can be more or less complex (with the contri-
bution of more or less unstable modes) due to the modal ampli-
tudes of the unstable mode chosen. However, it can be noted
that the number of unstable modes that emerge are limited regard-

Table 1

Overview of computation times for both reduced models depending on the use or not
of the sweep break condition ®(4"). The calculations were performed using PSA
Peugeot Citroén servers for Abaqus and a desktop computer equipped with an Intel(R)
Xeon(R) CPU E5-1620 v2 @3.7 GHz processor for the MASA solver. The MASA solver
was compiled with Matlab R2013a 64b.

RM104 RM212

Number of superelements to generate by Abaqus 9 9

Number of instabilities to evaluate by MASA 30 28

Total time to generate superelements 1h52 1h52'

Total time for MASA evaluations (100 steps on the 0-700 5h24’ 29h07’
sweep)

Total time for MASA evaluations with sweep break 3h06" 18h22’
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160
140

120

100 i
| L
ol
l

Number of the contact element

0 100 200 300 400 500 600 700
Modal amplitude

(a) 1.98kHz at = 0.7

W

U

Number of the contact element

0 100 200 300 400 500 600 700
Modal amplitude
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less of the initial conditions imposed. We also found similarities (in
terms of frequency and real parts) according to the different
configurations.

Then, Figs. 7-9 show the results for the three instabilities at
3.69 kHz, 4.94 kHz and 5.34 kHz. The previous remarks are still
valid for each case. The contributions of several unstable modes
are present. These contributions can be more or less significant
depending on the changes in the modal amplitudes of the prede-
fined unstable mode. In every case, the unstable mode with the lar-
gest real part is always the same. This instability can be seen at
4,72 kHz for small modal amplitudes which increase to 4.9 kHz
when augmenting the modal amplitudes of a predefined unstable
mode. This interesting information (that cannot be obtained
through conventional CEA analysis) informs us which unstable
mode governs the initial increase in the level of vibrations.

Table 1 gives an overview of the computation times involved. As
an indication, the disk space used to store the MASA results
exploited in this section was around 1 Mb for each reduced model
(matlab binary format.mat was used). If more processors had been
used for the MASA calculations and by performing all the calcula-
tions in parallel, it would have been possible to limit the total time
to slightly longer than the Abaqus wall-clock time for RM104, at
least. A compromise could also be defined between the number
of contact elements in the reduced model, the number of steps
for the modal amplitude sweep and the number of processors
needed to run the MASA.

Finally, we propose to show the evolution of contacts at the fric-
tional interface. Therefore, for a specific friction coefficient i = 0.7,
Fig. 10(a)-(c) give the status for each contact element according to
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Fig. 10. Postprocessing of impacts according to modal amplitude for the three main instabilities.
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the modal amplitude p of one of the three main instabilities (at
1.98 kHz, 3.85 kHz or 4.7 kHz). Three configurations of the contact
status at the frictional interface are considered with the following
visual representations: nothing in case of non-contact, a dot in case
of permanent contact and a full red' circle in case of impacts.

When the modal amplitude p increases, we can observe the
occurrence of impacts for each configuration. Moreover, the glo-
bal evolutions of the impacts for the three main instabilities
appear to be generally similar with regard to their locations
(see Fig. 10(a)-(c)). When comparing the evolution of the real
part versus the modal amplitude p (see Figs. 4(b), 5(d) and
6 (d), respectively) and the evolution of contact status (see
Fig. 10(a)-(c), respectively), it is easy to see that the occurrences
of impacts can tend towards stabilization by lowering the evolu-
tion of the real part or towards destabilization by increasing it.

In some cases, it is important to note that micro-impacts are
sufficient to stabilize the modal response (when the real part
reaches zero) and so the vibrational amplitude of the brake system
can be approximated by using the MASA methodology and results.
For example, we consider the configuration with the modal ampli-
tude p of the second unstable mode (at 3.8 kHz) for y=0.2. As
shown previously in Fig. 5(a), stationary responses are obtained
for two specific modal amplitudes (for p = 100 and p = 440). As
indicated in Fig. 10(d), these two modal amplitudes correspond
to two different contact statuses at the frictional interface. All
these results illustrate the fact that the local status at the frictional
interface between the pad and the disc can also play an important
role in the generation of increasing self-excited vibrations.

5. Conclusion

This paper proposed a new method called Modal Amplitude Sta-
bility Analysis based on the transformation of the first harmonic
approximation of equations of motion (using Harmonic Balance
Method) into a state-space system compatible with a stability
analysis.

This approach and the evolution of the real parts of the dynamic
system versus modal amplitudes were used to detect the occur-
rence and generation of increasing self-excited vibrations. For the
global strategy, a new linearization was proposed for nonlinear
forces at the frictional interface in order to linearize each contact
element independently. This linearization introduced terms in
both stiffness and damping matrices and should allow reduction
on relative displacements [37] for future developments based on
CHBM [29] which could probably be used to reassess the mode
shape and frequency according to modal amplitudes. An applica-
tion for an industrial finite element automotive brake system
was presented.

The numerical results obtained and the scientific approach pro-
posed demonstrated that the Modal Amplitude Stability Analysis is
very interesting for several reasons, despite the assumption on the
mode shape and the frequency of the unstable modes. Firstly, there
was no convergence problem since no optimization was used. Sec-
ondly, the calculation times were compatible with industrial use,
as illustrated in this present work.

In future work, we will investigate the ability of MASA method-
ology or derived methods to produce design criteria. We hope to
develop an efficient numerical tool validated by experimental tests
to design automotive brake systems, which requires better under-
standing and predicting squeal noise phenomena more efficiently.
Another important step would be to enhance the mathematical-

! For interpretation of color in Fig. 10, the reader is referred to the web version of
this article.

mechanical modeling of the automotive brake system. It is very
important to obtain better understanding of squeal phenomena
by improving finite element models of brake squeal in order to
reproduce squeal experiments.
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